

CBC SDK: Carbon Black Cloud SDK for Python

Release v1.5.2.

The Carbon Black Cloud Python SDK provides an easy interface to connect with Carbon Black Cloud products,
including Endpoint Standard, Audit and Remediation, and Enterprise EDR. Use this SDK
to more easily query and manage your endpoints, manipulate data as Python objects, and
harness the full power of Carbon Black Cloud APIs.

Major Features

	
	Supports the following Carbon Black Cloud Products with extensions for new features and products planned
	
	Endpoint Standard

	Audit and Remediation

	Enterprise EDR

	Platform

	Workload

	
	Reduced Complexity
	The SDK manages the differences among Carbon Black Cloud APIs
behind a single, consistent Python interface. Spend less time
learning specific API calls, and more time controlling your environment.

	
	More Efficient Performance
	A built-in caching layer makes repeated access to the same resource
more efficient. Instead of making identical API requests repeatedly,
the SDK caches the results of the request the first time, and references
the cache when you make future requests for the resource. This reduces the
time required to access the resource later.

Audience for the SDK

In general, the Carbon Black Cloud Python SDK is directed at those that:

	Have a working knowledge of Python.

	Have a basic understanding of what the Carbon Black Cloud does, and its basic terminology such as events, alerts,
and watchlists.

API Credentials

To use the SDK and access data in Carbon Black Cloud, you must set up API keys with
the correct permissions if you are using the X-Auth-Token authentication method, or create an access token
if you are using Bearer or Personal API Token. Different APIs have different permission requirements for use,
which is explained in the Developer Network Authentication Guide [https://developer.carbonblack.com/reference/carbon-black-cloud/authentication/].

The SDK manages your API credentials for you. There are multiple ways to supply the SDK
with your API credentials, which is explained in Authentication.

Getting Started

Get started with Carbon Black Cloud Python SDK here. For detailed information on the objects and methods exposed by Carbon Black Cloud Python SDK, see the full SDK Documentation below.

User Guide

	Installation
	Install Python

	Use Pip

	Virtual Environments (optional)

	Get Source Code

	Authentication
	Authentication Methods

	With Amazon Secrets Manger

	Explanation of API Credential Components

	Getting Started
	Installation

	Authentication

	Setting the User-Agent

	Running the Example

	Inside the Example Script

	Calling the SDK Directly

	Next Steps

	Resources
	Audience for These Resources

	Examples

	Recordings

	Guides
	Audience for These Guides

	Feature Guides

	Migration Guides

SDK Documentation

	The CBCloudAPI Object
	CBCloudAPI Creation Examples

	Class Documentation
	CBCloudAPI
	CBCloudAPI.alert_search_suggestions()

	CBCloudAPI.api_json_request()

	CBCloudAPI.api_request_iterate()

	CBCloudAPI.api_request_stream()

	CBCloudAPI.audit_remediation()

	CBCloudAPI.audit_remediation_history()

	CBCloudAPI.bulk_threat_dismiss()

	CBCloudAPI.bulk_threat_update()

	CBCloudAPI.convert_feed_query()

	CBCloudAPI.create()

	CBCloudAPI.custom_severities

	CBCloudAPI.delete_object()

	CBCloudAPI.device_background_scan()

	CBCloudAPI.device_bypass()

	CBCloudAPI.device_delete_sensor()

	CBCloudAPI.device_quarantine()

	CBCloudAPI.device_uninstall_sensor()

	CBCloudAPI.device_update_policy()

	CBCloudAPI.device_update_sensor_version()

	CBCloudAPI.fetch_process_queries()

	CBCloudAPI.get_auditlogs()

	CBCloudAPI.get_notifications()

	CBCloudAPI.get_object()

	CBCloudAPI.get_policy_ruleconfig_parameter_schema()

	CBCloudAPI.get_raw_data()

	CBCloudAPI.live_response

	CBCloudAPI.notification_listener()

	CBCloudAPI.org_urn

	CBCloudAPI.post_multipart()

	CBCloudAPI.post_object()

	CBCloudAPI.process_limits()

	CBCloudAPI.put_object()

	CBCloudAPI.select()

	CBCloudAPI.url

	CBCloudAPI.validate_process_query()

	Audit and Remediation Package
	Base Module
	DeviceSummary
	DeviceSummary.Metrics

	DeviceSummary.get()

	DeviceSummary.metrics_

	DeviceSummary.refresh()

	DeviceSummary.to_json()

	DeviceSummaryFacet
	DeviceSummaryFacet.Values

	DeviceSummaryFacet.get()

	DeviceSummaryFacet.refresh()

	DeviceSummaryFacet.to_json()

	DeviceSummaryFacet.values_

	FacetQuery
	FacetQuery.add_criteria()

	FacetQuery.all()

	FacetQuery.and_()

	FacetQuery.execute_async()

	FacetQuery.facet_field()

	FacetQuery.first()

	FacetQuery.not_()

	FacetQuery.one()

	FacetQuery.or_()

	FacetQuery.run_id()

	FacetQuery.set_device_ids()

	FacetQuery.set_device_names()

	FacetQuery.set_device_os()

	FacetQuery.set_policy_ids()

	FacetQuery.set_policy_names()

	FacetQuery.set_statuses()

	FacetQuery.update_criteria()

	FacetQuery.where()

	MAX_RESULTS_LIMIT

	Result
	Result.Device

	Result.Fields

	Result.Metrics

	Result.device_

	Result.fields_

	Result.get()

	Result.metrics_

	Result.query_device_summaries()

	Result.query_device_summary_facets()

	Result.query_result_facets()

	Result.refresh()

	Result.to_json()

	ResultFacet
	ResultFacet.Values

	ResultFacet.get()

	ResultFacet.refresh()

	ResultFacet.to_json()

	ResultFacet.values_

	ResultQuery
	ResultQuery.add_criteria()

	ResultQuery.all()

	ResultQuery.and_()

	ResultQuery.async_export()

	ResultQuery.execute_async()

	ResultQuery.export_csv_as_file()

	ResultQuery.export_csv_as_lines()

	ResultQuery.export_csv_as_stream()

	ResultQuery.export_csv_as_string()

	ResultQuery.export_zipped_csv()

	ResultQuery.first()

	ResultQuery.not_()

	ResultQuery.one()

	ResultQuery.or_()

	ResultQuery.run_id()

	ResultQuery.scroll()

	ResultQuery.set_device_ids()

	ResultQuery.set_device_names()

	ResultQuery.set_device_os()

	ResultQuery.set_policy_ids()

	ResultQuery.set_policy_names()

	ResultQuery.set_run_ids()

	ResultQuery.set_statuses()

	ResultQuery.set_time_received()

	ResultQuery.sort_by()

	ResultQuery.update_criteria()

	ResultQuery.where()

	Run
	Run.delete()

	Run.get()

	Run.query_device_summaries()

	Run.query_facets()

	Run.query_results()

	Run.refresh()

	Run.stop()

	Run.to_json()

	RunHistory
	RunHistory.delete()

	RunHistory.get()

	RunHistory.query_device_summaries()

	RunHistory.query_facets()

	RunHistory.query_results()

	RunHistory.refresh()

	RunHistory.stop()

	RunHistory.to_json()

	RunHistoryQuery
	RunHistoryQuery.add_criteria()

	RunHistoryQuery.all()

	RunHistoryQuery.and_()

	RunHistoryQuery.execute_async()

	RunHistoryQuery.first()

	RunHistoryQuery.not_()

	RunHistoryQuery.one()

	RunHistoryQuery.or_()

	RunHistoryQuery.set_template_ids()

	RunHistoryQuery.sort_by()

	RunHistoryQuery.update_criteria()

	RunHistoryQuery.where()

	RunQuery
	RunQuery.device_ids()

	RunQuery.device_types()

	RunQuery.execute_async()

	RunQuery.name()

	RunQuery.notify_on_finish()

	RunQuery.policy_id()

	RunQuery.schedule()

	RunQuery.submit()

	RunQuery.where()

	Template
	Template.delete()

	Template.get()

	Template.query_device_summaries()

	Template.query_facets()

	Template.query_results()

	Template.query_runs()

	Template.refresh()

	Template.stop()

	Template.to_json()

	TemplateHistory
	TemplateHistory.delete()

	TemplateHistory.get()

	TemplateHistory.query_device_summaries()

	TemplateHistory.query_facets()

	TemplateHistory.query_results()

	TemplateHistory.query_runs()

	TemplateHistory.refresh()

	TemplateHistory.stop()

	TemplateHistory.to_json()

	TemplateHistoryQuery
	TemplateHistoryQuery.add_criteria()

	TemplateHistoryQuery.all()

	TemplateHistoryQuery.and_()

	TemplateHistoryQuery.execute_async()

	TemplateHistoryQuery.first()

	TemplateHistoryQuery.not_()

	TemplateHistoryQuery.one()

	TemplateHistoryQuery.or_()

	TemplateHistoryQuery.sort_by()

	TemplateHistoryQuery.update_criteria()

	TemplateHistoryQuery.where()

	Differential Module
	ASYNC_RATE_LIMIT

	Differential
	Differential.get()

	Differential.refresh()

	Differential.to_json()

	DifferentialQuery
	DifferentialQuery.add_criteria()

	DifferentialQuery.all()

	DifferentialQuery.async_export()

	DifferentialQuery.count_only()

	DifferentialQuery.first()

	DifferentialQuery.newer_run_id()

	DifferentialQuery.older_run_id()

	DifferentialQuery.one()

	DifferentialQuery.set_device_ids()

	DifferentialQuery.submit()

	DifferentialQuery.update_criteria()

	Credential Providers Package
	Default Module
	DefaultProvider
	DefaultProvider.get_default_provider()

	default_credential_provider()

	AWS SM Credential Provider Module
	AWSCredentialProvider
	AWSCredentialProvider.get_credentials()

	Environ Credential Provider Module
	EnvironCredentialProvider
	EnvironCredentialProvider.get_credentials()

	File Credential Provider Module
	FileCredentialProvider
	FileCredentialProvider.get_credentials()

	Keychain Credential Provider Module
	KeychainCredentialProvider
	KeychainCredentialProvider.get_credentials()

	Registry Credential Provider Module
	OpenKey()

	QueryValueEx()

	RegistryCredentialProvider
	RegistryCredentialProvider.get_credentials()

	Endpoint Standard Package
	Base Module
	EnrichedEvent
	EnrichedEvent.approve_process_sha256()

	EnrichedEvent.ban_process_sha256()

	EnrichedEvent.get()

	EnrichedEvent.get_details()

	EnrichedEvent.process_sha256

	EnrichedEvent.refresh()

	EnrichedEvent.to_json()

	EnrichedEventFacet
	EnrichedEventFacet.Ranges

	EnrichedEventFacet.Terms

	EnrichedEventFacet.get()

	EnrichedEventFacet.ranges_

	EnrichedEventFacet.refresh()

	EnrichedEventFacet.terms_

	EnrichedEventFacet.to_json()

	EnrichedEventQuery
	EnrichedEventQuery.add_criteria()

	EnrichedEventQuery.add_exclusions()

	EnrichedEventQuery.aggregation()

	EnrichedEventQuery.all()

	EnrichedEventQuery.and_()

	EnrichedEventQuery.batch_size()

	EnrichedEventQuery.execute_async()

	EnrichedEventQuery.first()

	EnrichedEventQuery.not_()

	EnrichedEventQuery.one()

	EnrichedEventQuery.or_()

	EnrichedEventQuery.set_fields()

	EnrichedEventQuery.set_rows()

	EnrichedEventQuery.set_start()

	EnrichedEventQuery.set_time_range()

	EnrichedEventQuery.sort_by()

	EnrichedEventQuery.timeout()

	EnrichedEventQuery.update_criteria()

	EnrichedEventQuery.update_exclusions()

	EnrichedEventQuery.where()

	Event

	log

	Standard Recommendation Module
	Recommendation
	Recommendation.RecommendationApplication

	Recommendation.RecommendationImpact

	Recommendation.RecommendationNewRule

	Recommendation.RecommendationWorkflow

	Recommendation.accept()

	Recommendation.get()

	Recommendation.impact_

	Recommendation.new_rule_

	Recommendation.refresh()

	Recommendation.reject()

	Recommendation.reputation_override()

	Recommendation.reset()

	Recommendation.to_json()

	Recommendation.workflow_

	RecommendationQuery
	RecommendationQuery.add_criteria()

	RecommendationQuery.all()

	RecommendationQuery.execute_async()

	RecommendationQuery.first()

	RecommendationQuery.one()

	RecommendationQuery.set_hashes()

	RecommendationQuery.set_policy_types()

	RecommendationQuery.set_statuses()

	RecommendationQuery.sort_by()

	RecommendationQuery.update_criteria()

	log

	USB Device Control Module
	USBDevice
	USBDevice.approve()

	USBDevice.get()

	USBDevice.get_endpoints()

	USBDevice.get_vendors_and_products_seen()

	USBDevice.refresh()

	USBDevice.to_json()

	USBDeviceApproval
	USBDeviceApproval.bulk_create()

	USBDeviceApproval.bulk_create_csv()

	USBDeviceApproval.create_from_usb_device()

	USBDeviceApproval.delete()

	USBDeviceApproval.get()

	USBDeviceApproval.is_dirty()

	USBDeviceApproval.refresh()

	USBDeviceApproval.reset()

	USBDeviceApproval.save()

	USBDeviceApproval.to_json()

	USBDeviceApproval.touch()

	USBDeviceApproval.validate()

	USBDeviceApprovalQuery
	USBDeviceApprovalQuery.add_criteria()

	USBDeviceApprovalQuery.all()

	USBDeviceApprovalQuery.and_()

	USBDeviceApprovalQuery.execute_async()

	USBDeviceApprovalQuery.export()

	USBDeviceApprovalQuery.first()

	USBDeviceApprovalQuery.not_()

	USBDeviceApprovalQuery.one()

	USBDeviceApprovalQuery.or_()

	USBDeviceApprovalQuery.set_device_ids()

	USBDeviceApprovalQuery.set_product_names()

	USBDeviceApprovalQuery.set_vendor_names()

	USBDeviceApprovalQuery.update_criteria()

	USBDeviceApprovalQuery.where()

	USBDeviceBlock
	USBDeviceBlock.bulk_create()

	USBDeviceBlock.create()

	USBDeviceBlock.delete()

	USBDeviceBlock.get()

	USBDeviceBlock.refresh()

	USBDeviceBlock.to_json()

	USBDeviceBlockQuery
	USBDeviceBlockQuery.all()

	USBDeviceBlockQuery.execute_async()

	USBDeviceBlockQuery.first()

	USBDeviceBlockQuery.one()

	USBDeviceQuery
	USBDeviceQuery.add_criteria()

	USBDeviceQuery.all()

	USBDeviceQuery.and_()

	USBDeviceQuery.execute_async()

	USBDeviceQuery.export()

	USBDeviceQuery.facets()

	USBDeviceQuery.first()

	USBDeviceQuery.not_()

	USBDeviceQuery.one()

	USBDeviceQuery.or_()

	USBDeviceQuery.set_endpoint_names()

	USBDeviceQuery.set_max_rows()

	USBDeviceQuery.set_product_names()

	USBDeviceQuery.set_serial_numbers()

	USBDeviceQuery.set_statuses()

	USBDeviceQuery.set_vendor_names()

	USBDeviceQuery.sort_by()

	USBDeviceQuery.update_criteria()

	USBDeviceQuery.where()

	log

	Enterprise EDR Package
	Auth Events Module
	AuthEvent
	AuthEvent.bulk_get_details()

	AuthEvent.get()

	AuthEvent.get_auth_events_descriptions()

	AuthEvent.get_details()

	AuthEvent.refresh()

	AuthEvent.search_suggestions()

	AuthEvent.to_json()

	AuthEventFacet
	AuthEventFacet.Ranges

	AuthEventFacet.Terms

	AuthEventFacet.get()

	AuthEventFacet.ranges_

	AuthEventFacet.refresh()

	AuthEventFacet.terms_

	AuthEventFacet.to_json()

	AuthEventGroup

	AuthEventQuery
	AuthEventQuery.add_criteria()

	AuthEventQuery.add_exclusions()

	AuthEventQuery.all()

	AuthEventQuery.and_()

	AuthEventQuery.batch_size()

	AuthEventQuery.execute_async()

	AuthEventQuery.first()

	AuthEventQuery.group_results()

	AuthEventQuery.not_()

	AuthEventQuery.one()

	AuthEventQuery.or_()

	AuthEventQuery.set_fields()

	AuthEventQuery.set_rows()

	AuthEventQuery.set_start()

	AuthEventQuery.set_time_range()

	AuthEventQuery.sort_by()

	AuthEventQuery.timeout()

	AuthEventQuery.update_criteria()

	AuthEventQuery.update_exclusions()

	AuthEventQuery.where()

	Threat Intelligence Module
	Feed
	Feed.FeedBuilder

	Feed.append_reports()

	Feed.append_reports_rawdata()

	Feed.create()

	Feed.delete()

	Feed.get()

	Feed.is_dirty()

	Feed.refresh()

	Feed.replace_reports()

	Feed.replace_reports_rawdata()

	Feed.reports

	Feed.reset()

	Feed.save()

	Feed.to_json()

	Feed.touch()

	Feed.update()

	Feed.validate()

	FeedModel
	FeedModel.delete()

	FeedModel.get()

	FeedModel.is_dirty()

	FeedModel.refresh()

	FeedModel.reset()

	FeedModel.save()

	FeedModel.to_json()

	FeedModel.touch()

	FeedModel.validate()

	FeedQuery
	FeedQuery.all()

	FeedQuery.and_()

	FeedQuery.first()

	FeedQuery.one()

	FeedQuery.results

	FeedQuery.sort()

	FeedQuery.where()

	IOC
	IOC.delete()

	IOC.get()

	IOC.is_dirty()

	IOC.refresh()

	IOC.reset()

	IOC.save()

	IOC.to_json()

	IOC.touch()

	IOC.validate()

	IOC_V2
	IOC_V2.create_equality()

	IOC_V2.create_query()

	IOC_V2.create_regex()

	IOC_V2.delete()

	IOC_V2.get()

	IOC_V2.ignore()

	IOC_V2.ignored

	IOC_V2.ipv6_equality_format()

	IOC_V2.is_dirty()

	IOC_V2.refresh()

	IOC_V2.reset()

	IOC_V2.save()

	IOC_V2.to_json()

	IOC_V2.touch()

	IOC_V2.unignore()

	IOC_V2.validate()

	Report
	Report.ReportBuilder

	Report.append_iocs()

	Report.create()

	Report.custom_severity

	Report.delete()

	Report.get()

	Report.ignore()

	Report.ignored

	Report.iocs_

	Report.is_dirty()

	Report.refresh()

	Report.remove_iocs()

	Report.remove_iocs_by_id()

	Report.reset()

	Report.save()

	Report.save_watchlist()

	Report.to_json()

	Report.touch()

	Report.unignore()

	Report.update()

	Report.validate()

	ReportQuery
	ReportQuery.all()

	ReportQuery.and_()

	ReportQuery.first()

	ReportQuery.one()

	ReportQuery.results

	ReportQuery.sort()

	ReportQuery.where()

	ReportSeverity
	ReportSeverity.delete()

	ReportSeverity.get()

	ReportSeverity.is_dirty()

	ReportSeverity.refresh()

	ReportSeverity.reset()

	ReportSeverity.save()

	ReportSeverity.to_json()

	ReportSeverity.touch()

	ReportSeverity.validate()

	Watchlist
	Watchlist.WatchlistBuilder

	Watchlist.add_report_ids()

	Watchlist.add_reports()

	Watchlist.classifier_

	Watchlist.create()

	Watchlist.create_from_feed()

	Watchlist.delete()

	Watchlist.disable_alerts()

	Watchlist.disable_tags()

	Watchlist.enable_alerts()

	Watchlist.enable_tags()

	Watchlist.feed

	Watchlist.get()

	Watchlist.is_dirty()

	Watchlist.refresh()

	Watchlist.reports

	Watchlist.reset()

	Watchlist.save()

	Watchlist.to_json()

	Watchlist.touch()

	Watchlist.update()

	Watchlist.validate()

	WatchlistQuery
	WatchlistQuery.all()

	WatchlistQuery.and_()

	WatchlistQuery.first()

	WatchlistQuery.one()

	WatchlistQuery.results

	WatchlistQuery.sort()

	WatchlistQuery.where()

	log

	UBS Module
	Binary
	Binary.Summary

	Binary.download_url()

	Binary.get()

	Binary.refresh()

	Binary.summary

	Binary.to_json()

	Downloads
	Downloads.FoundItem

	Downloads.found

	Downloads.get()

	Downloads.refresh()

	Downloads.to_json()

	Platform Package
	Base Module
	PlatformModel
	PlatformModel.get()

	PlatformModel.refresh()

	PlatformModel.to_json()

	log

	Submodules

	Alerts Module
	Alert
	Alert.Note

	Alert.add_threat_tags()

	Alert.close()

	Alert.create_note()

	Alert.delete_threat_tag()

	Alert.deobfuscate_cmdline()

	Alert.dismiss_threat()

	Alert.get()

	Alert.get_history()

	Alert.get_observations()

	Alert.get_process()

	Alert.get_threat_tags()

	Alert.notes_()

	Alert.refresh()

	Alert.search_suggestions()

	Alert.to_json()

	Alert.update()

	Alert.update_threat()

	Alert.workflow_

	AlertSearchQuery
	AlertSearchQuery.add_criteria()

	AlertSearchQuery.add_exclusions()

	AlertSearchQuery.add_time_criteria()

	AlertSearchQuery.all()

	AlertSearchQuery.and_()

	AlertSearchQuery.close()

	AlertSearchQuery.facets()

	AlertSearchQuery.first()

	AlertSearchQuery.not_()

	AlertSearchQuery.one()

	AlertSearchQuery.or_()

	AlertSearchQuery.set_alert_ids()

	AlertSearchQuery.set_alert_notes_present()

	AlertSearchQuery.set_blocked_threat_categories()

	AlertSearchQuery.set_categories()

	AlertSearchQuery.set_cluster_names()

	AlertSearchQuery.set_create_time()

	AlertSearchQuery.set_device_ids()

	AlertSearchQuery.set_device_locations()

	AlertSearchQuery.set_device_names()

	AlertSearchQuery.set_device_os()

	AlertSearchQuery.set_device_os_versions()

	AlertSearchQuery.set_device_username()

	AlertSearchQuery.set_egress_group_ids()

	AlertSearchQuery.set_egress_group_names()

	AlertSearchQuery.set_external_device_friendly_names()

	AlertSearchQuery.set_external_device_ids()

	AlertSearchQuery.set_group_by()

	AlertSearchQuery.set_group_results()

	AlertSearchQuery.set_ip_reputations()

	AlertSearchQuery.set_kill_chain_statuses()

	AlertSearchQuery.set_legacy_alert_ids()

	AlertSearchQuery.set_minimum_severity()

	AlertSearchQuery.set_namespaces()

	AlertSearchQuery.set_not_blocked_threat_categories()

	AlertSearchQuery.set_policy_applied()

	AlertSearchQuery.set_policy_ids()

	AlertSearchQuery.set_policy_names()

	AlertSearchQuery.set_ports()

	AlertSearchQuery.set_process_names()

	AlertSearchQuery.set_process_sha256()

	AlertSearchQuery.set_product_ids()

	AlertSearchQuery.set_product_names()

	AlertSearchQuery.set_protocols()

	AlertSearchQuery.set_reason_code()

	AlertSearchQuery.set_remote_domains()

	AlertSearchQuery.set_remote_ips()

	AlertSearchQuery.set_remote_is_private()

	AlertSearchQuery.set_replica_ids()

	AlertSearchQuery.set_reputations()

	AlertSearchQuery.set_rows()

	AlertSearchQuery.set_rule_ids()

	AlertSearchQuery.set_rule_names()

	AlertSearchQuery.set_run_states()

	AlertSearchQuery.set_sensor_actions()

	AlertSearchQuery.set_serial_numbers()

	AlertSearchQuery.set_tags()

	AlertSearchQuery.set_target_priorities()

	AlertSearchQuery.set_threat_cause_vectors()

	AlertSearchQuery.set_threat_ids()

	AlertSearchQuery.set_threat_notes_present()

	AlertSearchQuery.set_time_range()

	AlertSearchQuery.set_types()

	AlertSearchQuery.set_vendor_ids()

	AlertSearchQuery.set_vendor_names()

	AlertSearchQuery.set_watchlist_ids()

	AlertSearchQuery.set_watchlist_names()

	AlertSearchQuery.set_workflows()

	AlertSearchQuery.set_workload_ids()

	AlertSearchQuery.set_workload_kinds()

	AlertSearchQuery.set_workload_names()

	AlertSearchQuery.sort_by()

	AlertSearchQuery.update()

	AlertSearchQuery.update_criteria()

	AlertSearchQuery.update_exclusions()

	AlertSearchQuery.where()

	CBAnalyticsAlert
	CBAnalyticsAlert.Note

	CBAnalyticsAlert.add_threat_tags()

	CBAnalyticsAlert.close()

	CBAnalyticsAlert.create_note()

	CBAnalyticsAlert.delete_threat_tag()

	CBAnalyticsAlert.deobfuscate_cmdline()

	CBAnalyticsAlert.dismiss_threat()

	CBAnalyticsAlert.get()

	CBAnalyticsAlert.get_events()

	CBAnalyticsAlert.get_history()

	CBAnalyticsAlert.get_observations()

	CBAnalyticsAlert.get_process()

	CBAnalyticsAlert.get_threat_tags()

	CBAnalyticsAlert.notes_()

	CBAnalyticsAlert.refresh()

	CBAnalyticsAlert.search_suggestions()

	CBAnalyticsAlert.to_json()

	CBAnalyticsAlert.update()

	CBAnalyticsAlert.update_threat()

	CBAnalyticsAlert.workflow_

	ContainerRuntimeAlert
	ContainerRuntimeAlert.Note

	ContainerRuntimeAlert.add_threat_tags()

	ContainerRuntimeAlert.close()

	ContainerRuntimeAlert.create_note()

	ContainerRuntimeAlert.delete_threat_tag()

	ContainerRuntimeAlert.deobfuscate_cmdline()

	ContainerRuntimeAlert.dismiss_threat()

	ContainerRuntimeAlert.get()

	ContainerRuntimeAlert.get_history()

	ContainerRuntimeAlert.get_observations()

	ContainerRuntimeAlert.get_process()

	ContainerRuntimeAlert.get_threat_tags()

	ContainerRuntimeAlert.notes_()

	ContainerRuntimeAlert.refresh()

	ContainerRuntimeAlert.search_suggestions()

	ContainerRuntimeAlert.to_json()

	ContainerRuntimeAlert.update()

	ContainerRuntimeAlert.update_threat()

	ContainerRuntimeAlert.workflow_

	DeviceControlAlert
	DeviceControlAlert.Note

	DeviceControlAlert.add_threat_tags()

	DeviceControlAlert.close()

	DeviceControlAlert.create_note()

	DeviceControlAlert.delete_threat_tag()

	DeviceControlAlert.deobfuscate_cmdline()

	DeviceControlAlert.dismiss_threat()

	DeviceControlAlert.get()

	DeviceControlAlert.get_history()

	DeviceControlAlert.get_observations()

	DeviceControlAlert.get_process()

	DeviceControlAlert.get_threat_tags()

	DeviceControlAlert.notes_()

	DeviceControlAlert.refresh()

	DeviceControlAlert.search_suggestions()

	DeviceControlAlert.to_json()

	DeviceControlAlert.update()

	DeviceControlAlert.update_threat()

	DeviceControlAlert.workflow_

	GroupedAlert
	GroupedAlert.get()

	GroupedAlert.get_alert_search_query()

	GroupedAlert.get_alerts()

	GroupedAlert.most_recent_alert_

	GroupedAlert.refresh()

	GroupedAlert.to_json()

	GroupedAlertSearchQuery
	GroupedAlertSearchQuery.add_criteria()

	GroupedAlertSearchQuery.add_exclusions()

	GroupedAlertSearchQuery.add_time_criteria()

	GroupedAlertSearchQuery.all()

	GroupedAlertSearchQuery.and_()

	GroupedAlertSearchQuery.close()

	GroupedAlertSearchQuery.facets()

	GroupedAlertSearchQuery.first()

	GroupedAlertSearchQuery.get_alert_search_query()

	GroupedAlertSearchQuery.not_()

	GroupedAlertSearchQuery.one()

	GroupedAlertSearchQuery.or_()

	GroupedAlertSearchQuery.set_alert_ids()

	GroupedAlertSearchQuery.set_alert_notes_present()

	GroupedAlertSearchQuery.set_blocked_threat_categories()

	GroupedAlertSearchQuery.set_categories()

	GroupedAlertSearchQuery.set_cluster_names()

	GroupedAlertSearchQuery.set_create_time()

	GroupedAlertSearchQuery.set_device_ids()

	GroupedAlertSearchQuery.set_device_locations()

	GroupedAlertSearchQuery.set_device_names()

	GroupedAlertSearchQuery.set_device_os()

	GroupedAlertSearchQuery.set_device_os_versions()

	GroupedAlertSearchQuery.set_device_username()

	GroupedAlertSearchQuery.set_egress_group_ids()

	GroupedAlertSearchQuery.set_egress_group_names()

	GroupedAlertSearchQuery.set_external_device_friendly_names()

	GroupedAlertSearchQuery.set_external_device_ids()

	GroupedAlertSearchQuery.set_group_by()

	GroupedAlertSearchQuery.set_group_results()

	GroupedAlertSearchQuery.set_ip_reputations()

	GroupedAlertSearchQuery.set_kill_chain_statuses()

	GroupedAlertSearchQuery.set_legacy_alert_ids()

	GroupedAlertSearchQuery.set_minimum_severity()

	GroupedAlertSearchQuery.set_namespaces()

	GroupedAlertSearchQuery.set_not_blocked_threat_categories()

	GroupedAlertSearchQuery.set_policy_applied()

	GroupedAlertSearchQuery.set_policy_ids()

	GroupedAlertSearchQuery.set_policy_names()

	GroupedAlertSearchQuery.set_ports()

	GroupedAlertSearchQuery.set_process_names()

	GroupedAlertSearchQuery.set_process_sha256()

	GroupedAlertSearchQuery.set_product_ids()

	GroupedAlertSearchQuery.set_product_names()

	GroupedAlertSearchQuery.set_protocols()

	GroupedAlertSearchQuery.set_reason_code()

	GroupedAlertSearchQuery.set_remote_domains()

	GroupedAlertSearchQuery.set_remote_ips()

	GroupedAlertSearchQuery.set_remote_is_private()

	GroupedAlertSearchQuery.set_replica_ids()

	GroupedAlertSearchQuery.set_reputations()

	GroupedAlertSearchQuery.set_rows()

	GroupedAlertSearchQuery.set_rule_ids()

	GroupedAlertSearchQuery.set_rule_names()

	GroupedAlertSearchQuery.set_run_states()

	GroupedAlertSearchQuery.set_sensor_actions()

	GroupedAlertSearchQuery.set_serial_numbers()

	GroupedAlertSearchQuery.set_tags()

	GroupedAlertSearchQuery.set_target_priorities()

	GroupedAlertSearchQuery.set_threat_cause_vectors()

	GroupedAlertSearchQuery.set_threat_ids()

	GroupedAlertSearchQuery.set_threat_notes_present()

	GroupedAlertSearchQuery.set_time_range()

	GroupedAlertSearchQuery.set_types()

	GroupedAlertSearchQuery.set_vendor_ids()

	GroupedAlertSearchQuery.set_vendor_names()

	GroupedAlertSearchQuery.set_watchlist_ids()

	GroupedAlertSearchQuery.set_watchlist_names()

	GroupedAlertSearchQuery.set_workflows()

	GroupedAlertSearchQuery.set_workload_ids()

	GroupedAlertSearchQuery.set_workload_kinds()

	GroupedAlertSearchQuery.set_workload_names()

	GroupedAlertSearchQuery.sort_by()

	GroupedAlertSearchQuery.update()

	GroupedAlertSearchQuery.update_criteria()

	GroupedAlertSearchQuery.update_exclusions()

	GroupedAlertSearchQuery.where()

	HostBasedFirewallAlert
	HostBasedFirewallAlert.Note

	HostBasedFirewallAlert.add_threat_tags()

	HostBasedFirewallAlert.close()

	HostBasedFirewallAlert.create_note()

	HostBasedFirewallAlert.delete_threat_tag()

	HostBasedFirewallAlert.deobfuscate_cmdline()

	HostBasedFirewallAlert.dismiss_threat()

	HostBasedFirewallAlert.get()

	HostBasedFirewallAlert.get_history()

	HostBasedFirewallAlert.get_observations()

	HostBasedFirewallAlert.get_process()

	HostBasedFirewallAlert.get_threat_tags()

	HostBasedFirewallAlert.notes_()

	HostBasedFirewallAlert.refresh()

	HostBasedFirewallAlert.search_suggestions()

	HostBasedFirewallAlert.to_json()

	HostBasedFirewallAlert.update()

	HostBasedFirewallAlert.update_threat()

	HostBasedFirewallAlert.workflow_

	IntrusionDetectionSystemAlert
	IntrusionDetectionSystemAlert.Note

	IntrusionDetectionSystemAlert.add_threat_tags()

	IntrusionDetectionSystemAlert.close()

	IntrusionDetectionSystemAlert.create_note()

	IntrusionDetectionSystemAlert.delete_threat_tag()

	IntrusionDetectionSystemAlert.deobfuscate_cmdline()

	IntrusionDetectionSystemAlert.dismiss_threat()

	IntrusionDetectionSystemAlert.get()

	IntrusionDetectionSystemAlert.get_history()

	IntrusionDetectionSystemAlert.get_network_threat_metadata()

	IntrusionDetectionSystemAlert.get_observations()

	IntrusionDetectionSystemAlert.get_process()

	IntrusionDetectionSystemAlert.get_threat_tags()

	IntrusionDetectionSystemAlert.notes_()

	IntrusionDetectionSystemAlert.refresh()

	IntrusionDetectionSystemAlert.search_suggestions()

	IntrusionDetectionSystemAlert.to_json()

	IntrusionDetectionSystemAlert.update()

	IntrusionDetectionSystemAlert.update_threat()

	IntrusionDetectionSystemAlert.workflow_

	WatchlistAlert
	WatchlistAlert.Note

	WatchlistAlert.add_threat_tags()

	WatchlistAlert.close()

	WatchlistAlert.create_note()

	WatchlistAlert.delete_threat_tag()

	WatchlistAlert.deobfuscate_cmdline()

	WatchlistAlert.dismiss_threat()

	WatchlistAlert.get()

	WatchlistAlert.get_history()

	WatchlistAlert.get_observations()

	WatchlistAlert.get_process()

	WatchlistAlert.get_threat_tags()

	WatchlistAlert.get_watchlist_objects()

	WatchlistAlert.notes_()

	WatchlistAlert.refresh()

	WatchlistAlert.search_suggestions()

	WatchlistAlert.to_json()

	WatchlistAlert.update()

	WatchlistAlert.update_threat()

	WatchlistAlert.workflow_

	Asset Groups Module
	AssetGroup
	AssetGroup.add_members()

	AssetGroup.create_group()

	AssetGroup.delete()

	AssetGroup.get()

	AssetGroup.get_all_groups()

	AssetGroup.get_statistics()

	AssetGroup.is_dirty()

	AssetGroup.list_member_ids()

	AssetGroup.list_members()

	AssetGroup.preview_add_members()

	AssetGroup.preview_add_members_to_groups()

	AssetGroup.preview_create_asset_group()

	AssetGroup.preview_delete()

	AssetGroup.preview_delete_asset_groups()

	AssetGroup.preview_remove_members()

	AssetGroup.preview_remove_members_from_groups()

	AssetGroup.preview_save()

	AssetGroup.preview_update_asset_groups()

	AssetGroup.refresh()

	AssetGroup.remove_members()

	AssetGroup.reset()

	AssetGroup.save()

	AssetGroup.swagger_meta_file

	AssetGroup.to_json()

	AssetGroup.touch()

	AssetGroup.validate()

	AssetGroupQuery
	AssetGroupQuery.add_criteria()

	AssetGroupQuery.all()

	AssetGroupQuery.and_()

	AssetGroupQuery.execute_async()

	AssetGroupQuery.first()

	AssetGroupQuery.not_()

	AssetGroupQuery.one()

	AssetGroupQuery.or_()

	AssetGroupQuery.set_rows()

	AssetGroupQuery.sort_by()

	AssetGroupQuery.update_criteria()

	AssetGroupQuery.where()

	Audit Module
	AuditLog
	AuditLog.get()

	AuditLog.get_auditlogs()

	AuditLog.get_queued_auditlogs()

	AuditLog.refresh()

	AuditLog.to_json()

	AuditLogQuery
	AuditLogQuery.add_boolean_criteria()

	AuditLogQuery.add_criteria()

	AuditLogQuery.add_exclusions()

	AuditLogQuery.add_time_criteria()

	AuditLogQuery.all()

	AuditLogQuery.and_()

	AuditLogQuery.execute_async()

	AuditLogQuery.export()

	AuditLogQuery.first()

	AuditLogQuery.not_()

	AuditLogQuery.one()

	AuditLogQuery.or_()

	AuditLogQuery.sort_by()

	AuditLogQuery.update_criteria()

	AuditLogQuery.update_exclusions()

	AuditLogQuery.where()

	Devices Module
	Device
	Device.add_to_groups()

	Device.add_to_groups_by_id()

	Device.background_scan()

	Device.bypass()

	Device.delete_sensor()

	Device.deviceId

	Device.get()

	Device.get_asset_group_ids()

	Device.get_asset_groups()

	Device.get_asset_groups_for_devices()

	Device.get_vulnerability_summary()

	Device.get_vulnerabilties()

	Device.lr_session()

	Device.nsx_available

	Device.nsx_remediation()

	Device.preview_add_policy_override_for_devices()

	Device.preview_remove_policy_override()

	Device.preview_remove_policy_override_for_devices()

	Device.quarantine()

	Device.refresh()

	Device.remove_from_groups()

	Device.remove_from_groups_by_id()

	Device.swagger_meta_file

	Device.to_json()

	Device.uninstall_sensor()

	Device.update_policy()

	Device.update_sensor_version()

	Device.vulnerability_refresh()

	DeviceFacet
	DeviceFacet.DeviceFacetValue

	DeviceFacet.get()

	DeviceFacet.refresh()

	DeviceFacet.to_json()

	DeviceFacet.values_

	DeviceSearchQuery
	DeviceSearchQuery.add_criteria()

	DeviceSearchQuery.all()

	DeviceSearchQuery.and_()

	DeviceSearchQuery.background_scan()

	DeviceSearchQuery.bypass()

	DeviceSearchQuery.delete_sensor()

	DeviceSearchQuery.download()

	DeviceSearchQuery.execute_async()

	DeviceSearchQuery.export()

	DeviceSearchQuery.facets()

	DeviceSearchQuery.first()

	DeviceSearchQuery.not_()

	DeviceSearchQuery.one()

	DeviceSearchQuery.or_()

	DeviceSearchQuery.quarantine()

	DeviceSearchQuery.scroll()

	DeviceSearchQuery.set_ad_group_ids()

	DeviceSearchQuery.set_auto_scaling_group_name()

	DeviceSearchQuery.set_cloud_provider_account_id()

	DeviceSearchQuery.set_deployment_type()

	DeviceSearchQuery.set_device_ids()

	DeviceSearchQuery.set_exclude_sensor_versions()

	DeviceSearchQuery.set_last_contact_time()

	DeviceSearchQuery.set_max_rows()

	DeviceSearchQuery.set_os()

	DeviceSearchQuery.set_policy_ids()

	DeviceSearchQuery.set_status()

	DeviceSearchQuery.set_target_priorities()

	DeviceSearchQuery.set_virtual_private_cloud_id()

	DeviceSearchQuery.sort_by()

	DeviceSearchQuery.uninstall_sensor()

	DeviceSearchQuery.update_criteria()

	DeviceSearchQuery.update_policy()

	DeviceSearchQuery.update_sensor_version()

	DeviceSearchQuery.where()

	log

	Events Module
	Event
	Event.get()

	Event.refresh()

	Event.to_json()

	EventFacet
	EventFacet.Ranges

	EventFacet.Terms

	EventFacet.get()

	EventFacet.ranges_

	EventFacet.refresh()

	EventFacet.terms_

	EventFacet.to_json()

	EventFacetQuery
	EventFacetQuery.add_criteria()

	EventFacetQuery.add_exclusions()

	EventFacetQuery.add_facet_field()

	EventFacetQuery.add_range()

	EventFacetQuery.and_()

	EventFacetQuery.execute_async()

	EventFacetQuery.limit()

	EventFacetQuery.not_()

	EventFacetQuery.or_()

	EventFacetQuery.results

	EventFacetQuery.set_rows()

	EventFacetQuery.set_time_range()

	EventFacetQuery.timeout()

	EventFacetQuery.update_criteria()

	EventFacetQuery.update_exclusions()

	EventFacetQuery.where()

	EventQuery
	EventQuery.add_criteria()

	EventQuery.add_exclusions()

	EventQuery.all()

	EventQuery.and_()

	EventQuery.batch_size()

	EventQuery.execute_async()

	EventQuery.first()

	EventQuery.not_()

	EventQuery.one()

	EventQuery.or_()

	EventQuery.set_fields()

	EventQuery.set_rows()

	EventQuery.set_start()

	EventQuery.set_time_range()

	EventQuery.sort_by()

	EventQuery.update_criteria()

	EventQuery.update_exclusions()

	EventQuery.where()

	Grants Module
	Grant
	Grant.GrantBuilder

	Grant.Profile

	Grant.ProfileBuilder

	Grant.create()

	Grant.create_profile()

	Grant.delete()

	Grant.get()

	Grant.get_permitted_role_urns()

	Grant.is_dirty()

	Grant.profiles_

	Grant.refresh()

	Grant.reset()

	Grant.save()

	Grant.to_json()

	Grant.touch()

	Grant.validate()

	GrantQuery
	GrantQuery.add_principal()

	GrantQuery.all()

	GrantQuery.execute_async()

	GrantQuery.first()

	GrantQuery.one()

	log

	normalize_org()

	Jobs Module
	Job
	Job.await_completion()

	Job.get()

	Job.get_output_as_file()

	Job.get_output_as_lines()

	Job.get_output_as_stream()

	Job.get_output_as_string()

	Job.get_progress()

	Job.refresh()

	Job.to_json()

	JobQuery
	JobQuery.all()

	JobQuery.execute_async()

	JobQuery.first()

	JobQuery.one()

	Legacy Alerts Module
	LegacyAlertSearchQueryCriterionMixin
	LegacyAlertSearchQueryCriterionMixin.set_alert_ids()

	LegacyAlertSearchQueryCriterionMixin.set_blocked_threat_categories()

	LegacyAlertSearchQueryCriterionMixin.set_categories()

	LegacyAlertSearchQueryCriterionMixin.set_cluster_names()

	LegacyAlertSearchQueryCriterionMixin.set_create_time()

	LegacyAlertSearchQueryCriterionMixin.set_device_ids()

	LegacyAlertSearchQueryCriterionMixin.set_device_locations()

	LegacyAlertSearchQueryCriterionMixin.set_device_names()

	LegacyAlertSearchQueryCriterionMixin.set_device_os()

	LegacyAlertSearchQueryCriterionMixin.set_device_os_versions()

	LegacyAlertSearchQueryCriterionMixin.set_device_username()

	LegacyAlertSearchQueryCriterionMixin.set_egress_group_ids()

	LegacyAlertSearchQueryCriterionMixin.set_egress_group_names()

	LegacyAlertSearchQueryCriterionMixin.set_external_device_friendly_names()

	LegacyAlertSearchQueryCriterionMixin.set_external_device_ids()

	LegacyAlertSearchQueryCriterionMixin.set_group_results()

	LegacyAlertSearchQueryCriterionMixin.set_ip_reputations()

	LegacyAlertSearchQueryCriterionMixin.set_kill_chain_statuses()

	LegacyAlertSearchQueryCriterionMixin.set_legacy_alert_ids()

	LegacyAlertSearchQueryCriterionMixin.set_namespaces()

	LegacyAlertSearchQueryCriterionMixin.set_not_blocked_threat_categories()

	LegacyAlertSearchQueryCriterionMixin.set_policy_applied()

	LegacyAlertSearchQueryCriterionMixin.set_policy_ids()

	LegacyAlertSearchQueryCriterionMixin.set_policy_names()

	LegacyAlertSearchQueryCriterionMixin.set_ports()

	LegacyAlertSearchQueryCriterionMixin.set_process_names()

	LegacyAlertSearchQueryCriterionMixin.set_process_sha256()

	LegacyAlertSearchQueryCriterionMixin.set_product_ids()

	LegacyAlertSearchQueryCriterionMixin.set_product_names()

	LegacyAlertSearchQueryCriterionMixin.set_protocols()

	LegacyAlertSearchQueryCriterionMixin.set_reason_code()

	LegacyAlertSearchQueryCriterionMixin.set_remote_domains()

	LegacyAlertSearchQueryCriterionMixin.set_remote_ips()

	LegacyAlertSearchQueryCriterionMixin.set_replica_ids()

	LegacyAlertSearchQueryCriterionMixin.set_reputations()

	LegacyAlertSearchQueryCriterionMixin.set_rule_ids()

	LegacyAlertSearchQueryCriterionMixin.set_rule_names()

	LegacyAlertSearchQueryCriterionMixin.set_run_states()

	LegacyAlertSearchQueryCriterionMixin.set_sensor_actions()

	LegacyAlertSearchQueryCriterionMixin.set_serial_numbers()

	LegacyAlertSearchQueryCriterionMixin.set_tags()

	LegacyAlertSearchQueryCriterionMixin.set_target_priorities()

	LegacyAlertSearchQueryCriterionMixin.set_threat_cause_vectors()

	LegacyAlertSearchQueryCriterionMixin.set_threat_ids()

	LegacyAlertSearchQueryCriterionMixin.set_types()

	LegacyAlertSearchQueryCriterionMixin.set_vendor_ids()

	LegacyAlertSearchQueryCriterionMixin.set_vendor_names()

	LegacyAlertSearchQueryCriterionMixin.set_watchlist_ids()

	LegacyAlertSearchQueryCriterionMixin.set_watchlist_names()

	LegacyAlertSearchQueryCriterionMixin.set_workflows()

	LegacyAlertSearchQueryCriterionMixin.set_workload_ids()

	LegacyAlertSearchQueryCriterionMixin.set_workload_kinds()

	LegacyAlertSearchQueryCriterionMixin.set_workload_names()

	Network Threat Metadata Module
	NetworkThreatMetadata
	NetworkThreatMetadata.get()

	NetworkThreatMetadata.refresh()

	NetworkThreatMetadata.to_json()

	Observations Module
	Observation
	Observation.bulk_get_details()

	Observation.deobfuscate_cmdline()

	Observation.get()

	Observation.get_details()

	Observation.get_network_threat_metadata()

	Observation.refresh()

	Observation.search_suggestions()

	Observation.to_json()

	ObservationFacet
	ObservationFacet.Ranges

	ObservationFacet.Terms

	ObservationFacet.get()

	ObservationFacet.ranges_

	ObservationFacet.refresh()

	ObservationFacet.terms_

	ObservationFacet.to_json()

	ObservationGroup

	ObservationQuery
	ObservationQuery.add_criteria()

	ObservationQuery.add_exclusions()

	ObservationQuery.all()

	ObservationQuery.and_()

	ObservationQuery.batch_size()

	ObservationQuery.execute_async()

	ObservationQuery.first()

	ObservationQuery.get_group_results()

	ObservationQuery.not_()

	ObservationQuery.one()

	ObservationQuery.or_()

	ObservationQuery.set_fields()

	ObservationQuery.set_rows()

	ObservationQuery.set_start()

	ObservationQuery.set_time_range()

	ObservationQuery.sort_by()

	ObservationQuery.timeout()

	ObservationQuery.update_criteria()

	ObservationQuery.update_exclusions()

	ObservationQuery.where()

	Policies Module
	Policy
	Policy.PolicyBuilder

	Policy.add_rule()

	Policy.bypass_rule_configs

	Policy.bypass_rule_configs_list

	Policy.core_prevention_rule_configs

	Policy.core_prevention_rule_configs_list

	Policy.create()

	Policy.data_collection_rule_configs

	Policy.data_collection_rule_configs_list

	Policy.delete()

	Policy.delete_rule()

	Policy.delete_rule_config()

	Policy.get()

	Policy.get_ruleconfig_parameter_schema()

	Policy.host_based_firewall_rule_config

	Policy.is_dirty()

	Policy.latestRevision

	Policy.object_rule_configs

	Policy.object_rule_configs_list

	Policy.object_rules

	Policy.policy

	Policy.preview_add_policy_override()

	Policy.preview_policy_rank_changes()

	Policy.preview_rank_change()

	Policy.priorityLevel

	Policy.refresh()

	Policy.replace_rule()

	Policy.replace_rule_config()

	Policy.reset()

	Policy.save()

	Policy.set_auth_event_collection()

	Policy.set_data_collection()

	Policy.set_xdr_collection()

	Policy.systemPolicy

	Policy.to_json()

	Policy.touch()

	Policy.valid_rule_configs()

	Policy.validate()

	PolicyQuery
	PolicyQuery.add_descriptions()

	PolicyQuery.add_names()

	PolicyQuery.add_policy_ids()

	PolicyQuery.add_priorities()

	PolicyQuery.all()

	PolicyQuery.execute_async()

	PolicyQuery.first()

	PolicyQuery.one()

	PolicyQuery.set_system()

	PolicyRule
	PolicyRule.delete()

	PolicyRule.get()

	PolicyRule.is_deleted

	PolicyRule.is_dirty()

	PolicyRule.refresh()

	PolicyRule.reset()

	PolicyRule.save()

	PolicyRule.to_json()

	PolicyRule.touch()

	PolicyRule.validate()

	RuleConfigs Module
	BypassRuleConfig
	BypassRuleConfig.delete()

	BypassRuleConfig.get()

	BypassRuleConfig.get_parameter()

	BypassRuleConfig.is_dirty()

	BypassRuleConfig.parameter_names

	BypassRuleConfig.refresh()

	BypassRuleConfig.replace_exclusions()

	BypassRuleConfig.reset()

	BypassRuleConfig.save()

	BypassRuleConfig.set_parameter()

	BypassRuleConfig.to_json()

	BypassRuleConfig.touch()

	BypassRuleConfig.validate()

	CorePreventionRuleConfig
	CorePreventionRuleConfig.delete()

	CorePreventionRuleConfig.get()

	CorePreventionRuleConfig.get_assignment_mode()

	CorePreventionRuleConfig.get_parameter()

	CorePreventionRuleConfig.is_dirty()

	CorePreventionRuleConfig.parameter_names

	CorePreventionRuleConfig.refresh()

	CorePreventionRuleConfig.replace_exclusions()

	CorePreventionRuleConfig.reset()

	CorePreventionRuleConfig.save()

	CorePreventionRuleConfig.set_assignment_mode()

	CorePreventionRuleConfig.set_parameter()

	CorePreventionRuleConfig.to_json()

	CorePreventionRuleConfig.touch()

	CorePreventionRuleConfig.validate()

	DataCollectionRuleConfig
	DataCollectionRuleConfig.delete()

	DataCollectionRuleConfig.get()

	DataCollectionRuleConfig.get_parameter()

	DataCollectionRuleConfig.is_dirty()

	DataCollectionRuleConfig.parameter_names

	DataCollectionRuleConfig.refresh()

	DataCollectionRuleConfig.reset()

	DataCollectionRuleConfig.save()

	DataCollectionRuleConfig.set_parameter()

	DataCollectionRuleConfig.to_json()

	DataCollectionRuleConfig.touch()

	DataCollectionRuleConfig.validate()

	HostBasedFirewallRuleConfig
	HostBasedFirewallRuleConfig.FirewallRule

	HostBasedFirewallRuleConfig.FirewallRuleGroup

	HostBasedFirewallRuleConfig.append_rule_group()

	HostBasedFirewallRuleConfig.copy_rules()

	HostBasedFirewallRuleConfig.default_action

	HostBasedFirewallRuleConfig.delete()

	HostBasedFirewallRuleConfig.enabled

	HostBasedFirewallRuleConfig.export_rules()

	HostBasedFirewallRuleConfig.get()

	HostBasedFirewallRuleConfig.get_parameter()

	HostBasedFirewallRuleConfig.is_dirty()

	HostBasedFirewallRuleConfig.parameter_names

	HostBasedFirewallRuleConfig.refresh()

	HostBasedFirewallRuleConfig.reset()

	HostBasedFirewallRuleConfig.rule_groups

	HostBasedFirewallRuleConfig.save()

	HostBasedFirewallRuleConfig.set_default_action()

	HostBasedFirewallRuleConfig.set_enabled()

	HostBasedFirewallRuleConfig.set_parameter()

	HostBasedFirewallRuleConfig.to_json()

	HostBasedFirewallRuleConfig.touch()

	HostBasedFirewallRuleConfig.validate()

	PolicyRuleConfig
	PolicyRuleConfig.delete()

	PolicyRuleConfig.get()

	PolicyRuleConfig.get_parameter()

	PolicyRuleConfig.is_dirty()

	PolicyRuleConfig.parameter_names

	PolicyRuleConfig.refresh()

	PolicyRuleConfig.reset()

	PolicyRuleConfig.save()

	PolicyRuleConfig.set_parameter()

	PolicyRuleConfig.to_json()

	PolicyRuleConfig.touch()

	PolicyRuleConfig.validate()

	Previewer Module
	DevicePolicyChangePreview
	DevicePolicyChangePreview.asset_count

	DevicePolicyChangePreview.asset_query

	DevicePolicyChangePreview.assets

	DevicePolicyChangePreview.current_policy

	DevicePolicyChangePreview.current_policy_id

	DevicePolicyChangePreview.current_policy_position

	DevicePolicyChangePreview.new_policy

	DevicePolicyChangePreview.new_policy_id

	DevicePolicyChangePreview.new_policy_position

	Processes Module
	AsyncProcessQuery
	AsyncProcessQuery.add_criteria()

	AsyncProcessQuery.add_exclusions()

	AsyncProcessQuery.all()

	AsyncProcessQuery.and_()

	AsyncProcessQuery.batch_size()

	AsyncProcessQuery.execute_async()

	AsyncProcessQuery.first()

	AsyncProcessQuery.not_()

	AsyncProcessQuery.one()

	AsyncProcessQuery.or_()

	AsyncProcessQuery.set_collapse_field()

	AsyncProcessQuery.set_fields()

	AsyncProcessQuery.set_rows()

	AsyncProcessQuery.set_start()

	AsyncProcessQuery.set_time_range()

	AsyncProcessQuery.sort_by()

	AsyncProcessQuery.timeout()

	AsyncProcessQuery.update_criteria()

	AsyncProcessQuery.update_exclusions()

	AsyncProcessQuery.where()

	Process
	Process.Summary

	Process.Tree

	Process.approve_process_sha256()

	Process.ban_process_sha256()

	Process.children

	Process.deobfuscate_cmdline()

	Process.events()

	Process.facets()

	Process.get()

	Process.get_details()

	Process.parents

	Process.process_md5

	Process.process_pids

	Process.process_sha256

	Process.refresh()

	Process.siblings

	Process.summary

	Process.to_json()

	Process.tree

	ProcessFacet
	ProcessFacet.Ranges

	ProcessFacet.Terms

	ProcessFacet.get()

	ProcessFacet.ranges_

	ProcessFacet.refresh()

	ProcessFacet.terms_

	ProcessFacet.to_json()

	SummaryQuery
	SummaryQuery.and_()

	SummaryQuery.execute_async()

	SummaryQuery.not_()

	SummaryQuery.or_()

	SummaryQuery.results

	SummaryQuery.set_time_range()

	SummaryQuery.timeout()

	SummaryQuery.where()

	Reputation Module
	ReputationOverride
	ReputationOverride.bulk_delete()

	ReputationOverride.create()

	ReputationOverride.delete()

	ReputationOverride.get()

	ReputationOverride.refresh()

	ReputationOverride.to_json()

	ReputationOverrideQuery
	ReputationOverrideQuery.all()

	ReputationOverrideQuery.and_()

	ReputationOverrideQuery.execute_async()

	ReputationOverrideQuery.first()

	ReputationOverrideQuery.not_()

	ReputationOverrideQuery.one()

	ReputationOverrideQuery.or_()

	ReputationOverrideQuery.set_override_list()

	ReputationOverrideQuery.set_override_type()

	ReputationOverrideQuery.sort_by()

	ReputationOverrideQuery.where()

	Users Module
	User
	User.UserBuilder

	User.add_profiles()

	User.bulk_add_profiles()

	User.bulk_create()

	User.bulk_delete()

	User.bulk_disable_all_access()

	User.bulk_disable_profiles()

	User.change_role()

	User.create()

	User.delete()

	User.disable_all_access()

	User.disable_profiles()

	User.get()

	User.grant()

	User.is_dirty()

	User.org_urn

	User.refresh()

	User.reset()

	User.reset_google_authenticator_registration()

	User.save()

	User.set_profile_expiration()

	User.to_json()

	User.touch()

	User.urn

	User.validate()

	UserQuery
	UserQuery.all()

	UserQuery.email_addresses()

	UserQuery.execute_async()

	UserQuery.first()

	UserQuery.one()

	UserQuery.user_ids()

	log

	normalize_profile_list()

	Vulnerability Assessment Module
	AffectedAssetQuery
	AffectedAssetQuery.add_criteria()

	AffectedAssetQuery.all()

	AffectedAssetQuery.and_()

	AffectedAssetQuery.execute_async()

	AffectedAssetQuery.export()

	AffectedAssetQuery.first()

	AffectedAssetQuery.not_()

	AffectedAssetQuery.one()

	AffectedAssetQuery.or_()

	AffectedAssetQuery.set_deployment_type()

	AffectedAssetQuery.set_device_type()

	AffectedAssetQuery.set_highest_risk_score()

	AffectedAssetQuery.set_last_sync_ts()

	AffectedAssetQuery.set_name()

	AffectedAssetQuery.set_os_arch()

	AffectedAssetQuery.set_os_name()

	AffectedAssetQuery.set_os_product_id()

	AffectedAssetQuery.set_os_type()

	AffectedAssetQuery.set_os_version()

	AffectedAssetQuery.set_severity()

	AffectedAssetQuery.set_sync_status()

	AffectedAssetQuery.set_sync_type()

	AffectedAssetQuery.set_vcenter()

	AffectedAssetQuery.set_visibility()

	AffectedAssetQuery.set_vm_id()

	AffectedAssetQuery.set_vuln_count()

	AffectedAssetQuery.sort_by()

	AffectedAssetQuery.where()

	Vulnerability
	Vulnerability.AssetView

	Vulnerability.OrgSummary

	Vulnerability.get()

	Vulnerability.get_affected_assets()

	Vulnerability.perform_action()

	Vulnerability.refresh()

	Vulnerability.to_json()

	VulnerabilityAssetViewQuery
	VulnerabilityAssetViewQuery.add_criteria()

	VulnerabilityAssetViewQuery.all()

	VulnerabilityAssetViewQuery.and_()

	VulnerabilityAssetViewQuery.execute_async()

	VulnerabilityAssetViewQuery.export()

	VulnerabilityAssetViewQuery.first()

	VulnerabilityAssetViewQuery.not_()

	VulnerabilityAssetViewQuery.one()

	VulnerabilityAssetViewQuery.or_()

	VulnerabilityAssetViewQuery.set_deployment_type()

	VulnerabilityAssetViewQuery.set_device_type()

	VulnerabilityAssetViewQuery.set_highest_risk_score()

	VulnerabilityAssetViewQuery.set_last_sync_ts()

	VulnerabilityAssetViewQuery.set_name()

	VulnerabilityAssetViewQuery.set_os_arch()

	VulnerabilityAssetViewQuery.set_os_name()

	VulnerabilityAssetViewQuery.set_os_type()

	VulnerabilityAssetViewQuery.set_os_version()

	VulnerabilityAssetViewQuery.set_severity()

	VulnerabilityAssetViewQuery.set_sync_status()

	VulnerabilityAssetViewQuery.set_sync_type()

	VulnerabilityAssetViewQuery.set_vcenter()

	VulnerabilityAssetViewQuery.set_visibility()

	VulnerabilityAssetViewQuery.set_vm_id()

	VulnerabilityAssetViewQuery.set_vuln_count()

	VulnerabilityAssetViewQuery.sort_by()

	VulnerabilityAssetViewQuery.where()

	VulnerabilityOrgSummaryQuery
	VulnerabilityOrgSummaryQuery.set_severity()

	VulnerabilityOrgSummaryQuery.set_vcenter()

	VulnerabilityOrgSummaryQuery.set_visibility()

	VulnerabilityOrgSummaryQuery.submit()

	VulnerabilityQuery
	VulnerabilityQuery.add_criteria()

	VulnerabilityQuery.all()

	VulnerabilityQuery.and_()

	VulnerabilityQuery.execute_async()

	VulnerabilityQuery.export()

	VulnerabilityQuery.first()

	VulnerabilityQuery.not_()

	VulnerabilityQuery.one()

	VulnerabilityQuery.or_()

	VulnerabilityQuery.set_deployment_type()

	VulnerabilityQuery.set_device_type()

	VulnerabilityQuery.set_highest_risk_score()

	VulnerabilityQuery.set_last_sync_ts()

	VulnerabilityQuery.set_name()

	VulnerabilityQuery.set_os_arch()

	VulnerabilityQuery.set_os_name()

	VulnerabilityQuery.set_os_type()

	VulnerabilityQuery.set_os_version()

	VulnerabilityQuery.set_severity()

	VulnerabilityQuery.set_sync_status()

	VulnerabilityQuery.set_sync_type()

	VulnerabilityQuery.set_vcenter()

	VulnerabilityQuery.set_visibility()

	VulnerabilityQuery.set_vm_id()

	VulnerabilityQuery.set_vuln_count()

	VulnerabilityQuery.sort_by()

	VulnerabilityQuery.where()

	log

	Workload Package
	CIS Benchmarks
	ComplianceBenchmark
	ComplianceBenchmark.execute_action()

	ComplianceBenchmark.get()

	ComplianceBenchmark.get_compliance_schedule()

	ComplianceBenchmark.get_device_compliances()

	ComplianceBenchmark.get_device_rule_compliances()

	ComplianceBenchmark.get_rule_compliance_devices()

	ComplianceBenchmark.get_rule_compliances()

	ComplianceBenchmark.get_rules()

	ComplianceBenchmark.get_sections()

	ComplianceBenchmark.refresh()

	ComplianceBenchmark.set_compliance_schedule()

	ComplianceBenchmark.to_json()

	ComplianceBenchmark.update_rules()

	ComplianceBenchmarkQuery
	ComplianceBenchmarkQuery.add_criteria()

	ComplianceBenchmarkQuery.all()

	ComplianceBenchmarkQuery.and_()

	ComplianceBenchmarkQuery.execute_async()

	ComplianceBenchmarkQuery.first()

	ComplianceBenchmarkQuery.not_()

	ComplianceBenchmarkQuery.one()

	ComplianceBenchmarkQuery.or_()

	ComplianceBenchmarkQuery.sort_by()

	ComplianceBenchmarkQuery.update_criteria()

	ComplianceBenchmarkQuery.where()

	log

	NSX Remediation Module
	NSXRemediationJob
	NSXRemediationJob.async_await_result()

	NSXRemediationJob.await_result()

	NSXRemediationJob.start_request()

	NSXRemediationJob.status

	Sensor Lifecycle Module
	SensorKit
	SensorKit.from_type()

	SensorKit.get()

	SensorKit.get_config_template()

	SensorKit.refresh()

	SensorKit.to_json()

	SensorKitQuery
	SensorKitQuery.add_criteria()

	SensorKitQuery.add_sensor_kit_type()

	SensorKitQuery.all()

	SensorKitQuery.config_params()

	SensorKitQuery.execute_async()

	SensorKitQuery.expires()

	SensorKitQuery.first()

	SensorKitQuery.one()

	SensorKitQuery.update_criteria()

	VM Workloads Search Module
	AWSComputeResource
	AWSComputeResource.bulk_install()

	AWSComputeResource.bulk_install_by_id()

	AWSComputeResource.get()

	AWSComputeResource.install_sensor()

	AWSComputeResource.refresh()

	AWSComputeResource.to_json()

	AWSComputeResourceQuery
	AWSComputeResourceQuery.add_criteria()

	AWSComputeResourceQuery.all()

	AWSComputeResourceQuery.and_()

	AWSComputeResourceQuery.download()

	AWSComputeResourceQuery.exclude_auto_scaling_group_name()

	AWSComputeResourceQuery.exclude_availability_zone()

	AWSComputeResourceQuery.exclude_cloud_provider_account_id()

	AWSComputeResourceQuery.exclude_cloud_provider_resource_id()

	AWSComputeResourceQuery.exclude_cloud_provider_tags()

	AWSComputeResourceQuery.exclude_id()

	AWSComputeResourceQuery.exclude_installation_status()

	AWSComputeResourceQuery.exclude_name()

	AWSComputeResourceQuery.exclude_platform()

	AWSComputeResourceQuery.exclude_platform_details()

	AWSComputeResourceQuery.exclude_region()

	AWSComputeResourceQuery.exclude_subnet_id()

	AWSComputeResourceQuery.exclude_virtual_private_cloud_id()

	AWSComputeResourceQuery.execute_async()

	AWSComputeResourceQuery.facet()

	AWSComputeResourceQuery.first()

	AWSComputeResourceQuery.not_()

	AWSComputeResourceQuery.one()

	AWSComputeResourceQuery.or_()

	AWSComputeResourceQuery.set_auto_scaling_group_name()

	AWSComputeResourceQuery.set_availability_zone()

	AWSComputeResourceQuery.set_cloud_provider_account_id()

	AWSComputeResourceQuery.set_cloud_provider_resource_id()

	AWSComputeResourceQuery.set_cloud_provider_tags()

	AWSComputeResourceQuery.set_id()

	AWSComputeResourceQuery.set_installation_status()

	AWSComputeResourceQuery.set_name()

	AWSComputeResourceQuery.set_platform()

	AWSComputeResourceQuery.set_platform_details()

	AWSComputeResourceQuery.set_region()

	AWSComputeResourceQuery.set_subnet_id()

	AWSComputeResourceQuery.set_virtual_private_cloud_id()

	AWSComputeResourceQuery.sort_by()

	AWSComputeResourceQuery.summarize()

	AWSComputeResourceQuery.update_criteria()

	AWSComputeResourceQuery.where()

	BaseComputeResource
	BaseComputeResource.bulk_install()

	BaseComputeResource.bulk_install_by_id()

	BaseComputeResource.get()

	BaseComputeResource.install_sensor()

	BaseComputeResource.refresh()

	BaseComputeResource.to_json()

	BaseComputeResourceQuery
	BaseComputeResourceQuery.add_criteria()

	BaseComputeResourceQuery.all()

	BaseComputeResourceQuery.and_()

	BaseComputeResourceQuery.download()

	BaseComputeResourceQuery.execute_async()

	BaseComputeResourceQuery.facet()

	BaseComputeResourceQuery.first()

	BaseComputeResourceQuery.not_()

	BaseComputeResourceQuery.one()

	BaseComputeResourceQuery.or_()

	BaseComputeResourceQuery.sort_by()

	BaseComputeResourceQuery.update_criteria()

	BaseComputeResourceQuery.where()

	ComputeResourceFacet
	ComputeResourceFacet.ComputeResourceFacetValue

	ComputeResourceFacet.get()

	ComputeResourceFacet.refresh()

	ComputeResourceFacet.to_json()

	ComputeResourceFacet.values

	VCenterComputeResource
	VCenterComputeResource.bulk_install()

	VCenterComputeResource.bulk_install_by_id()

	VCenterComputeResource.get()

	VCenterComputeResource.install_sensor()

	VCenterComputeResource.refresh()

	VCenterComputeResource.to_json()

	VCenterComputeResourceQuery
	VCenterComputeResourceQuery.add_criteria()

	VCenterComputeResourceQuery.all()

	VCenterComputeResourceQuery.and_()

	VCenterComputeResourceQuery.download()

	VCenterComputeResourceQuery.exclude_appliance_uuid()

	VCenterComputeResourceQuery.exclude_cluster_name()

	VCenterComputeResourceQuery.exclude_datacenter_name()

	VCenterComputeResourceQuery.exclude_device_guid()

	VCenterComputeResourceQuery.exclude_eligibility()

	VCenterComputeResourceQuery.exclude_eligibility_code()

	VCenterComputeResourceQuery.exclude_esx_host_name()

	VCenterComputeResourceQuery.exclude_esx_host_uuid()

	VCenterComputeResourceQuery.exclude_host_name()

	VCenterComputeResourceQuery.exclude_installation_status()

	VCenterComputeResourceQuery.exclude_installation_type()

	VCenterComputeResourceQuery.exclude_ip_address()

	VCenterComputeResourceQuery.exclude_name()

	VCenterComputeResourceQuery.exclude_os_architecture()

	VCenterComputeResourceQuery.exclude_os_description()

	VCenterComputeResourceQuery.exclude_os_type()

	VCenterComputeResourceQuery.exclude_registration_id()

	VCenterComputeResourceQuery.exclude_uuid()

	VCenterComputeResourceQuery.exclude_vcenter_host_url()

	VCenterComputeResourceQuery.exclude_vcenter_name()

	VCenterComputeResourceQuery.exclude_vcenter_uuid()

	VCenterComputeResourceQuery.exclude_vmwaretools_version()

	VCenterComputeResourceQuery.execute_async()

	VCenterComputeResourceQuery.facet()

	VCenterComputeResourceQuery.first()

	VCenterComputeResourceQuery.not_()

	VCenterComputeResourceQuery.one()

	VCenterComputeResourceQuery.or_()

	VCenterComputeResourceQuery.set_appliance_uuid()

	VCenterComputeResourceQuery.set_cluster_name()

	VCenterComputeResourceQuery.set_datacenter_name()

	VCenterComputeResourceQuery.set_device_guid()

	VCenterComputeResourceQuery.set_eligibility()

	VCenterComputeResourceQuery.set_eligibility_code()

	VCenterComputeResourceQuery.set_esx_host_name()

	VCenterComputeResourceQuery.set_esx_host_uuid()

	VCenterComputeResourceQuery.set_host_name()

	VCenterComputeResourceQuery.set_installation_status()

	VCenterComputeResourceQuery.set_installation_type()

	VCenterComputeResourceQuery.set_ip_address()

	VCenterComputeResourceQuery.set_name()

	VCenterComputeResourceQuery.set_os_architecture()

	VCenterComputeResourceQuery.set_os_description()

	VCenterComputeResourceQuery.set_os_type()

	VCenterComputeResourceQuery.set_registration_id()

	VCenterComputeResourceQuery.set_uuid()

	VCenterComputeResourceQuery.set_vcenter_host_url()

	VCenterComputeResourceQuery.set_vcenter_name()

	VCenterComputeResourceQuery.set_vcenter_uuid()

	VCenterComputeResourceQuery.set_vmwaretools_version()

	VCenterComputeResourceQuery.sort_by()

	VCenterComputeResourceQuery.update_criteria()

	VCenterComputeResourceQuery.where()

	log

	CBC SDK Package
	Subpackages
	Audit and Remediation Package
	Base Module

	Differential Module

	Cache Package
	LRU Module

	Credential Providers Package
	Default Module

	AWS SM Credential Provider Module

	Environ Credential Provider Module

	File Credential Provider Module

	Keychain Credential Provider Module

	Registry Credential Provider Module

	Endpoint Standard Package
	Base Module

	Standard Recommendation Module

	USB Device Control Module

	Enterprise EDR Package
	Auth Events Module

	Threat Intelligence Module

	UBS Module

	Platform Package
	Base Module

	Submodules

	Alerts Module

	Asset Groups Module

	Audit Module

	Devices Module

	Events Module

	Grants Module

	Jobs Module

	Legacy Alerts Module

	Network Threat Metadata Module

	Observations Module

	Policies Module

	RuleConfigs Module

	Previewer Module

	Processes Module

	Reputation Module

	Users Module

	Vulnerability Assessment Module

	Workload Package
	CIS Benchmarks

	NSX Remediation Module

	Sensor Lifecycle Module

	VM Workloads Search Module

	Submodules
	Base Module
	ArrayFieldDescriptor

	AsyncQueryMixin

	BaseQuery

	BinaryFieldDescriptor

	CbMetaModel

	CreatableModelMixin

	CriteriaBuilderSupportMixin

	EpochDateTimeFieldDescriptor

	ExclusionBuilderSupportMixin

	FacetQuery

	FieldDescriptor

	ForeignKeyFieldDescriptor

	IsoDateTimeFieldDescriptor

	IterableQueryMixin

	MutableBaseModel

	NewBaseModel

	ObjectFieldDescriptor

	PaginatedQuery

	Query

	QueryBuilder

	QueryBuilderSupportMixin

	SimpleQuery

	SwaggerLoader

	UnrefreshableModel

	construct_include()

	log

	Connection Module
	BaseAPI

	CBCSDKSessionAdapter

	Connection

	check_python_tls_compatibility()

	select_class_instance()

	try_json()

	Credentials Module
	CredentialProvider

	CredentialValue

	Credentials

	Errors Module
	ApiError

	ClientError

	ConnectionError

	CredentialError

	FunctionalityDecommissioned

	InvalidHashError

	InvalidObjectError

	ModelNotFound

	MoreThanOneResultError

	NSXJobError

	NonQueryableModel

	ObjectNotFoundError

	OperationCancelled

	QuerySyntaxError

	ServerError

	TimeoutError

	UnauthorizedError

	Helpers Module
	build_cli_parser()

	disable_insecure_warnings()

	eprint()

	get_cb_cloud_object()

	get_object_by_name_or_id()

	read_iocs()

	Live Response API Module
	CbLRManagerBase

	CbLRSessionBase

	CompletionNotification

	GetFileJob

	JobWorker

	LiveResponseError

	LiveResponseJobScheduler

	LiveResponseMemdump

	LiveResponseSession

	LiveResponseSessionManager

	WorkItem

	WorkerStatus

	jobrunner()

	poll_status()

	Utils Module
	BackoffHandler

	convert_from_cb()

	convert_to_cb()

	WinError Module
	CommDlgError

	DirectoryStorageError

	ErrorBaseClass

	ErrorMetaClass

	FAILED()

	Facility

	GetScode()

	HRESULT_CODE()

	HRESULT_FACILITY()

	HRESULT_FROM_NT()

	HRESULT_FROM_WIN32()

	HRESULT_SEVERITY()

	RawErrorCode

	ResultFromScode()

	SCODE_CODE()

	SCODE_FACILITY()

	SCODE_SEVERITY()

	SUCCEEDED()

	Win32Error

	decode_hresult()

	Logging & Diagnostics
	Enabling Logging

	Testing
	Running the tests on Microsoft Windows
	Install Python

	Fix the Execution PATH

	Install CBC Python SDK Requirements

	Execute the Functional Tests

	Running the tests on Linux
	Build the docker image

	Run the container and execute the test

	Changelog
	CBC SDK 1.5.2 - Released May 1, 2024

	CBC SDK 1.5.1 - Released January 30, 2024

	CBC SDK 1.5.0 - Released October 24, 2023

	CBC SDK 1.4.3 - Released June 26, 2023

	CBC SDK 1.4.2 - Released March 22, 2023

	CBC SDK 1.4.1 - Released October 21, 2022

	CBC SDK 1.4.0 - Released July 26,2022

	CBC SDK 1.3.6 - Released April 19, 2022

	CBC SDK 1.3.5 - Released January 26, 2022

	CBC SDK 1.3.4 - Released October 12, 2021

	CBC SDK 1.3.3 - Released August 10, 2021

	CBC SDK 1.3.2 - Released August 10, 2021

	CBC SDK 1.3.1 - Released June 15, 2021

	CBC SDK 1.3.0 - Released June 8, 2021

	CBC SDK 1.2.3 - Released April 19, 2021

	CBC SDK 1.2.3 - Released April 19, 2021

	CBC SDK 1.2.2 - Released April 5, 2021

	CBC SDK 1.2.1 - Released March 31, 2021

	CBC SDK 1.2.0 - Released March 9, 2021

	CBC SDK 1.1.1 - Released February 2, 2021

	CBC SDK 1.1.0 - Released January 27, 2021

	CBC SDK 1.0.1 - Released December 17, 2020

	CBC SDK 1.0.0 - Released December 16, 2020

	Exceptions
	Exception Classes
	ApiError

	CredentialError

	ServerError

	ObjectNotFoundError

	MoreThanOneResultError

	InvalidObjectError

	TimeoutError

Indices and tables

	Index

	Module Index

	Search Page

Installation

If you already have Python installed, skip to Use Pip.

Install Python

Carbon Black Cloud Python SDK is compatible with Python 3.8+. UNIX systems usually have Python installed by default;
it will have to be installed on Windows systems separately.

If you believe you have Python installed already, run the following two commands at a command prompt:

$ python --version
Python 3.8.16

$ pip --version
pip 20.2.3 from /usr/local/lib/python3.8/site-packages (python 3.8)

If python --version reports back a version of 3.8.x or higher, you’re all set. If pip is not found, follow the
instructions on this guide [https://pip.pypa.io/en/stable/installing/].

Note

On many UNIX/Linux environments, the python and pip commands invoke Python version 2, for backwards
compatibility. Python 2 is not compatible with the Carbon Black Cloud Python SDK. Python version 3 is invoked
via the commands python3 and pip3. Use these commands in this installation guide in place of
python and pip.

If you’re on Windows, and Python is not installed yet, download the
latest Python installer [https://www.python.org/downloads/] from python.org.

[image: Windows installation options showing "Add python.exe to path"]
Ensure that the “Add Python to PATH” option is checked.

Use Pip

Once python and pip are installed, open a command prompt and type:

$ pip install carbon-black-cloud-sdk

This will download and install the latest version of the SDK from the Python PyPI packaging server.

Note

In Python environments that implement PEP 668 [https://peps.python.org/pep-0668/] and declare their
global packages to be “externally managed,” the use of pip to install packages outside a virtual environment
is no longer supported, unless overridden by a command-line option to pip (such as --break-system-packages).
For the use of virtual environments, see the next section and the
Python virtual environment guide [https://docs.python.org/3/library/venv.html].

Virtual Environments (optional)

If you are installing the SDK with the intent to contribute to it’s development, it is recommended that you use
virtual environments to manage multiple installations.

A virtual environment is a Python environment such that the Python interpreter, libraries and scripts installed into
it are isolated from those installed in other virtual environments, and (by default) any libraries installed in a
“system” Python, i.e., one which is installed as part of your operating system [1].

See the python.org virtual environment guide [https://docs.python.org/3/library/venv.html] for more information.

Get Source Code

Carbon Black Cloud Python SDK is actively developed on GitHub and the code is available from the
Carbon Black GitHub repository [https://github.com/carbonblack/carbon-black-cloud-sdk-python].
The version of the SDK on GitHub reflects the latest development version.

To clone the latest version of the SDK repository from GitHub:

$ git clone git@github.com:carbonblack/carbon-black-cloud-sdk-python.git

Once you have a copy of the source, you can install it in “development” mode into your Python site-packages
directory:

$ cd carbon-black-cloud-sdk-python
$ python setup.py develop

This will link the version of carbon-black-cloud-sdk-python you cloned into your Python site-packages
directory. Any changes you make to the cloned version of the SDK will be reflected in your local Python installation.
This is a good choice if you are thinking of changing or further developing carbon-black-cloud-sdk-python.

[1]
https://docs.python.org/3/library/venv.html

Authentication

Carbon Black Cloud APIs require authentication to secure your data.

There are several methods for authentication listed below. Every method requires
one of the following type of credentials X-Auth-Token, OAuth App with Bearer or Personal API Token.
See the Developer Network Authentication Guide [https://developer.carbonblack.com/reference/carbon-black-cloud/authentication/#creating-an-api-key] to learn how to
generate the type of credentials your implementation uses.

The SDK only uses one Authentication method at a time. It is recommended to create Authentication Methods for
specific actions, and use them as needed.

For example, if using the
Devices API [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/devices-api/#search-devices]
to search for mission critical devices, and the
Live Response API [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/live-response-api/]
to execute commands on those devices, generate one API credential with appropriate permissions and access level.
Store the credential with a profile name, and reference the profile when creating CBCloudAPI objects.

Example contents of credentials.cbc file used for authentication with X-Auth-Token. Read more about the credentials.cbc below.

[platform]
url=https://defense-prod05.conferdeploy.net
token=ABCDEFGHIJKLMNO123456789/ABCD123456
org_key=ABCD123456
ssl_verify=false
ssl_verify_hostname=no

Example code authentication with a profile named “platform”

import relevant modules
>>> from cbc_sdk.platform import Device
>>> from cbc_sdk import CBCloudAPI

create Platform API object
>>> platform_api = CBCloudAPI(profile='platform')

search for specific devices with Platform Devices API
>>> important_devs = platform_api.select(Device).set_target_priorities(["MISSION_CRITICAL"])

execute commands with Live Response API
>>> for device in important_devs:
... lr_session = platform_api.live_response.request_session(device.id)
... lr_session.create_process(r'cmd.exe /c "ping.exe 192.168.1.1"')
... lr_session.close()

For more examples on Live Response, check Live Response

Authentication Methods

With a File:

Credentials may be stored in a credentials.cbc file. With support for
multiple profiles, this method makes it easy to manage multiple API Keys for
different products and permission levels.

>>> cbc_api = CBCloudAPI('~/.carbonblack/myfile.cbc', profile='default')

With Windows Registry:

Windows Registry is a secure option for storing API credentials on Windows systems.

>>> provider = RegistryCredentialProvider()
>>> cbc_api = CBCloudAPI(credential_provider=provider, profile='default')

With macOS’s Keychain Access:

The Keychain Access which is built into macOS can also be used for authentication.

>>> provider = KeychainCredentialProvider('CBC API Credentials', 'default')
>>> cbc_api = CBCloudAPI(credential_provider=provider)

With Amazon Secrets Manger:

There is a support for the Amazon Secrets Manager, navigate to the section for further details of how to
set it up.

>>> provider = AWSCredentialProvider(secret_arn='your-secret-arn-string')
>>> cbc_api = CBCloudAPI(credential_provider=provider)

With an External Credential Provider:

Credential Providers allow for custom methods of loading API credentials. This
method requires you to write your own Credential Provider.

>>> provider = MyCredentialProvider()
>>> cbc_api = CBCloudAPI(credential_provider=provider, profile='default')

Not Recommended:

At Runtime:

Credentials may be passed into CBCloudAPI()
via keyword parameters. This method should be used with caution, taking care to not
share your API credentials when managing code with source control.

>>> cbc_api = CBCloudAPI(url='https://defense.conferdeploy.net', token='ABCD/1234',
... org_key='ABCDEFGH')

Not Recommended:

With Environmental Variables:

Environmental variables can be used for authentication, but pose a security risk.
This method is not recommended unless absolutely necessary.

With a File

Credentials may be supplied in a file that resembles a Windows .INI file in structure, which allows for
multiple “profiles” or sets of credentials to be supplied in a single file. The file format is backwards compatible
with CBAPI, so older files can continue to be used. The file must be encoded as UTF-8, or as UTF-16 using either
big-endian or little-endian format.

Example of a credentials file containing two profiles

[default]
url=http://example.com
token=ABCDEFGHIJKLMNOPQRSTUVWX/12345678
org_key=A1B2C3D4
ssl_verify=false

[production]
url=http://example.com
token=QRSTUVWXYZABCDEFGHIJKLMN/76543210
org_key=A1B2C3D4
ssl_verify=false
ssl_verify_hostname=no
ssl_cert_file=foo.certs
ssl_force_tls_1_2=1
proxy=proxy.example
ignore_system_proxy=on
integration=MyApplication/1.3.1

Common fields between all types of credentials

	Keyword

	Default

	Required

	url

	
	Yes

	org_key

	
	Yes

	ssl_verify

	1

	No

	ssl_verify_hostname

	1

	No

	ignore_system_proxy

	0

	No

	ssl_force_tls_1_2

	0

	No

	ssl_cert_file

	
	No

	proxy

	
	No

	integration

	
	No

	default_timeout

	300000

	No

X-AUTH-TOKEN specific fields

	Keyword

	Default

	Required

	token

	
	Yes

OAuth App with Bearer specific fields

	Keyword

	Default

	Required

	csp_oauth_app_id

	
	Yes

	csp_oauth_app_secret

	
	Yes

Personal API Token specific fields

	Keyword

	Default

	Required

	csp_api_token

	
	Yes

Individual profiles or sections are delimited in the file by placing their name within square brackets:
[profile_name]. Within each section, individual credential values are supplied in a keyword=value format.

Unrecognized keywords are ignored.

By default, the CBC SDK looks for credentials files in the following locations:

	The .carbonblack subdirectory of the current directory of the running process.

	The .carbonblack subdirectory of the user’s home directory.

	The /etc/carbonblack subdirectory on Unix, or the C:\Windows\carbonblack subdirectory on Windows.

Within each of these directories, the SDK first looks for the credentials.cbc file, then the credentials.psc
file (the older name for the credentials file under CBAPI).

You can override the file search logic and specify the full pathname of the credentials file in the keyword parameter
credential_file when creating the CBCloudAPI object.

In all cases, you will have to specify the name of the profile to be retrieved from the credentials file in the
keyword parameter profile when creating the CBCloudAPI object.

Example:

>>> cbc_api = CBCloudAPI(credential_file='~/.carbonblack/myfile.cbc', profile='default')

Note on File Security: It is recommended that the credentials file be secured properly on Unix. It should be owned
by the user running the process, as should the directory containing it, and neither one should specify any file
permissions for “group” or “other.” In numeric terms, that means the file should have 400 or 600 permissions,
and its containing directory should have 500 or 700 permissions. This is similar to securing configuration or
key files for ssh. If these permissions are incorrect, a warning message will be logged; a future version of the
CBC SDK will disallow access to files altogether if they do not have the correct permissions.

Credential files cannot be properly secured in this manner under Windows; if they are used in that
environment, a warning message will be logged.

With Windows Registry

CBC SDK also provides the ability to use the Windows Registry to supply credentials, a method which is more secure on
Windows than other methods.

N.B.: Presently, to use the Windows Registry, you must supply its credential provider as an “external” credential
provider. A future version of the CBC SDK will move to using this as a default provider when running on Windows.

By default, registry entries are stored under the key
HKEY_CURRENT_USER\Software\VMware Carbon Black\Cloud Credentials. Under this key, there may be multiple subkeys,
each of which specifies a “profile” (as with credential files). Within these subkeys, the following named values may
be specified:

Common fields between all types of credentials

	Keyword

	Value Type

	Default

	Required

	url

	REG_SZ

	
	Yes

	org_key

	REG_SZ

	
	Yes

	ssl_verify

	REG_DWORD

	1

	No

	ssl_verify_hostname

	REG_DWORD

	1

	No

	ignore_system_proxy

	REG_DWORD

	0

	No

	ssl_force_tls_1_2

	REG_DWORD

	0

	No

	ssl_cert_file

	REG_SZ

	
	No

	proxy

	REG_SZ

	
	No

	integration

	REG_SZ

	
	No

	default_timeout

	REG_DWORD

	300000

	No

X-AUTH-TOKEN specific fields

	Keyword

	Value Type

	Default

	Required

	token

	REG_SZ

	
	Yes

OAuth App with Bearer specific fields

	Keyword

	Value Type

	Default

	Required

	csp_oauth_app_id

	REG_SZ

	
	Yes

	csp_oauth_app_secret

	REG_SZ

	
	Yes

Personal API Token specific fields

	Keyword

	Value Type

	Default

	Required

	csp_api_token

	REG_SZ

	
	Yes

Unrecognized named values are ignored.

To use the Registry credential provider, create an instance of it, then pass the reference to that instance in the
credential_provider keyword parameter when creating CBCloudAPI. As with credential files, the name of the
profile to be retrieved from the Registry should be specified in the keyword parameter profile.

Example:

>>> provider = RegistryCredentialProvider()
>>> cbc_api = CBCloudAPI(credential_provider=provider, profile='default')

Advanced Usage: The parameters keypath and userkey to RegistryCredentialProvider may be used to
control the exact location of the “base” registry key where the sections of credentials are located. The keypath
parameter allows specification of the path from HKEY_CURRENT_USER where the base registry key is located. If
userkey, which is True by default, is False, the path will be interpreted as being rooted at
HKEY_LOCAL_MACHINE rather than HKEY_CURRENT_USER.

Example:

>>> provider = RegistryCredentialProvider('Software\\Contoso\\My CBC Application')
>>> cbc_api = CBCloudAPI(credential_provider=provider, profile='default')

Note the use of doubled backslashes to properly escape them under Python.

With an External Credential Provider

Credentials may also be supplied by writing a class that conforms to the CredentialProvider interface protocol.
When creating CBCloudAPI, pass a reference to a CredentialProvider object
in the credential_provider keyword parameter. Then pass the name of the profile you want to retrieve from the
provider object using the keyword parameter profile.

Example:

>>> provider = MyCredentialProvider()
>>> cbc_api = CBCloudAPI(credential_provider=provider, profile='default')

Details of writing a credential provider may be found in the
Developing a Custom Credential Provider document.

At Runtime

The credentials may be passed into the CBCloudAPI object when it is created
via the keyword parameters url, token, org_key, and (optionally) ssl_verify and integration_name.

Example:

>>> api = CBCloudAPI(url='https://example.com', token='ABCDEFGHIJKLMNOPQRSTUVWX/12345678',
... org_key='A1B2C3D4', ssl_verify=False, integration_name='MyScript/1.0')

The integration_name may be specified even if using another credential provider. If specified as a
parameter, this overrides any integration name specified by means of the credential provider.

With Environmental Variables

The credentials may be supplied to CBC SDK via the environment variables CBC_URL, CBC_TOKEN, CBC_ORG_KEY,
and CBC_SSL_VERIFY. For backwards compatibility with CBAPI, the environment variables CBAPI_URL,
CBAPI_TOKEN, CBAPI_ORG_KEY, and CBAPI_SSL_VERIFY may also be used; if both are specified, the newer
CBC_xxx environment variables override their corresponding CBAPI_xxx equivalents. To use the environment
variables, they must be set before the application is run (at least CBC_URL or CBAPI_URL, and CBC_TOKEN or
CBAPI_TOKEN), and the credential_file keyword parameter to CBCloudAPI
must be either None or left unspecified. (The profile keyword parameter will be ignored.)

N.B.: Passing credentials via the environment can be insecure, and, if this method is used, a warning message to
that effect will be generated in the log.

With macOS’s Keychain Access

The SDK also supports the usage of macOS’s Keychain Access. It works in a similar manner as our other authentication
methods. Keychain Access is a key-value based password storage and since we have more than one key-value based entry
we are going to use JSON to store our other entries, the JSON is going to be stored under the password value.

Note

You can start first by creating the JSON object, you can do that by using our
CLI tool(<SDK_ROOT>/bin/set-macos-keychain.py) or by manually creating it.
The tool can:

	Automatically import all of your profiles set in the credentials.cbc file. Or by setting a custom path
to a file.

	Manually input the values of your credentials via prompt or by using system arguments.

Find out how to use the script in its docstring or by using --help.

You can remove the keys that you won’t be using or leave them empty. Reference our
Explanation of API Credential Components.

{
 "url": "<URL>",
 "token" : "<TOKEN>",
 "org_key": "<ORG_KEY>",
 "ssl_verify": true,
 "ssl_verify_hostname": true,
 "ssl_cert_file": "<FILE_PATH>",
 "ssl_force_tls_1_2": true,
 "proxy": "<NAME_OF_THE_PROXY_HOST>",
 "ignore_system_proxy": true,
 "integration": "<INTEGRATION_NAME>",
 "default_timeout": 300000
}

Note

When you are storing a JSON object under the password’s input in Keychain it is possible to see only the {
in the input field, you can navigate with the arrows to check if the rest of the JSON is there.

Then we can move to storing that entry into the Keychain, create a new entry which looks like that:

[image: Storing a new entry into the Keychain Access]
After we’ve set the entry in the Keychain Access we can now authenticate our SDK using the KeychainCredentialProvider.

>>> from cbc_sdk.credential_providers import KeychainCredentialProvider
>>> provider = KeychainCredentialProvider('CBC API Credentials', 'default')
>>> cbc_api = CBCloudAPI(credential_provider=provider)

You will be prompted to type your password so that python can access the keychain in order to obtain the credentials.

With Amazon Secrets Manger

Configure the AWS credentials

A full and comprehensive guide configuring the files and credentials regarding AWS can be found in their
official documentation. [https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html]

Adding a secret to the AWS Secrets Manager

There is an official
guide for creating a secret [https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html]
by AWS.

Note

Add your secrets as a key/value pairs. In the Explanation of API Credential Components you can find full
information on required fields and their purpose.

Using our credential provider for the SDK

After the configuration of the AWS Credentials and storing your secret in the AWS Secret Manager, we can start using
the credential provider.

>>> from cbc_sdk.credential_providers import AWSCredentialProvider
>>> from cbc_sdk import CBCloudAPI
>>> provider = AWSCredentialProvider(secret_arn='your-secret-arn-string')
>>> cbc_api = CBCloudAPI(credential_provider=provider)

AWS Single Sign-On Provider (SSO)

If you wish to set the SSO provider follow this
tutorial [https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html#aws-single-sign-on-provider-sso]
for setting the config.

Then you can use the profile_name attribute in the AWSCredentialProvider like so:

>>> from cbc_sdk.credential_providers import AWSCredentialProvider
>>> from cbc_sdk import CBCloudAPI
>>> provider = AWSCredentialProvider(secret_arn='your-secret-arn-string', profile_name="my-sso-profile")
>>> cbc_api = CBCloudAPI(credential_provider=provider)

Explanation of API Credential Components

When supplying API credentials to the SDK at runtime, with a file,
or with Windows Registry, the credentials include these components:

Common fields between X-Auth-Token, OAuth App with Bearer and Personal API Token authentication methods

	Keyword

	Definition

	Default

	Required

	url

	The URL used to access the Carbon Black Cloud.

	
	Yes

	org_key

	The organization key specifying which organization to
work with.

	
	Yes

	ssl_verify

	A Boolean value (see below) indicating whether or not
to validate the SSL connection.

	True

	No

	ssl_verify_hostname

	A Boolean value (see below) indicating whether or not
to verify the host name of the server being connected
to.

	True

	No

	ignore_system_proxy

	A Boolean value (see below). If this is True, any
system proxy settings will be ignored in making the
connection to the server.

	False

	No

	ssl_force_tls_1_2

	A Boolean value (see below). If this is True,
the connection will be forced to use TLS 1.2
rather than any later version.

	False

	No

	ssl_cert_file

	The name of an optional certificate file used to
validate the certificates of the SSL connection.
If not specified, the standard system certificate
verification will be used.

	
	No

	proxy

	If specified, this is the name of a proxy host to be
used in making the connection.

	
	No

	integration

	The name of the integration to use these credentials.
The string may optionally end with a slash character,
followed by the integration’s version number. Passed
as part of the User-Agent: HTTP header on all
requests made by the SDK.

	
	No

	default_timeout

	The default timeout for search queries, specified in
milliseconds. This value may never be greater than
the default of 300000 milliseconds.

	300000

	No

X-AUTH-TOKEN specific fields

	Keyword

	Definition

	Required

	token

	The access token to authenticate with. Same
structure as X-Auth-Token defined in
the Developer Network Authentication Guide [https://developer.carbonblack.com/reference/carbon-black-cloud/authentication/#creating-an-api-key].
Derived from an API Key’s Secret Key and API ID.

	Yes

OAuth App with Bearer specific fields

	Keyword

	Definition

	Required

	csp_oauth_app_id

	Client ID, enter the Client ID that you set in
Create OAuth 2.0 Client.

	Yes

	csp_oauth_app_secret

	Client Secret, enter the secret that was
generated in Create OAuth 2.0 Client.

	Yes

Personal API Token specific fields

	Keyword

	Definition

	Required

	csp_api_token

	API tokens are issued by users in an organization
and are associated with the user’s account
and the organization from which they
generated the API token.

	Yes

When supplying API credentials to the SDK with environmental variables,
the credentials include these components:

	Keyword

	Legacy

	Default

	CBC_URL

	CBAPI_URL

	

	CBC_TOKEN

	CBAPI_TOKEN

	

	CBC_ORG_KEY

	CBAPI_ORG_KEY

	

	CBC_SSL_VERIFY

	CBAPI_SSL_VERIFY

	True

Alternative keywords are available to maintain backwards compatibility with CBAPI.

Boolean Values

Boolean values are specified by using the strings true, yes, on, or 1 to represent a
True value, or the strings false, no, off, or 0 to represent a False value. All of these
are case-insensitive. Any other string value specified will result in an error.

For example, to disable SSL connection validation, any of the following would work:

ssl_verify=False
ssl_verify=false
ssl_verify=No
ssl_verify=no
ssl_verify=Off
ssl_verify=off
ssl_verify=0

Getting Started with the Carbon Black Cloud Python SDK - “Hello CBC”

This document will help you get started with the Carbon Black Cloud Python SDK by installing it, configuring
authentication for it, and executing a simple example program that makes one API call.

Installation

Make sure you are using Python 3. Use the command pip install carbon-black-cloud-sdk to install the SDK and all
its dependencies. (In some environments, the correct command will be pip3 install carbon-black-cloud-sdk to
use Python 3.)

You can also access the SDK in development mode by cloning the GitHub repository, and then executing
python setup.py develop (in some environments, python3 setup.py develop) from the top-level directory.
Setting your PYTHONPATH environment variable to the directory [sdk]/src, where [sdk] is the top-level
directory of the SDK, will also work for these purposes. (On Windows, use [sdk]\src.)

See also the Installation section of this documentation for more information.

Authentication

To make use of APIs, you will need an API token, in case you are using Carbon Black Cloud to manage your
identity and authentication, or if you are using VMware Cloud Services Platform, an OAuth App with Bearer or
a Personal API Token. For our example, we will use a custom CBC-managed key with the ability to list devices.
To learn more about the different authentication methods, click
here [https://developer.carbonblack.com/reference/carbon-black-cloud/authentication/].

Log into the Carbon Black Cloud UI and go to Settings > API Access. Start by selecting Access Levels at the
top of the screen and press Add Access Level. Fill in a name and description for your sample access level, keep
Copy permissions from set to None, and, under the permission category Device and permission name
General information, check the Read check box. Press Save to save and create the new access level.

Now select API Keys at the top of the screen and press Add API Key. Enter a name for the key, and, optionally,
a description. For Access Level type, select Custom, and for Custom Access Level, select the access level
you created above. Press Save to save and create the new API key. An API Credentials dialog will be displayed
with the new API ID and secret key; this dialog may also be re-displayed at any time by finding the API key in the list,
clicking the drop-down arrow under the Actions column, and selecting API Credentials.

We will use a credentials file to store the credential information by default. Create a directory named
.carbonblack under your user home directory. (On Windows, this directory is generally C:\Users\[username],
where [username] is your user name.) Within this directory create a file credentials.cbc to store your
credentials. Copy the following template to this new file:

[default]
url=
token=
org_key=
ssl_verify=True
integrationName=CustomSDKScript/1.0

Following the url= keyword, add the top-level URL you use to access the Carbon Black Cloud, including the
https:// prefix and the domain name, but without any of the path information following it.

Following the token= keyword, add the API Secret Key from the API Credentials dialog, followed by a forward
slash (/) character, followed by the API ID from the API Credentials dialog. (The secret key is always 24
characters in length, and the API ID is always 10 characters in length.)

Following the org_key= keyword, add the organization key from your organization, which may be seen under the
Org Key: heading at the top of the API Keys display under Settings > API Access. It is always 8 characters
in length.

Save the completed credentials.cbc file, which should look like this (example text only):

[default]
url=https://example.net
token=ABCDEFGHGIJKLMNOPQRSTUVWX/ABCDEFGHIJ
org_key=A1B2C3D4
ssl_verify=True

On UNIX systems, you must make sure that the credentials.cbc file is properly secured. The simplest commands for
doing so are:

$ chmod 600 ~/.carbonblack/credentials.cbc
$ chmod 700 ~/.carbonblack

For further information, please see the Authentication section of the documentation, as well as the
Authentication Guide [https://developer.carbonblack.com/reference/carbon-black-cloud/authentication/] on the
Carbon Black Cloud Developer Network.

Setting the User-Agent

The SDK supports custom User-Agent``s, which allow you to identify yourself when using the SDK to make API calls.
The credential parameter ``integration_name is used for this. If you use a file to authenticate the SDK, this is
how you could identify yourself:

[default]
url=http://example.com
token=ABCDEFGHIJKLMNOPQRSTUVWX/12345678
org_key=A1B2C3D4
integration_name=MyScript/0.9.0

See the Authentication documentation for more information about credentials.

Running the Example

The example we will be running is list_devices.py, located in the examples/platform subdirectory of the GitHub
repository. If you cloned the repository, change directory to [sdk]/examples/platform, where [sdk] is the
top-level directory of the SDK. (On Windows, use [sdk]\examples\platform.) Alternately, you may view the current
version of that script in “raw” mode in GitHub, and use your browser’s Save As function to save the script locally.
In that case, change directory to whichever directory you saved the script to.

Execute the script by using the command python list_devices.py (in some environments,
python3 list_devices.py). If all is well, you will see a list of devices (endpoints) registered in your
organization, showing their numeric ID, host name, IP address, and last checkin time.

You can change what devices are shown by adding a query value with the -q parameter, and also by using
additional parameters to modify the search criteria. Execute the command python list_devices.py --help (in some
environments, python3 list_devices.py --help) for a list of all possible command line parameters.

Inside the Example Script

Once the command-line arguments are parsed, we create a Carbon Black Cloud API object with a call to the helper
function get_cb_cloud_object(). The standard select() method is used to create a query object that queries for
devices; the query string is passed to that object via the where() method, and other criteria are added using
specific setters.

The query is an iterable object, and calling upon its iterator methods invokes the query, which, in this case, is the
Search Devices [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/devices-api/#search-devices]
API. The example script turns those results into an in-memory list, then iterates on that list, printing only certain
properties of each retrieved Device object.

Calling the SDK Directly

Now we’ll repeat this example, but using the Python command line directly without a script.

Access your Python interpreter with the python command (or python3 if required) and type:

>>> from cbc_sdk.rest_api import CBCloudAPI
>>> from cbc_sdk.platform import Device
>>> cb = CBCloudAPI(profile='default')

This imports the necessary classes and creates an instance of the base CBCloudAPI object. By default, the file
credentials provider is used. We set it to use the default profile in your credentials.cbc file, which you
set up earlier.

Note

On Windows, a security warning message will be generated about file access to CBC SDK credentials being
inherently insecure.

This creates a query object that searches for all devices:

>>> query = cb.select(Device)

For convenience, we load the entirety of the query results into an in-memory list:

>>> devices = list(query)

Using a simple for loop, we print out the ID, host name, internal IP address, and last contact time from each
returned device. Note that the contents of the list are Device objects, not dictionaries, so we access individual
properties with the object.property_name syntax, rather than object['property_name']:

>>> for device in devices:
... print(device.id, device.name, device.last_internal_ip_address, device.last_contact_time)
...

Searching is an important operation in the SDK, as that is how objects are generally retrieved for other operations.
The Guide to Searching contains more information about searching.

Next Steps

	Guides: Information and Examples related to specific actions you want to take on your Carbon Black Cloud data

Resources

Here you can find examples, recorded demonstrations, and other resources we think will be useful
to get the most out of the Carbon Black Cloud Python SDK.

Audience for These Resources

In general, and unless otherwise indicated, these guides are directed at those that:

	Have a working knowledge of Python.

	Have a basic understanding of what the Carbon Black Cloud does, and its basic terminology such as events, alerts,
and watchlists.

Certain guides may be more geared towards audiences with more experience with the Carbon Black Cloud, such as
administrators.

Examples

The GitHub repository [https://github.com/carbonblack/carbon-black-cloud-sdk-python/tree/develop/examples] also has
some example scripts which will help you get started using the SDK.

Recordings

Demonstrations are found on our YouTube channel [https://www.youtube.com/channel/UCz0s1WuJAe7rt_dA1v-dN9g/featured].

A recent highlight shows how to schedule Audit and Remediation Tasks.

Guides

Here we’ve listed a collection of tutorials, recorded demonstrations and other resources we think will be useful
to get the most out of the Carbon Black Cloud Python SDK.

Audience for These Guides

In general, and unless otherwise indicated, these guides are directed at those that:

	Have a working knowledge of Python.

	Have a basic understanding of what the Carbon Black Cloud does, and its basic terminology such as events, alerts,
and watchlists.

	Need information to update to new versions of the SDK when enhanced features are released.

Certain guides may be more geared towards audiences with more experience with the Carbon Black Cloud, such as
administrators.

Information about updating to new versions of the SDK to take advantage of new features in Carbon Black Cloud are
in Migration Guides.

Feature Guides

	Searching
	Creating a Query Object

	Refining a Query

	Executing a Query

	Faceting

	Query Timeouts

	Search Suggestions

	Alerts
	Resources

	Retrieve Alerts

	Retrieving Alerts for Multiple Organizations

	Grouping Alerts

	Retrieving Observations to Provide Context About an Alert

	Retrieving Processes to Provide Context About an Alert

	Device Control Alerts

	Container Runtime Alerts

	High Volume and Streaming Solution for Alerts

	Asset Groups
	Resources

	Retrieve Asset Groups

	Create an Asset Group

	Delete an Asset Group

	Preview Policy Rank Changes

	Preview Asset Group Changes

	Audit Log Events
	API Permissions

	Retrieving Queued Audit Log Events

	Searching for Audit Log Events

	Exporting Audit Log Events

	Compliance Benchmarks
	Resources

	Retrieve Compliance Benchmarks

	Modify Compliance Benchmarks Schedule

	Reassess Compliance Benchmarks

	Device Compliance Summary

	Developing New Credential Providers
	Writing the Credential Provider

	Using the Credential Provider

	Credential Provider Reference

	Devices
	Searching for Devices

	Device Actions

	Device Control
	Retrieving the List of Known USB Devices

	Approving A Specific Device

	Removing A Device’s Approval

	Retrieving the List of Approvals

	Device Control Alerts

	Differential Analysis
	Overview

	Query Comparison

	Live Query
	Overview

	Setting up

	Start a Query Run

	Check status

	Get the results

	Export results

	Scroll results

	Clean up

	Scheduled runs (templates)

	Live Response
	Establish A Session With A Device

	File Commands

	Process Commands

	Additional Resources

	Policy

	Recommendations
	Getting the List of Recommendations

	Recommendations Workflow

	Recommendations and Reputation Overrides

	Reputation Override
	Creating a Reputation Override

	Retrieving existing Reputation Overrides

	Deleting a Reputation Override

	Unified Binary Store
	Get Download URL

	Get Download URL Valid For Specific Period

	Searching Binaries

	Users and Grants
	Audience for This Guide

	Uniform Resource Names (URNs)

	Getting a List of Users

	Modifying a User

	Creating a New User

	User Access Grants

	Vulnerabilities
	Retrieving Vulnerabilities

	Retrieving Vulnerability Details

	Retrieving Affected Assets for a Vulnerability

	Watchlists, Feeds, Reports, and IOCs
	About the Objects

	Setting Up a Basic Custom Watchlist

	A Closer Look at IOCs

	Feeds

	Limitations of Reports and Watchlists

	Workloads
	Search Compute Resources

	Fetch Compute Resource by ID

	Facet Compute Resources

	Download Compute Resource Listings

	Summarize Compute Resources

	Interactive example script featuring Workloads Search

	Searching - Most operations in the SDK will require you to search for objects.

	Alerts - Work and manage different types of alerts such as CB Analytics Alert, Watchlist Alerts and Device Control Alerts.

	Asset Groups - Create and modify Asset Groups, and preview the impact changes to policy ranking or asset group definition will have.

	Alert Migration - Update from SDK 1.4.3 or earlier to SDK 1.5.0 or later to get the benefits of the Alerts v7 API.

	Audit Log Events - Retrieve audit log events indicating various “system” events.

	Compliance Benchmarks - Search and validate Compliance Benchmarks.

	Devices - Search for, get information about, and act on endpoints.

	Device Control - Control the blocking of USB devices on endpoints.

	Differential Analysis - Provides the ability to compare and understand the changes between two Live Query runs

	Live Query - Live Query allows operators to ask questions of endpoints

	Live Response - Live Response allows security operators to collect information and take action on remote endpoints in real time.

	Notifications to Alerts Migration - Update from Notifications to Alerts in SDK 1.5.0 or later to get the benefits of the Alerts v7 API.

	Policy - Use policies to define and prioritize rules for how applications can behave on groups of assets

	Recommendations - Work with Endpoint Standard recommendations for reputation override.

	Reputation Override - Manage reputation overrides for known applications, IT tools or certs.

	Unified Binary Store - The unified binary store (UBS) is responsible for storing all binaries and corresponding metadata for those binaries.

	Users and Grants - Work with users and access grants.

	Vulnerabilities - View asset (Endpoint or Workload) vulnerabilities to increase security visibility.

	Watchlists, Feeds, Reports, and IOCs - Work with Enterprise EDR watchlists, feeds, reports, and Indicators of Compromise (IOCs).

	Workloads - Advanced protection purpose-built for securing modern workloads to reduce the attack surface and strengthen security posture.

Migration Guides

	Alert Migration
	Resources

	Overview

	New Features

	Breaking Changes

	Backwards Compatibility

	Migration Guide For Live Response From v3 To v6
	Overview

	Access Permissions

	Changes in the routes and response codes

	Changes in some of the request/response fields

	Additional Information

	Notifications to Alerts Migration
	Resources

	How to Update the SDK Usage

	Porting Applications from CBAPI to Carbon Black Cloud SDK
	Overview

	Package Name Changes

	Folder Structure Changes

	Function Changes

Searching

Almost every interaction with the Carbon Black Cloud SDK will involve searching for some object on the server that your
code can then inspect or operate on. Searching in the SDK involves three steps:

	Create a query object with the select() method.

	Refine the query by using the query object’s methods to add a text query and/or search criteria.

	Execute the query to see its results.

Creating a Query Object

A query object is created via the CBCloudAPI.select() operation, specifying
the type of data to be retrieved.

In this example, we create a query to search for all devices with antivirus active:

assume the CBCloudAPI object is in the variable "api"
>>> from cbc_sdk.platform import Device
>>> device_query = api.select(Device).where('status:ACTIVE')

The device query has been created but not yet executed
>>> type(device_query)
<class 'cbc_sdk.platform.devices.DeviceSearchQuery'>

The select() method may take either a class reference or a string class name:

>>> query1 = api.select(Device)
>>> query2 = api.select("Device")

prove that the query we get back in either case is the same
>>> type(query1) == type(query2)
True

Selecting an Object Directly

The select() method may also be used to retrieve an object directly if you know its ID value, by passing the ID as
a second parameter:

>>> dev = api.select(Device, 1234567) # assume this device exists
>>> type(dev)
<class 'cbc_sdk.platform.devices.Device'>

Refining a Query

Queries may support one of two different methods for refining a query:

	Through the use of text query.

	Through adding criteria.

Text Query Support

Text queries may be added to a query object by using the query object’s
where(), and_(), and
or_() methods. The following example sets up a query looking for events
in which the program googleupdate.exe accesses the system registry on a device with a specific hostname, IP
address, and owner:

assume the CBCloudAPI object is in the variable "api"
>>> from cbc_sdk.platform import Observation
>>> obs_query = api.select(Observation).where(process_name='svchost.exe').and_(observation_type='CONTEXTUAL_ACTIVITY')

further refine the query
>>> obs_query.and_(event_type='netconn')
>>> obs_query.and_(netconn_protocol='PROTO_TCP').and_(netconn_port=80)

The where() method supplies the initial query parameters, while and_() and or_() add additional query
parameters. As with other languages, and_() gets grouped together before or_().

Parameters may either be supplied as text strings or as keyword assignments:

>>> from cbc_sdk.platform import Device
the following two queries are equivalent
>>> string_query = api.select(Device).where("status:ACTIVE")
>>> keyword_query = api.select(Device).where(status="ACTIVE")

However, mixing the two types in a single query is not allowed:

this is not allowed
>>> from cbc_sdk.platform import Device
>>> bogus_query = api.select(Device).where(status="ACTIVE").and_("virtualMachine:true")
cbc_sdk.errors.ApiError: Cannot modify a structured query with a raw parameter

Criteria Support

Criteria are usually added to queries using methods specific to each query. For example, this query looks for alerts
with severity 9 or 10 on a machine running macOS 10.14.6:

>>> from cbc_sdk.platform import Alert
>>> alert_query = api.select(Alert)

Refine the query with parameters
>>> alert_query.where(alert_severity=9).or_(alert_severity=10)

Refine the query with criteria
>>> alert_query.set_device_os(["MAC"]).set_device_os_versions(["10.14.6"])

This query produces the following JSON block to be passed to a POST request to the server:

{
 "query": "alert_severity:9 OR alert_severity:10",
 "criteria": {
 "device_os": ["MAC"],
 "device_os_version": ["10.14.6"]
 }
}

In newer queries, the various specific methods for setting each individual criterion will be replaced with a single
method:

Refine the query with criteria (new style)
>>> alert_query.add_criteria("device_os", ["MAC"]).add_criteria("device_os_version", ["10.14.6"])

Note

The add_criteria() method is explicitly supported with Alerts v7, as well as other query classes that make use
of CriteriaBuilderSupportMixin. Over time, the existing “specific” methods for setting criteria will be
deprecated.

Certain queries accept a time range criterion, set with the set_time_range() method. This allows a range of
times to be specified which returned objects must fall within. Parameters for set_time_range() are as follows:

	start: Specifies the starting time of the range, in ISO 8601 format.

	end: Specifies the ending time of the range, in ISO 8601 format.

	range: Specifies the scope of the request in units of time.

A range parameter begins with a minus sign, marking an interval backwards from the current time. This is followed
by an integer number of units, followed by a letter specifying whether the interval is years (‘y’), weeks (‘w’),
days (‘d’), hours (‘h’), minutes (‘m’), or seconds (‘s’).

Note

For Process search, the range parameter is called window.

When setting a time range, either start and end must both be specified, or range must be specified.
range takes precedence if it is specified alongside start and/or end.

Executing a Query

To execute a query after it’s been refined, simply evaluate the query in an iterable context. This may be done
either by passing it to a function that takes iterable values, or by iterating over it in a for loop. This
example shows how a device query may be executed:

create and refine a device query
>>> from cbc_sdk.platform import Device
>>> device_query = api.select(Device).where('status:ACTIVE').set_os(["WINDOWS"])

easiest way to execute it is to turn it into a list
>>> matching_devices = list(device_query)

or you can iterate over it using a for loop
>>> for matching_device in device_query:
... print(f"Matching device ID: {matching_device.id})
...
Matching device ID: 1234
Matching device ID: 5678

using it in a list comprehension also works
>>> matching_device_ids = [device.id for device in device_query]
>>> print(matching_device_ids)
[1234, 5678]

you can also use the standard Python len() function to return the number of results
>>> print(len(device_query))
2

The first() or one() methods on a query always return the first object matched by that query. The difference
between those is that, if there is more than one result for that query, the one() method will raise an error.

Asynchronous Queries

Some queries may also be executed asynchronously by using the execute_async() method, which is useful if you have
a query which wil take a long time to execute and you want your script to do other things while waiting for the query
to return. Here’s how we execute the device query from the last example asynchronously:

create and refine a device query
>>> from cbc_sdk.platform import Device
>>> device_query = api.select(Device).where('status:ACTIVE').set_os(["WINDOWS"])

now execute it
future = device_query.execute_async()

await the results
device_list = future.result()

The execute_async() method returns a standard concurrent.futures.Future object, and that Future’s
result() method will return a list with the results of the query.

Faceting

Facet search queries return statistical information indicating the relative weighting of the requested values as per
the specified criteria. Only certain query types support faceting.

Simple Faceting

Simple faceting is built into certain queries, allowing you to generate a summary on certain fields of all objects that
match the query. To perform this, create and refine a query object as you would normally, then call the facets()
method on the query, passing it the names of the fields you want to facet on.

Here is an example for USB devices:

>>> from cbc_sdk.endpoint_standard import USBDevice
>>> usb_devices = api.select(USBDevice).set_statuses(['APPROVED'])
>>> facet_data = usb_devices.facets(['vendor_name', 'product_name'])

This facet query might produce data that looks like this:

[
 {
 "field": "vendor_name",
 "values": [
 {
 "id": "Generic",
 "name": "Generic",
 "total": 2
 },
 {
 "id": "Kingston",
 "name": "Kingston",
 "total": 2
 }
]
 },
 {
 "field": "product_name",
 "values": [
 {
 "id": "DataTraveler 3.0",
 "name": "DataTraveler 3.0",
 "total": 2
 },
 {
 "id": "Mass Storage",
 "name": "Mass Storage",
 "total": 2
 }
]
 }
]

Facet Queries

More complex facet queries are performed by creating a query on a facet type, then refining it as usual, then getting
the results from the query:

>>> from cbc_sdk.platform import ObservationFacet
>>> query = api.select(ObservationFacet).where(process_pid=1000)

Facet queries have two types of special criteria that may be set. One is the range type which is used to specify
discrete values (integers or timestamps - specified both as seconds since epoch and also as ISO 8601 strings).
The results are then grouped by occurrence within the specified range:

>>> from cbc_sdk.platform import ObservationFacet
>>> range = {
... "bucket_size": "+1DAY",
... "start": "2020-10-16T00:00:00Z",
... "end": "2020-11-16T00:00:00Z",
... "field": "device_timestamp"
... }
>>> query = api.select(ObservationFacet).where(process_pid=1000).add_range(range)

The range settings are as follows:

	field - the field to return the range for, should be a discrete one (integer or ISO 8601 timestamp)

	start - the value to begin grouping at

	end - the value to end grouping at

	bucket_size- how large of a bucket to group results in. If grouping an ISO 8601 property, use a string
like '-3DAYS'.

Multiple ranges can be configured per query by passing a list of range dictionaries.

The other special criterion that may be set is the term type, which allows for one or more fields to use as a
criteria on which to return weighted results. Terms may be added using the add_facet_field() method, specifying
the name of the field to be summarized:

>>> from cbc_sdk.platform import ObservationFacet
>>> query = api.select(ObservationFacet).where(process_pid=1000).add_facet_field("process_name")

Once the facet query has been fully refined, it is executed by examining its results property:

>>> from cbc_sdk.platform import EventFacet
>>> event_facet_query = api.select(EventFacet).add_facet_field("event_type")
>>> event_facet_query.where(process_guid="WNEXFKQ7-00050603-0000066c-00000000-1d6c9acb43e29bb")
>>> range = {
... "bucket_size": "+1DAY",
... "start": "2020-10-16T00:00:00Z",
... "end": "2020-11-16T00:00:00Z",
... "field": "device_timestamp"
... }
>>> event_facet_query.add_range(range)
>>> synchronous_results = event_facet_query.results
>>> print(synchronous_results)
EventFacet object, bound to https://defense-eap01.conferdeploy.net.

 num_found: 16
 processed_segments: 1
 ranges: [{'start': '2020-10-16T00:00:00Z', 'end': '2020...
 terms: [{'values': [{'total': 14, 'id': 'modload', 'na...
 total_segments: 1

Facet queries may also be executed asynchronously, as with other asynchronous queries, by calling their
execute_async() method and then calling the result() method on the returned Future object:

>>> from cbc_sdk.platform import EventFacet
>>> event_facet_query = api.select(EventFacet).add_facet_field("event_type")
>>> event_facet_query.where(process_guid="WNEXFKQ7-00050603-0000066c-00000000-1d6c9acb43e29bb")
>>> range = {
... "bucket_size": "+1DAY",
... "start": "2020-10-16T00:00:00Z",
... "end": "2020-11-16T00:00:00Z",
... "field": "device_timestamp"
... }
>>> event_facet_query.add_range(range)
>>> asynchronous_future = event_facet_query.execute_async()
>>> asynchronous_result = asynchronous_future.result()
>>> print(asynchronous_result)
EventFacet object, bound to https://defense-eap01.conferdeploy.net.

 num_found: 16
 processed_segments: 1
 ranges: [{'start': '2020-10-16T00:00:00Z', 'end': '2020...
 terms: [{'values': [{'total': 14, 'id': 'modload', 'na...
 total_segments: 1

The result for facet queries is a single object with two properties, terms and ranges, that contain the facet
search result weighted as per the criteria provided:

>>> print(synchronous_result.terms)
[{'values': [{'total': 14, 'id': 'modload', 'name': 'modload'}, {'total': 2, 'id': 'crossproc', 'name': 'crossproc'}], 'field': 'event_type'}]
>>> print(synchronous_result.ranges)
[{'start': '2020-10-16T00:00:00Z', 'end': '2020-11-16T00:00:00Z', 'bucket_size': '+1DAY', 'field': 'device_timestamp', 'values': None}]

Query Timeouts

Some search queries make use of a timeout value, specified in milliseconds, which may be specified wither through
a timeout parameter to a method, or via a timeout() setter method on a query class. These timeouts follow a
specific set of rules.

The absolute maximum timeout value is 300,000 milliseconds (5 minutes). No search may have a timeout longer
than this.

An application may specify a shorter maximum timeout value for all searches by including it in the credentials,
under the key name default_timeout. This default timeout value may not be greater than the absolute maximum
timeout. If this value is specified, no search may have a timeout longer than this value.

This means that, for any given search, the timeout will be the smallest of these values:

	The value specified via a parameter to the search, if one was specified.

	The value configured in the credentials, if one is so configured.

	The absolute maximum timeout value, as defined above.

Search Suggestions

Some classes offer the ability to provide “suggestions” as to search terms that may be employed, via a static method on
the class. Here is an example for Observation:

>>> from cbc_sdk.platform import Observation
>>> suggestions = Observation.search_suggestions(api, query="device_id", count=2)
>>> for suggestion in suggestions:
... print(suggestion["term"], suggestion["required_skus_all"], suggestion["required_skus_some"])
device_id [] ['threathunter', 'defense']
netconn_remote_device_id ['xdr'] []

And here is an example for BaseAlert:

>>> from cbc_sdk.platform import BaseAlert
>>> suggestions = BaseAlert.search_suggestions(api, query="device_id")
>>> for suggestion in suggestions:
... print(suggestion["term"], suggestion["required_skus_some"])
device_id ['defense', 'threathunter', 'deviceControl']
device_os ['defense', 'threathunter', 'deviceControl']
[...additional entries elided...]
workload_name ['kubernetesSecurityRuntimeProtection']

Alerts

Use alerts to get notifications about monitored activities such as the
appearance or spread of risky files on your endpoints. The Carbon Black Cloud Python SDK provides
an easy way to search, investigate and set the workflow of Alerts using python classes instead of raw requests.

You can use all the operations shown in the API, such as retrieving, filtering, closing, and adding notes to the
alert or the associated threat.
You can locate the full list of operations and attributes in the Alert() class.

Resources

	API Documentation [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alerts-api/] on Developer Network

	Alert Search Fields [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alert-search-fields/] on Developer Network

	Example script in GitHub [https://github.com/carbonblack/carbon-black-cloud-sdk-python/tree/develop/examples/platform]

	If you are updating from SDK version 1.4.3 or earlier, see the `alerts-migration`_ guide.

	If you are updating from Notifications, see the `notification-migration`_ guide.

Note

In Alerts v7, and therefore SDK 1.5.0 onwards, Observed Alerts are not included; they are an Observation. The field category
has been removed from Alert. In other APIs where this field remains it will always have a value of THREAT.
More information is available
here [https://carbonblack.vmware.com/blog/announcing-alerts-v7-api-and-%E2%80%9Cobserved-alerts%E2%80%9D-become-%E2%80%9Cobservations%E2%80%9D].

Retrieve Alerts

By using the following the example, you can retrieve the first 5 [:5] alerts that have a minimum severity level of 7.

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.platform import Alert
>>> api = CBCloudAPI(profile='sample')
>>> alerts = api.select(Alert).set_minimum_severity(7)[:5]
>>> print(alerts[0].id, alerts[0].device_os, alerts[0].device_name, alerts[0].category)
d689e626-5d6a-<truncated> WINDOWS Alert-WinTest THREAT

Filter Alerts

Filter alerts by using the fields described in the
Alert Search Schema [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alert-search-fields/].

Set required values for specific fields by using the add_criteria() method to limit the number of returned alerts.
Use this method for fields that are identified in the Alert Search Fields [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alert-search-fields/]
with “Searchable Array”.

The following snippet limits returns to specific devices, where the device_id is an integer and the device_target_value
is a string.

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.platform import Alert
>>> api = CBCloudAPI(profile='sample')
>>> alerts = api.select(Alert).add_criteria("device_id", [123, 456])
>>> alerts = api.select(Alert).add_criteria("device_target_value", ["MISSION_CRITICAL", "HIGH"])

Fields in the Alert Search Fields [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alert-search-fields/]
identified only with “Searchable” require the criteria to be a single value instead of a list of values.
The SDK has hand-crafted methods to set the criteria for these fields.

The following code snippet shows the methods for alert_notes_present and minimum_severity, and the
alerts that meet each criteria.

>>> alerts = api.select(Alert).set_alert_notes_present(True)
>>> print(len(alerts))
3
>>> alerts = api.select(Alert).set_minimum_severity(9)
>>> print(len(alerts))
1072
>>> alerts = api.select(Alert).set_minimum_severity(3)
>>> print(len(alerts))
69100
>>>

You can use the where method to define a custom query to filter alerts. The where method supports strings and solr-like queries. Alternatively, you can use solrq query objects
for more complex searches. The following example searches by using a solr query search string for alerts
where the device_target_value is MISSION_CRITICAL or HIGH and is the equivalent of the preceding add_criteria clause.

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.platform import Alert
>>> api = CBCloudAPI(profile='sample')
>>> alerts = api.select(Alert).where("device_target_value:MISSION_CRITICAL or device_target_value:HIGH")
>>> for alert in alerts:
... print(alert.id, alert.device_os, alert.device_name, alert.device_target_value)
8aa6272a-17cb-31c0-9352-67e45c0251f3 WINDOWS jenkin MISSION_CRITICAL
d987a112-8b7b-18c9-43d9-76ced09d9ded WINDOWS MYDEMOMACHINE\DESKTOP-04 MISSION_CRITICAL
0f915c4d-5652-b3e5-50d8-f4dcfc632396 WINDOWS jenkin MISSION_CRITICAL
1f13e581-840f-1207-f661-d9b176ee9d6c WINDOWS jenkin MISSION_CRITICAL
6ae56007-1213-4ee1-a50c-d221066ce8c9 WINDOWS MYBUILDMACHINE\Desktop-01 HIGH
... truncated ...

Tip

When filtering by fields that take a list parameter, an empty list is treated as a wildcard and matches everything.

For example, the following snippet returns all types:

>>> alerts = api.select(Alert).set_types([])

It is equivalent to:

>>> alerts = api.select(Alert)

Tip

More information about the solrq can be found in
their documentation [https://solrq.readthedocs.io/en/latest/index.html].

Retrieving Alerts for Multiple Organizations

By using the following example, you can retrieve alerts for multiple organizations. Ensure you have a profile created for each org in the cbc credential file.

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.platform import Alert
>>> org_list = ["org1", "org2"]
>>> for org in org_list:
... org = "".join(org)
... api = CBCloudAPI(profile=org)
... alerts = api.select(Alert).set_minimum_severity(7)[:5]
... print("Results for Org {}".format(org))
>>> for alert in alerts:
... print(alert.id, alert.device_os, alert.device_name, alert.category)

You can also read from a csv file by using values that match the profile names in a credentials.cbc file.

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.platform import Alert
>>> import csv
>>> file = open ("data.csv", "r", encoding="utf-8-sig")
>>> org_list = list(csv.reader(file, delimiter=","))
>>> file.close()
>>> for org in org_list:
... org = "".join(org)
... api = CBCloudAPI(profile=org)
... alerts = api.select(Alert).set_minimum_severity(7)[:5]
... print("Results for Org {}".format(org))
>>> for alert in alerts:
... print(alert.id, alert.device_os, alert.device_name, alert.category)

Grouping Alerts

The examples below illustrates how to create and manipulate grouped alert objects. A Grouped Alert is a collections of alerts that share a common threat id. When grouping alerts by a threat id it allows greater context and insight surrounding the pervasiveness of a threat.

This first example retrieves all groupings of watchlist alerts from the past 10 days that have a minimum severity level of 3. If this feels familiar to basic alert retrieval, the only difference of note at this stage is that we select a GroupedAlert instead of an Alert.

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.platform import GroupedAlert
>>> api = CBCloudAPI(profile="sample")
>>> grouped_alert_search_query = api.select(GroupedAlert)
>>> grouped_alert_search_query = grouped_alert_search_query.set_time_range(range="-10d").add_criteria("type", "WATCHLIST").set_minimum_severity(3)
>>> # trigger the search to execute:
>>> grouped_alert = grouped_alert_search_query.first()
>>> print("Number of groups: {}, Total alerts in all groups {}".format(grouped_alert_search_query._total_results, grouped_alert_search_query._group_by_total_count))
Number of groups: 19, Total alerts in all groups 2454

Also like Alerts, first() can be used on the query to retrieve the first grouping of alerts and study the metadata for a given threat id.

>>> first_alert_grouping = grouped_alert_search_query.first()
>>> print(first_alert_grouping.count, first_alert_grouping.highest_severity, first_alert_grouping.device_count, first_alert_grouping.workflow_states)
534 7 3 ("OPEN": 534)
>>> most_recent_alert = first_alert_grouping.most_recent_alert_
>>> print(most_recent_alert.threat_id)

It may be necessary to retrieve all of the alerts from a threat id grouping for further inspection, it is possible to directly retrieve the associated alert search query from a given grouped alert

>>> alert_search_query = first_alert_grouping.get_alert_search_query()
>>> alerts = alert_search_query.all()

It is also possible to create grouped facets from the group alert search query

>>> grouped_alert_facets = grouped_alert_search_query.facets(["type", "THREAT_ID"], 0, True)

Suppose instead of grouped alerts, you had been working with alerts and wanted to crossover to grouped alerts. Instead of building a new group alert query from scratch you can transform an alert search query into a grouped alert search query or vice versa!

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.platform import Alert, GroupedAlert
>>> api = CBCloudAPI(profile="sample")
>>> alert_search_query = api.select(Alert)
>>> alert_search_query = alert_search_query.set_time_range(range="-10d").add_criteria("type", "WATCHLIST").set_minimum_severity(3)
>>> group_alert_search_query = alert_search_query.set_group_by("threat_id")
>>> alert_search_query = group_alert_search_query.get_alert_search_query()

Note

When transforming from one query type to another the sort order parameter is not preserved. If it is necessary, it will have to be added to the queries criteria manually.

Retrieving Observations to Provide Context About an Alert

All alert types other than Watchlist Alerts have associated Observations that provide more information
about the interesting events that contributed to the identification of an Alert.

The Alert v7 object (supported in SDK 1.5.0 onwards) has significantly more metadata when compared to the earlier
Alerts v6 API (in the SDK version 1.4.3 and earlier). Therefore, the enrichment might not be required depending on your use case.
New fields include process, child process, and parent process commandlines and IP addresses for network events. Find the
complete list of fields in the
Alert Search Fields [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alert-search-fields/]

Observations are part of
Investigate Search Fields [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/platform-search-fields/].
Available fields are identified by the route “Observation”.
Methods on the Observation Class, which can be found here: Observation()

For the entire Observation details including fields marked with OBSERVATION*** in the Investigate Search Fields [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/platform-search-fields/]
then use get_details() on the Observation object.

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.platform import CBAnalyticsAlert
>>> api = CBCloudAPI(profile="sample")
>>> alert = api.select(Alert).add_criteria("type", "CB_ANALYTICS").first()
>>> observations = alert.get_observations()
>>> observations
[<cbc_sdk.platform.observations.Observation: id a5aa40856d5511ee8059132eb84e1d6d:470147c9-d79b-3f01-2083-b30bc0c0629f> @ https://defense.conferdeploy.net]
>>> print(observations[0])
Observation object, bound to https://defense.conferdeploy.net.
--
 alert_id: [list:1 item]:
 [0]: 470147c9-d79b-3f01-2083-b30bc0c0629f
 backend_timestamp: 2023-10-18T01:28:59.900Z
 blocked_effective_reputation: KNOWN_MALWARE
 blocked_hash: [list:1 item]:
 [0]: 659e469f8dadcb6c32ab1641817ee57c327003dffa443c3...
 blocked_name: c:\windows\system32\fltlib.dll
 childproc_effective_reputation: KNOWN_MALWARE
childproc_effective_reputation_source: HASH_REP
 childproc_hash: [list:1 item]:
 [0]: 659e469f8dadcb6c32ab1641817ee57c327003dffa443c3...
... truncated ...

Retrieving Processes to Provide Context About an Alert

You can retrieve process details on any Alert with a process_guid. You can use list slicing
to retrieve the first n results (in the example, this value is 10).
The full list of attributes and methods are in the Process() class.

For the entire process details including fields marked with PROCESS*** in the Investigate Search Fields [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/platform-search-fields/]
then use get_details() on the Process object.

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.platform import WatchlistAlert, Process
>>> api = CBCloudAPI(profile='sample')
>>> alerts = api.select(WatchlistAlert)[:10]
>>> for alert in alerts:
... process = alert.get_process()
... print(process)
{'alert_id': ['0a3c45bf-fce6-4a63', '12030b8f-ce3f-48bd'], 'attack_tactic': 'TA0002' <truncated>..}
{'alert_id': ['02f6aecd-73d7-456d', 'e47c13dd-75a9-44de'], 'attack_tactic': 'TA0002' <truncated>..}
... truncated ...

Get Process Events

You can fetch every event that corresponds with a Process by calling process.events().

Note

Because calling the events can be an intensive task, in following example fetches only the first 10
events. Be cautious when calling all().

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.platform import WatchlistAlert, Process
>>> api = CBCloudAPI(profile='sample')
>>> alert = api.select(WatchlistAlert).first()
>>> process = alert.get_process()
>>> events = process.events()[:10]
>>> print(events[0].event_description) # Note that I've stripped the `<share>` and `<link>` tags, which are also available in the response.
'The application c:\\program files (x86)\\google\\chrome\\application\\chrome.exe attempted to modify the memory of "c:\\program files (x86)\\google\\chrome\\application\\chrome.exe", by calling the function "NtWriteVirtualMemory". The operation was successful.'
...

Device Control Alerts

Device Control Alerts are explained in the Device Control guide.

Container Runtime Alerts

Container Runtime Alerts represent alerts for behavior that is noticed inside a Kubernetes container. These alerts are based on network traffic and are
triggered by anomalies from the learned behavior of workloads or applications. For these events, the type is
CONTAINER_RUNTIME. Additional fields such as connection_type and egress_group_name are also available.

To see all available fields, filter Alert Types Supported to CONTAINER_RUNTIME on the
Alert Search Fields [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alert-search-fields/].

Alert Workflow

The Alert Closure workflow enables Alert lifecycle management.

An alert goes through the states of Open, In Progress, and Closed. Any transition can occur, including
from Closed back to Open or In Progress.

The workflow leverages the alert search structure to specify the alerts to close.

	Use an Alert Search to specify which Alerts will have their status updated.

	The request body is a search request and all alerts matching the request will be updated.

	Two common uses are to update one alert, or to update all alerts with a specific threat id.

	Any search request can be used as the criteria to select alerts to update the alert status.

>>> # This query will select only the alert with the specified id
>>> ALERT_ID = "id of the alert that you want to close"
>>> alert_query = api.select(Alert).add_criteria("id", [ALERT_ID])
>>> # This query will select all alerts with the specified threat id. It is not used again in this example
>>> alert_query_for_threat = api.select(Alert).add_criteria("threat_id","CFED0B211ED09F8EC1C83D4F3FBF1709")

	Submit a job to update the status of Alerts.

	The status can be OPEN, IN PROGRESS or CLOSED (previously DISMISSED).

	You may include a Closure Reason.

>>> # by calling update on the alert_query, the a request to change the status
>>> # for all alerts matching that criteria will be submitted
>>> job = alert_query.update("CLOSED", "RESOLVED", "NONE", "Setting to closed for SDK demo")

	The immediate response confirms that the job was successfully submitted.

>>> print("job.id = {}".format(job.id))
job.id = 1234567

	Use the Job() cbc_sdk.platform.jobs.Job class to determine when the update is complete.

Use the Job object to wait until the Job has completed. The python script will wait while
the SDK polls to determine when the job is complete.

>>> completed_job = job.await_completion().result()

	Refresh the Alert Search to get the updated alert data into the SDK.

>>> alert.refresh()
>>> print("Status = {}, Expecting CLOSED".format(alert.workflow["status"]))

	You can dismiss future Alerts that have the same threat id.

Use the sequence of calls to update future alerts that have the same threat id. This sequence is usually used in
conjunction with with the alert closure; that is, you can use the dismiss future alerts call to close future
occurrences and call an alert closure to close current open alerts that have the threat id.

>>> alert_threat_query = api.select(Alert).add_criteria("threat_id","CFED0B211ED09F8EC1C83D4F3FBF1709")
>>> alert.dismiss_threat("threat remediation done", "testing dismiss_threat in the SDK")
>>> # To undo the dismissal, call update
>>> alert.update_threat("threat remediation un-done", "testing update_threat in the SDK")

High Volume and Streaming Solution for Alerts

For near-real-time streaming of alerts, see Data Forwarder [https://docs.vmware.com/en/VMware-Carbon-Black-Cloud/services/carbon-black-cloud-user-guide/GUID-E8D33F72-BABB-4157-A908-D8BBDB5AF349.html/].

Asset Groups

Asset Groups provide a way to organize and manage your fleet of Endpoints, VM Workloads, and VDIs.
Create groups of assets and apply policies to the groups so the protections of all similar assets are synchronized.
The ability to add one asset to multiple groups, and rank policies for precedence in application, gives added
flexibility and fine tuning for complex organizations.

You can locate the full list of operations and attributes in the
AssetGroup() class.

Resources

	API Documentation [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/asset-groups-api/] on Developer Network

	Example script in GitHub [https://github.com/carbonblack/carbon-black-cloud-sdk-python/tree/develop/examples/platform]

Retrieve Asset Groups

There two options for getting a list of asset groups. The function get_all_groups() does exactly that; returns all
Asset Groups in your organization.

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.platform import AssetGroup
>>> api = CBCloudAPI(profile='sample')
>>> all_asset_groups = AssetGroup.get_all_groups(api)
>>> print("There are {} asset groups. First group: {}".format(len(all_asset_groups), all_asset_groups[0]))
There are 1 asset groups. This is the first: AssetGroup object, bound to https://defense.conferdeploy.net.
 Partially initialized. Use .refresh() to load all attributes

 create_time: 2024-01-24T04:38:26.930Z
 description: Windows No Policy
 discovered: False
 id: 34fc5890-caf0-400a-98ba-a81763960f6e
 member_count: 1030
 member_type: DEVICE
 name: Windows No Policy
 org_key: 7desj9gn
 query: os.equals: "WINDOWS"
 status: OK
 update_time: 2024-01-24T04:38:27.972Z

Asset groups can also be searched using name, policy_id or group_id in the criteria element.

The example shows creating an AssetGroupQuery class, then adding criteria to limit the results and specifying the
field to sort by. The query is not executed until it accessed, in this case by iterating over the results.

Summary information for each asset group is printed, and then the devices in that asset group are listed.

>>> search_asset_group_query = api.select(AssetGroup)
>>> search_asset_group_query.add_criteria("name", "Second demo group")
>>> search_asset_group_query.sort_by("name", "ASC")
>>> for ag in search_asset_group_query:
>>> print("\nAsset group name = {}. It has {} members".format(ag.name, ag.member_count))
>>> print("Policy assigned to the Asset Group is Name: {}, Id: {}".format(ag.policy_name, ag.policy_id))
>>> for d in ag.list_members():
>>> print("Device Name: {}, Id: {}".format(d.name, d.id))
Asset group name = Second demo group. It has 3 members
Policy assigned to the Asset Group is Name: DemoPolicy, Id: 123456
Device Name: DemoDevice, Id: 2468642
Device Name: SDKDemo, Id: 1357975
Device Name: AnotherDemoMachine, Id: 19283746
 ...truncated ...

Create an Asset Group

The only required field when creating an asset group is the Asset Group Name.

Creating a group without a policy assigned enables the use of a group for visibility of specific assets.
After creation, it is possible in use any of combination of assigning assets directly, adding a query or assigning
a policy.

>>> new_asset_group = AssetGroup.create_group(api, "My Example Asset Group", description="Demonstrating the SDK")
>>> print(new_asset_group)
AssetGroup object, bound to https://defense.conferdeploy.net.

 create_time: 2024-01-24T05:47:34.378Z
 description: Demonstrating the SDK
 discovered: False
 id: aae06712-96d4-43ea-ae67-07112d6f670e
 member_count: 0
 member_type: DEVICE
 name: My Example Asset Group
 org_key: ABCD1234
 status: OK
 update_time: 2024-01-24T05:47:34.378Z

Now add a query which will dynamically include any asset with the Windows operating system and a policy:

>>> new_asset_group.query = "os.equals:WINDOWS"
>>> new_asset_group.policy_id = 12345
>>> new_asset_group.save()

Parts of Carbon Black Cloud have asynchronous processing and are eventually consistent.
When writing automated scripts, use the status field to determine when the asset group membership has
finished updating.

	OK indicates the membership evaluation is complete

	UPDATING indicates that group’s dynamic memberships are being re-evaluated

>>> import time
>>> while new_asset_group.status != "OK":
>>> print("waiting")
>>> time.sleep(5)
>>> new_asset_group.refresh()

Then print the new asset:

>>> print("new_asset_group {}".format(new_asset_group))
new_asset_group, bound to https://defense.conferdeploy.net.
 Last refreshed at Tue Jan 23 22:47:47 2024

 create_time: 2024-01-24T05:47:35.150Z
 description: Demonstrating the SDK
 discovered: False
 id: ceb27e6c-7c23-4dd5-af7a-3b0c14363240
 member_count: 204
 member_type: DEVICE
 name: My Example Asset Group
 org_key: ABCD1234
 policy_id: 12345
 policy_name: DemoPolicy
 query: os.equals:WINDOWS
 status: OK
 update_time: 2024-01-24T05:47:35.585Z
AssetGroup object, bound to https://defense.conferdeploy.net.

All attributes can also be provided to the create method:

>>> second_asset_group = AssetGroup.create_group(api, "Second example group","Second group description",
... query = "os.equals:MAC", policy_id = 12345)

The add_member() function is used to assign a device directly to the group. (Compared to dynamically added, when the
device matches the query on the asset group.)

>>> from cbc_sdk.platform import Device
>>> random_device = api.select(Device).first()
>>> second_asset_group.add_members(random_device)

Delete an Asset Group

To delete an Asset Group, use the delete method:

>>> second_asset_group.delete()

Preview Policy Rank Changes

The effective policy on a specific device is determined by the rank of policies the device is assigned, with higher
ranked policies taking precedence.

The example script [https://github.com/carbonblack/carbon-black-cloud-sdk-python/tree/develop/examples/platform]
includes finding two policies that are likely have have impactful changes. This snippet uses hardcoded values so the
focus is on the method being called and output.

The preview method is a static class method on Policy, since it is a policy change that is being previewed.

The result is a DevicePolicyChangePreview() class,
which contains information about all the device that would have a change in effective policy.

>>> from cbc_sdk.platform import Policy
>>> api = CBCloudAPI(profile='sample')
>>> policy_id = 1234
>>> # to get a policy that exists in your org: policy_id = api.select(Policy).first().id
>>> new_policy_position = 1
>>> changes = Policy.preview_policy_rank_changes(api, [(policy_id, new_policy_position)])
>>> print(changes[0])
DevicePolicyChangePreview object, bound to https://defense.conferdeploy.net.

Current policy: #98765 at rank 7
 New policy: #1234 at rank 1
 Asset count: 264
 Asset query: ((-_exists_:ag_agg_key_manual AND ag_agg_key_dynamic:9b0a62b19086bdbfcff5c62e581304a28cd445aee86d87c6d95c57483ae5e05b AND policy_id:100714 AND policy_override:false) AND (os.equals: "WINDOWS"))

This change says there’s an asset group that is currently using policy id 98765 which is ranked 7.
If the change was processed the asset group would use a new policy, id 1234 which is at rank 1. This would affect 264
Assets and the Asset query can be used to find those Assets.

The Asset Query is a class of type DeviceSearchQuery which can be executed:

>>> devices = changes[0].asset_query
>>> print("type of devices object is {}".format(type(devices)))
>>> print(len(devices))
type of devices object is <class 'cbc_sdk.platform.devices.DeviceSearchQuery'>
264

Preview Asset Group Changes

Previewing the changes that would happen if an asset group was changed is very similar to the Preview Policy Rank
Changes above.

Once Asset Groups have been created and policies assigned, the preview asset group changes function can be used to
identify the devices that would have their group membership or effective policy impacted by creating or deleting an
Asset Group, or by changing the query on the asset group.

Here we’re working with a random asset group and policy, using the first() function.

A new policy is assigned and the existing query is not changed.

>>> asset_group = api.select(AssetGroup).first()
>>> policy_id = api.select(Policy).first().id
>>> api = CBCloudAPI(profile='sample')
>>> changes = AssetGroup.preview_update_asset_groups(api, [asset_group], policy_id, asset_group.query)
>>> print("There are {} changes that would result from the proposed change. The first change:".format(len(changes)))
>>> print(changes[0])
DevicePolicyChangePreview object, bound to https://defense.conferdeploy.net.

Current policy: #148443 at rank 96
 New policy: #80947 at rank 1
 Asset count: 117
 Asset query: ((-_exists_:ag_agg_key_manual AND -_exists_:ag_agg_key_dynamic AND policy_id:148443 AND policy_override:false) AND (os.equals:MAC))

Audit Log Events

In the Carbon Black Cloud, audit logs are records of various organization-wide events, such as:

	Log in attempts by users

	Updates to connectors

	Creation of connectors

	LiveResponse events

The Audit Log API allows these records to be retrieved as objects, either by getting the most recent audit logs, or
through a flexible search API.

API Permissions

To call the Audit Log APIs, use a custom API key created with a role containing the READ permission on
org.audits.

Retrieving Queued Audit Log Events

The Carbon Black Cloud maintains a queue of audit log events for each API key, which is initialized with the last three
days of audit logs when the API key is created. This demonstrates how to read audit log events from the queue:

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.platform import AuditLog
>>> api = CBCloudAPI(profile='sample')
>>> events = AuditLog.get_queued_auditlogs(api)
>>> for event in events:
... print(f"{event.create_time}: {event.actor} {event.description}")

Once audit log events have been retrieved from the queue, they are “cleared” and will not be included in future
responses to a get_queued_auditlogs() call.

Note

Reading queued audit log events using different API keys may lead to duplicate data.

Searching for Audit Log Events

Audit log events may be searched for in a manner similar to other objects within the SDK:

assume "api" contains our CBCloudAPI reference as above
>>> query = api.select(AuditLog).where("description:Logged in")
>>> query.sort_by("create_time")
>>> for event in query:
... print(f"{event.create_time}: {event.actor} {event.description}")

See also the Searching guide page for a more detailed discussion of searching.

Exporting Audit Log Events

Any search query may also be used to export audit log data, in either CSV or JSON format:

assume "api" contains our CBCloudAPI reference as above
>>> query = api.select(AuditLog).where("description:Logged in")
>>> query.sort_by("create_time")
>>> job = query.export("csv")
>>> result = job.await_completion().result()
>>> print(result)

Note that the export() call returns a Job object, as exports can take some time to complete. The results may
be obtained from the Job when the export process is completed.

Compliance Benchmarks

CIS benchmarks are configuration guidelines published by the Center for Internet Security.
The CIS Benchmark enable configuration and retrieval of Benchmark Sets and Rules in Carbon Black Cloud, and
retrieval of the results from scans performed using these Rules.

For more information on CIS Benchmarks, see the Center for Internet Security [https://www.cisecurity.org/cis-benchmarks].
CIS benchmarks contain over 100 configuration guidelines created by a global community of cybersecurity experts to safeguard
various systems against attacks targeting configuration vulnerabilities.

You can use all the operations shown in the API, such as retrieving, filtering, reaccessing and enabling/disabling the benchmark rules.
You can locate the full list of operations and attributes in the ComplianceBenchmark() class.

Resources

	API Documentation [https://developer.carbonblack.com/reference/carbon-black-cloud/workload-protection/latest/cis-benchmark-api] on Developer Network

	User Guide [https://docs.vmware.com/en/VMware-Carbon-Black-Cloud/services/carbon-black-cloud-user-guide/GUID-47645D2C-A093-47C8-B4CA-D6F685392733.html]

Retrieve Compliance Benchmarks

By using the following the example, you can retrieve the list of supported benchmarks

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.workload import ComplianceBenchmark
>>> api = CBCloudAPI(profile='sample')
>>> benchmark_query = api.select(ComplianceBenchmark)
>>> for benchmark in benchmark_query:
>>> print(benchmark)
ComplianceBenchmark object, bound to https://defense-test03.cbdtest.io.

 bundle_name: CIS Compliance - Microsoft Windows Server
 create_time: 2023-03-20T13:44:10.923039Z
 created_by: emuthu+csr@carbonblack.com
 enabled: True
 id: b7d1b266-d899-4e28-bae6-7619019447ba
 name: CIS Windows Server Retail application Prod
 os_family: WINDOWS_SERVER
 release_time: 2023-07-10T13:55:59.274881Z
 supported_os_info: [list:5 items]:
 [0]: {'os_metadata_id': '1', 'os_type': 'WINDOWS', '...
 [1]: {'os_metadata_id': '2', 'os_type': 'WINDOWS', '...
 [2]: {'os_metadata_id': '3', 'os_type': 'WINDOWS', '...
 [...]
 type: Custom
 update_time: 2024-04-15T21:24:43.283032Z
 updated_by:
 version: 1.0.0.4

Modify Compliance Benchmarks Schedule

By using the following the example, you can get and set the benchmark assessment schedule

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.workload import ComplianceBenchmark
>>> api = CBCloudAPI(profile='sample')
>>> ComplianceBenchmark.set_compliance_schedule(api, "RRULE:FREQ=DAILY;BYHOUR=17;BYMINUTE=30;BYSECOND=0", "UTC")
>>> schedule = ComplianceBenchmark.get_compliance_schedule(api)
>>> print(schedule)
{
 "scan_schedule": "FREQ=WEEKLY;BYDAY=TU;BYHOUR=11;BYMINUTE=30;BYSECOND=0",
 "scan_timezone": "UTC"
}

Reassess Compliance Benchmarks

By using the following the example, you can reasses a benchmark

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.workload import ComplianceBenchmark
>>> api = CBCloudAPI(profile='sample')
>>> benchmark = api.select(ComplianceBenchmark).first()
>>> # Execute for all devices matching benchmark
>>> benchmark.execute_action("REASSESS")
>>> # Execute for a specific set of devices
>>> benchmark.execute_action("REASSESS", [1, 2, 3])

Device Compliance Summary

By using the following the example, you can fetch the compliance percentage for each device assessed by the Compliance Benchmark

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.workload import ComplianceBenchmark
>>> api = CBCloudAPI(profile='sample')
>>> benchmark = api.select(ComplianceBenchmark).first()
>>> summaries = benchmark.get_device_compliances()
>>> print(summaries[0])
{
 "device_id": 39074613,
 "device_name": "Example\\Win2022",
 "os_version": "Windows Server 2022 x64",
 "compliance_percentage": 93,
 "last_assess_time": "2024-04-16T00:00:00.014765Z",
 "excluded_on": None,
 "excluded_by": None,
 "reason": None,
 "deployment_type": "WORKLOAD"
}

Developing New Credential Providers

The credentials management framework for the CBC SDK is designed to allow different handlers to be implemented, which
may supply credentials to the CBCloudAPI in ways not implemented by existing credential handlers.

Writing the Credential Provider

Find all classes required to implement a new credential provider in the cbc_sdk.credentials package. See below for
descriptions of the classes. It is recommended, but not required, that your new credential provider inherit from the
CredentialProvider abstract class, and that you implement the methods from that abstract class as detailed.

The arguments to the standard __init__() method are not defined by the interface specification; those may be used
to initialize your credential provider in any desired fashion.

Using the Credential Provider

Create an instance of your credential provider object and pass it as the keyword parameter
credential_provider when creating your CBCloudAPI object.

Example:

>>> provider = MyCredentialProvider()
>>> cbc_api = CBCloudAPI(credential_provider=provider, profile='default')

Your credential provider’s get_credentials() method will be called, passing in any profile specified in the
profile keyword parameter used when creating CBCloudAPI.

Credential Provider Reference

These are the classes from the cbc_sdk.credentials package that are used in making a credential provider.

CredentialValue class

This class is of an enumerated type, and represents the various credential items loaded by the credential provider
and fed to the rest of the SDK code. The possible values are:

	URL - The URL used to access the Carbon Black Cloud. This value must be specified.

	TOKEN - The access token to be used to authenticate to the server. It is the same structure as the
X-Auth-Token: defined for direct API access in the developer documentation [https://developer.carbonblack.com/reference/carbon-black-cloud/authentication/#creating-an-api-key]. This value must be specified.

	ORG_KEY - The organization key specifying which organization to work with. This value must be specified.

	SSL_VERIFY - A Boolean value indicating whether or not to validate the SSL connection.
The default is True.

	SSL_VERIFY_HOSTNAME - A Boolean value indicating whether or not to verify the host name of the
server being connected to. The default is True.

	SSL_CERT_FILE - The name of an optional certificate file used to validate the certificates of the SSL connection.
If not specified, the standard system certificate verification will be used.

	SSL_FORCE_TLS_1_2 - A Boolean value. If this is True, the connection will be forced to use TLS 1.2
rather than any later version. The default is False.

	PROXY - If specified, this is the name of a proxy host to be used in making the connection.

	IGNORE_SYSTEM_PROXY - A Boolean value. If this is True, any system proxy settings will be ignored
in making the connection to the server. The default is False.

	INTEGRATION - The name of the integration to use these credentials. The string may optionally end with a slash
character, followed by the integration’s version number. Passed as part of the User-Agent: HTTP header on all
requests made by the SDK.

Values of this type have one method:

requires_boolean_value

def requires_boolean_value(self):

Returns whether or not this particular credential item takes a Boolean value.

Returns: True if the credential item takes a Boolean value, False if the credential item takes a
string value.

Credentials class

The class that holds credentials retrieved from the credential provider, and is used by the rest of the SDK. It is
effectively immutable after creation.

__init__

def __init__(self, values=None):

Initializes a new Credentials object.

Parameters:

	values (type dict): A dictionary containing the values to initialize the Credentials object with. The
keys of this dictionary may be either CredentialValue objects or their lowercase string equivalents, e.g.
CredentialValue.URL or "url". The values in the dict are strings for those credential items with string
values. For credential items with Boolean values, the values may be either bool values, numeric values (with 0
being treated as False and non-zero values treated as True), or string values. In the case of string values,
the value must be “0”, “false”, “off”, or “no” to be treated as a False falue, or “1”, “true”, “on”, or
“yes” to be treated as a True value (all values case-insensitive). If an unrecognized string is used for a
Boolean value, CredentialError will be raised. Unrecognized keys in the dict are ignored. Any missing items will
be replaced by the default for that item.

Raises:

	CredentialError - If there is an error parsing a Boolean value string.

get_value

def get_value(self, key):

Retrieves a specific credential value from this object.

Parameters:

	key (type CredentialValue): Indicates which item to retrieve.

Returns: The value of that credential item (str or bool type).

__getattr__

def __getattr__(self, name):

Retrieves a specific credential value from this object. This is a bit of “syntactic sugar” allowing other code to
access credential values, for instance, as cred_object.url instead of
cred_object.get_value(CredentialValue.URL).

Parameters:

	name (type str): Indicates which item to retrieve.

Returns: The value of that credential item (str or bool type).

Raises:

	AttributeError - If the credential item name was unrecognized.

CredentialProvider class

All credential providers should extend this abstract class, but, in any event, must implement the protocol it
defines.

get_credentials

def get_credentials(self, section=None):

Return a Credentials object containing the configured credentials.

Parameters:

	section (type str): Indicates the credential section to retrieve. May be interpreted by the credential
provider in amy manner it likes; may also be ignored.

Returns: A Credentials object containing the retrieved credentials.

Raises:

	CredentialError - If there is an error retrieving the credentials.

Devices

Devices, also known as endpoints, are at the heart of Carbon Black Cloud’s functionality. Each device has a
Carbon Black Cloud sensor installed on it, which communicates with Carbon Black analytics and the Carbon Black Cloud
back end.

Using the Carbon Black Cloud SDK, you can search for devices with a wide range of criteria, filtering on many different
fields. You can also perform actions on individual devices, such as setting quarantine status, setting bypass status,
or upgrading to a new sensor version.

Searching for Devices

Using a query of the Device object, you can list the devices configured for your organization:

>>> from cbc_sdk import CBCloudAPI
>>> api = CBCloudAPI(profile='sample')
>>> from cbc_sdk.platform import Device
>>> query = api.select(Device).where("os:WINDOWS")
>>> query.add_criteria('target_priority', ['LOW']).add_criteria('virtualization_provider', ['VirtualBox'])
>>> for d in query:
... print(f"{d.name} - {d.last_internal_ip_address}")
DESKTOP-A19 - 10.0.2.44
DESKTOP-Q210 - 10.10.25.169
DESKTOP-Q211 - 10.10.25.170
DESKTOP-Q211B - 10.10.25.180
EVALUATION-1 - 10.0.2.51
EVALUATION-2 - 10.0.2.52
STAGING-1A - 192.168.1.99
ZZIGNORE-1 - 10.0.3.74

The criteria supported in the where() and add_criteria() query methods are too numerous to enumerate here;
please see
the Developer Network documentation [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/devices-api/#search-devices]
for more details.

The results of a search query can also be exported:

>>> from cbc_sdk import CBCloudAPI
>>> api = CBCloudAPI(profile='sample')
>>> from cbc_sdk.platform import Device
>>> query = api.select(Device).where("os:WINDOWS")
>>> query.add_criteria('target_priority', ['LOW']).add_criteria('virtualization_provider', ['VirtualBox'])
>>> job = query.export()
>>> csv_report = job.get_output_as_string()
>>> # can also get the output as a file or as enumerated lines of text

Faceting

Facet search queries return statistical information indicating the relative weighting of the requested values as per
the specified criteria. Device queries support faceting:

>>> from cbc_sdk import CBCloudAPI
>>> api = CBCloudAPI(profile='sample')
>>> from cbc_sdk.platform import Device
>>> query = api.select(Device).where("os:WINDOWS")
>>> query.add_criteria('target_priority', ['LOW']).add_criteria('virtualization_provider', ['VirtualBox'])
>>> facets = query.facets(['policy_id'])
>>> for value in facets[0].values_:
... print(f"Policy ID {value.id}: {value.total} device(s)")
Policy ID 8801: 4 device(s)
Policy ID 81664: 3 device(s)
Policy ID 82804: 1 device(s)

Note that you can facet on multiple fields by passing more than one field name to the facets() call. It returns
one DeviceFacet object per field name, each of which may contain multiple DeviceFacetValue objects.

Search Scrolling

A Device Search request can return no more than 10,000 items at a time. Some customers may have more endpoints than
that; to return all devices, you can use the scroll() method on the query to continue searching after all devices
that have been previously returned. This snippet illustrates the technique:

assume "api" is your CBCloudAPI reference
query = api.select(Device)
add search terms and/or criteria to the query (not shown here)
while query.num_remaining is None or query.num_remaining > 0:
 devicelist = query.scroll() # fetch the batch - 10,000 is default
 for d in devicelist:
 do_something_with_device(d) # whatever you need for each device

Device Actions

Most device actions in the Carbon Black Cloud can be performed on a single device through the Device object,
on multiple devices specified by ID, or on the results of a device query.

Bypass Enable/Disable

Setting a device to bypass disables all enforcement on the device; its sensor stops sending data to the Carbon Black
Cloud.

Setting bypass on a single device:

>>> # assume "api" is your CBCloudAPI reference
>>> d = api.select(Device, 12345)
>>> d.bypass(True)

Setting bypass on multiple devices:

>>> # assume "api" is your CBCloudAPI reference
api.device_bypass([1001, 1002, 1003], True)

Setting bypass on the results of a device search:

>>> # assume "api" is your CBCloudAPI reference
query = api.select(Device)
add search terms and/or criteria to the query (not shown here)
query.bypass(True)

Quarantine

A device that has been quarantined has its outbound traffic limited, and all inbound traffic to it stopped, except
for communication with the Carbon Black Cloud back end. This would be used on any device determined to be interacting
maliciously.

Setting quarantine on a single device:

>>> # assume "api" is your CBCloudAPI reference
>>> d = api.select(Device, 12345)
>>> d.quarantine(True)

Setting quarantine on multiple devices:

>>> # assume "api" is your CBCloudAPI reference
api.device_quarantine([1001, 1002, 1003], True)

Setting quarantine on the results of a device search:

>>> # assume "api" is your CBCloudAPI reference
query = api.select(Device)
add search terms and/or criteria to the query (not shown here)
query.quarantine(True)

Background Scan

Enabling background scan causes a one-time inventory scan on the device to identify any malware files already present
there. Disabling background scan causes any background scan currently running on the device to be temporarily
suspended; it will restart when background scan is enabled again, or when the endpoint restarts.

Enabling background scan on a single device:

>>> # assume "api" is your CBCloudAPI reference
>>> d = api.select(Device, 12345)
>>> d.background_scan(True)

Enabling background scan on multiple devices:

>>> # assume "api" is your CBCloudAPI reference
api.device_background_scan([1001, 1002, 1003], True)

Enabling background scan on the results of a device search:

>>> # assume "api" is your CBCloudAPI reference
query = api.select(Device)
add search terms and/or criteria to the query (not shown here)
query.background_scan(True)

Device Control

Using the Carbon Black Cloud SDK, you can retrieve information about USB devices used in your organization, and manage
the blocking of such devices from access by your endpoints.

Note

USBDevice is distinct from either the Platform API Device or the Endpoint Standard Device. Access
to USB devices is through the Endpoint Standard package from cbc_sdk.endpoint_standard import USBDevice.

Retrieving the List of Known USB Devices

Using a query of the USBDevice object, you can see which USB devices have been used on any endpoint in your
organization:

>>> from cbc_sdk import CBCloudAPI
>>> api = CBCloudAPI(profile='sample')
>>> from cbc_sdk.endpoint_standard import USBDevice
>>> query = api.select(USBDevice).where('1')
>>> for usb in query:
... print(f"{usb.vendor_name} {usb.product_name} {usb.serial_number} {usb.status}")
...
SanDisk Ultra 4C531001331122115172 UNAPPROVED
SanDisk Cruzer Dial 4C530000110722114075 UNAPPROVED
PNY USB 2.0 FD 07189613DD84E242 UNAPPROVED
USB Flash Disk FBI1305031200020 APPROVED

Note that individual USB devices may be APPROVED or UNAPPROVED. USB devices which are UNAPPROVED cannot
be read on any endpoint with a policy that blocks unknown USB devices.

A USB device query can also be exported to either CSV or JSON format, for use by other software systems:

>>> from cbc_sdk import CBCloudAPI
>>> api = CBCloudAPI(profile='sample')
>>> from cbc_sdk.endpoint_standard import USBDevice
>>> query = api.select(USBDevice).where('1')
>>> job = query.export('CSV')
>>> csv_report = job.get_output_as_string()
>>> # can also get the output as a file or as enumerated lines of text

Approving A Specific Device

We can create an approval for a USB device by using the device’s approve() method. First, we’ll get a list of all
unapproved USB devices:

>>> from cbc_sdk import CBCloudAPI
>>> api = CBCloudAPI(profile='sample')
>>> from cbc_sdk.endpoint_standard import USBDevice
>>> query = api.select(USBDevice).where('1').set_statuses(['UNAPPROVED'])
>>> usb_list = list(query)
>>> for usb in usb_list:
... print(f"{usb.vendor_name} {usb.product_name} {usb.serial_number}")
...
SanDisk Ultra 4C531001331122115172
SanDisk Cruzer Dial 4C530000110722114075
PNY USB 2.0 FD 07189613DD84E242

Now we’ll select one of these devices and approve it:

>>> usb = usb_list[1]
>>> print(usb.status)
UNAPPROVED
>>> approval = usb.approve('Test1', 'API Testing')
>>> print(approval.approval_name)
Test1
>>> print(approval.notes)
API Testing
>>> print(approval.serial_number)
4C530000110722114075
>>> print(approval.id)
1ffd0a16-28ad-3fba-981d-d1c29c2903da
>>> print(usb.status)
APPROVED

The approve() method creates a USBDeviceApproval representing that particular device’s approval, and
also reloads the USBDevice so its status reflects the fact that it’s been approved.

Removing A Device’s Approval

Device approvals may be removed via the API as well. Starting from the end of the previous example:

>>> approval.delete()
>>> usb.refresh()
True
>>> print(usb.status)
UNAPPROVED

The delete() method is what causes the approval to be removed. We then use refresh() on the actual
USBDevice object to allow its status to be updated.

Retrieving the List of Approvals

USB device approvals can also be enumerated directly:

>>> from cbc_sdk import CBCloudAPI
>>> api = CBCloudAPI(profile='sample')
>>> from cbc_sdk.endpoint_standard import USBDeviceApproval
>>> query = api.select(USBDeviceApproval)
>>> for approval in query:
... print(f"{approval.id} {approval.approval_name} {approval.serial_number}")
...

They can also be exported in a similar manner to USB devices:

>>> from cbc_sdk import CBCloudAPI
>>> api = CBCloudAPI(profile='sample')
>>> from cbc_sdk.endpoint_standard import USBDeviceApproval
>>> query = api.select(USBDeviceApproval)
>>> job = query.export('CSV')
>>> csv_report = job.get_output_as_string()
>>> # can also get the output as a file or as enumerated lines of text

Device Control Alerts

When an endpoint attempts to access a blocked USB device (the endpoint has USB device blocking configured and the USB
device is not approved), a DeviceControlAlert is generated. These alerts may be queried using the standard
Platform API components.

>>> from cbc_sdk import CBCloudAPI
>>> api = CBCloudAPI(profile='sample')
>>> from cbc_sdk.platform import DeviceControlAlert
>>> query = api.select(DeviceControlAlert).where('1')
>>> alerts_list = list(query)
>>> for alert in alerts_list:
... print(f"{alert.vendor_name} {alert.product_name} {alert.serial_number}")
...
USB Flash Disk FBI1305031200020
USB Flash Disk FBI1305031200020
USB Flash Disk FBI1305031200020
USB Flash Disk FBI1305031200020
PNY USB 2.0 FD 07189613DD84E242
PNY USB 2.0 FD 07189613DD84E242
PNY USB 2.0 FD 07189613DD84E242

There are a number of fields supported by DeviceControlAlert over and above the standard alert fields; see
the developer documentation [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alerts-api/#device-control-alert]
for details.

Differential Analysis

Differential Analysis provides the ability to compare and understand the changes between two
Live Query [https://carbon-black-cloud-python-sdk.readthedocs.io/en/latest/cbc_sdk.audit_remediation/#cbc_sdk.audit_remediation.base.Run] runs.
The differential is calculated based on point-in-time snapshots. These features answer the question, “What changed on endpoints, and when?”.

Overview

This guide follows the steps for comparing two “point-in-time snapshots” of endpoints using a few different options and downloading the results using the Differential object.
This example aims to understand what Firefox add-ons were added or removed between the two Live Query snapshot intervals.

1. Prerequisites

To perform a Differential Analysis, create the “point-in-time” snapshots of your endpoints with Live Query or use existing ones.
You can find a step-by-step Live Query API guide here [https://developer.carbonblack.com/reference/carbon-black-cloud/cb-liveops/latest/livequery-api/#quick-start] and
a version for the CBC Python SDK here [https://carbon-black-cloud-python-sdk.readthedocs.io/en/latest/live-query/].
The example Live Query runs look for added or removed Firefox add-ons.

2. Query Comparison

Start a Query Comparison with the ID’s you received from step 1. If the supplied newer_run_id is from a recurring Live Query run,
the older_run_id is not required - the backend will automatically compare it to previous to the supplied one.
The backend will throw a specific error if you provide a query id from a single Live Query run.
You can read more about it here [https://developer.carbonblack.com/reference/carbon-black-cloud/cb-liveops/latest/differential-analysis-api/#query-comparison].

Query Comparison

Basic Query

This example shows the basic result of the Differential object. The .newer_run_id() method is required - it accepts the
run id that you want to mark as the starting point-in-time snapshot. By default, only the number of changes between the two runs are returned.
To receive the actual differential data, use the .count_only() method, as featured in the Actual Changes example.

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.audit_remediation import Differential
>>>
>>> cb = CBCloudAPI(profile='sample')
>>>
>>> query = cb.select(Differential).newer_run_id('jcdqsju4utpaayj5dh5r2llzffeolg0u').older_run_id('yhbg3wcea9y1l4asiltky5tupkgauzas')
>>> run = query.submit()
>>> print(run)
Differential object, bound to https://defense-dev01.cbdtest.io.

 diff_processed_time: 0.037
 diff_results: [list:1 item]:
 [0]: {'device_id': 11412673, 'change_count': 19, 'ad...
 newer_run_create_time: 2022-10-19T13:29:34.429Z
 newer_run_id: n6cv24lh3pnh4zbciotahl82tm4tsuo7
 newer_run_not_responded_devices: [list:1 item]:
 [0]: 17331059
 older_run_create_time: 2022-10-19T13:19:49.812Z
 older_run_id: olquodvqz8kekxug2o2jsxcdnltak9hu
 older_run_not_responded_devices: [list:1 item]:
 [0]: 17331059

You can also access a dictionary representation of the response with the .to_json() method.

>>> print(run.to_json())
{'diff_processed_time': 0.037,
 'diff_results': [{'added_count': 1,
 'change_count': 1,
 'changes': None,
 'device_id': 12345,
 'newer_run_row_count': 21,
 'older_run_row_count': 20,
 'removed_count': 0}],
 'newer_run_create_time': '2022-08-10T13:07:44.194Z',
 'newer_run_id': 'jcdqsju4utpaayj5dh5r2llzffeolg0u',
 'newer_run_not_responded_devices': [],
 'older_run_create_time': '2022-08-10T12:57:03.872Z',
 'older_run_id': 'yhbg3wcea9y1l4asiltky5tupkgauzas',
 'older_run_not_responded_devices': []}

Actual Changes

Using the .count_only() method with a value of False will allow you to see the actual changes between the two snapshots.
To use this method, append it to the rest of the Differential object query. The actual changes will be in the changes property, under diff_results.

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.audit_remediation import Differential
>>>
>>> cb = CBCloudAPI(profile='sample')
>>>
>>> query = cb.select(Differential).newer_run_id('jcdqsju4utpaayj5dh5r2llzffeolg0u').older_run_id('yhbg3wcea9y1l4asiltky5tupkgauzas').count_only(False)
>>> actual_changes = query.submit()
>>> print(actual_changes.diff_results)
[{'device_id': 11412673, 'change_count': 19, 'added_count': 19, 'removed_count': 0, 'changes': [{'action': 'ADDED', 'fields': [{'key': 'name', 'value': 'Visionary – Soft'}]}, {'action': 'ADDED', 'fields': [{'key': 'name', 'value': 'Activist – Balanced'}]}, {'action': 'ADDED', 'fields': [{'key': 'name', 'value': 'Visionary – Balanced'}]}, {'action': 'ADDED', 'fields': [{'key': 'name', 'value': 'Innovator – Soft'}]}, {'action': 'ADDED', 'fields': [{'key': 'name', 'value': 'Activist – Bold'}]}, {'action': 'ADDED', 'fields': [{'key': 'name', 'value': 'Dreamer – Soft'}]}, {'action': 'ADDED', 'fields': [{'key': 'name', 'value': 'Dreamer – Balanced'}]}, {'action': 'ADDED', 'fields': [{'key': 'name', 'value': 'Expressionist – Bold'}]}, {'action': 'ADDED', 'fields': [{'key': 'name', 'value': 'Innovator – Bold'}]}, {'action': 'ADDED', 'fields': [{'key': 'name', 'value': 'AdGuard AdBlocker'}]}, {'action': 'ADDED', 'fields': [{'key': 'name', 'value': 'Expressionist – Balanced'}]}, {'action': 'ADDED', 'fields': [{'key': 'name', 'value': 'Visionary – Bold'}]}, {'action': 'ADDED', 'fields': [{'key': 'name', 'value': 'Playmaker – Soft'}]}, {'action': 'ADDED', 'fields': [{'key': 'name', 'value': 'Innovator – Balanced'}]}, {'action': 'ADDED', 'fields': [{'key': 'name', 'value': 'Expressionist – Soft'}]}, {'action': 'ADDED', 'fields': [{'key': 'name', 'value': 'Playmaker – Balanced'}]}, {'action': 'ADDED', 'fields': [{'key': 'name', 'value': 'Playmaker – Bold'}]}, {'action': 'ADDED', 'fields': [{'key': 'name', 'value': 'Activist – Soft'}]}, {'action': 'ADDED', 'fields': [{'key': 'name', 'value': 'Dreamer – Bold'}]}], 'older_run_row_count': 26, 'newer_run_row_count': 45}]

In the example response you can see that 19 items were added between the two snapshot intervals.

Filter Devices

Using the .set_device_ids() you can narrow down the query to a specific devices only. The method accepts an array of integers.
To use this method, append it to the rest of the Differential object query or combine it with any of the other methods.

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.audit_remediation import Differential
>>>
>>> cb = CBCloudAPI(profile='sample')
>>>
>>> query = cb.select(Differential).newer_run_id('jcdqsju4utpaayj5dh5r2llzffeolg0u').older_run_id('yhbg3wcea9y1l4asiltky5tupkgauzas')
>>> actual_changes = query.count_only(False).set_device_ids([12345])
>>> run = actual_changes.submit()
>>> print(run.to_json())
 {'diff_processed_time': 0.039,
 'diff_results': [{'added_count': 1,
 'change_count': 1,
 'changes': [{'action': 'ADDED',
 'fields': [{'key': 'name',
 'value': 'AdBlocker Ultimate'}]}],
 'device_id': 12345,
 'newer_run_row_count': 21,
 'older_run_row_count': 20,
 'removed_count': 0}],
 'newer_run_create_time': '2022-08-10T13:07:44.194Z',
 'newer_run_id': 'jcdqsju4utpaayj5dh5r2llzffeolg0u',
 'newer_run_not_responded_devices': [],
 'older_run_create_time': '2022-08-10T12:57:03.872Z',
 'older_run_id': 'yhbg3wcea9y1l4asiltky5tupkgauzas',
 'older_run_not_responded_devices': []}

Export Results

Using the .async_export() you can create an asynchronous job that exports the results from the run.
To use this method, append it to the rest of the Differential object query or combine it with any of the other methods.

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.audit_remediation import Differential
>>>
>>> cb = CBCloudAPI(profile='sample')
>>>
>>> query = cb.select(Differential).newer_run_id('jcdqsju4utpaayj5dh5r2llzffeolg0u').older_run_id('yhbg3wcea9y1l4asiltky5tupkgauzas')
>>> export = query.count_only(False).set_device_ids([12345]).async_export()
>>> export.await_completion()
>>> # write the results to a file
>>> export.get_output_as_file("example_data.json")

Live Query

With Live Query, you can ask questions of endpoints and quickly identify areas for improving security and IT hygiene.

You can use recommended queries created by Carbon Black security experts or craft your own SQL queries. Live Query is
powered by https://osquery.io, an open source project that uses an SQLite interface. This guide will get you started
using Live Query via the Python SDK.

More information about the Audit and Remediation product which uses Live Query is available in the
Carbon Black Cloud user guide [https://docs.vmware.com/en/VMware-Carbon-Black-Cloud/services/carbon-black-cloud-user-guide/GUID-129D4F84-1BF0-49F3-BF95-83002FD63217.html/]

More information about Live Query APIs is available on the Developer Network [https://developer.carbonblack.com/reference/carbon-black-cloud/cb-liveops/].

Overview

This guide shows how to find specific files on a system. This is the same scenario as the Quick Start Guide for the
APIs on the Developer Network [https://developer.carbonblack.com/reference/carbon-black-cloud/cb-liveops/latest/livequery-api/#quick-start]

The steps we’ll go through are:

	Set up the python imports and Carbon Black Cloud credentials

	Start the Query Run

	Look at the results

	Write the results to a file

	Clean up since this is a tutorial

	Get the run information for scheduled queries (templates)

Setting up

The code snippets assume that the python environment has been set up with the necessary imports and credentials.

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk import audit_remediation
>>> from cbc_sdk.audit_remediation import Run, RunHistory, Result, ResultQuery
>>> api = CBCloudAPI(profile='sample')

For more information on credential handling in the SDK, see Authentication

Start a Query Run

Set up the query for the file you are looking for. Then create a query object, execute it, and get the id of the run.

>>> query_string = "SELECT filename, path FROM file WHERE path = 'C:\\Windows\\Temp\\dbutil_2_3.sys\\' OR path LIKE 'C:\\Users\\%\\AppData\\Local\\Temp\\dbutil_2_3.sys';"
>>> query_object = api.select(Run).where(sql=query_string)
>>> run = query_object.submit()
>>> print(f'Run id: {run.id} has {run.active_org_devices} active devices in the org of which {run.in_progress_count} are in progress and {run.not_started_count} have not started')
Run id: vsc2be500dcuhc1q5bhvq7kdwoqh367i has 97 active devices in the org of which 0 are in progress and 97 have not started

Check status

Give the run a few seconds to initialise, then refresh the information and print some statistics.

>>> run.refresh()
True
>>> print(f'Run id: {run.id} has {run.active_org_devices} active devices in the org of which {run.in_progress_count} are in progress and {run.not_started_count} have not started')
Run id: vsc2be500dcuhc1q5bhvq7kdwoqh367i has 97 active devices in the org of which 45 are in progress and 33 have not started

The run status returns all the information about the progress of query execution. These are some of the interesting
fields that show the number of devices available to be queried and progress.

	active_org_devices: 97

	error_count: 3

	in_progress_count: 45

	last_result_time: 2021-12-23T21:21:26.437Z

	match_count: 0

	no_match_count: 45

	not_started_count: 40

	status: ACTIVE

	total_results: 0

	All details of the run can be pretty printed with
	>>> print(run)

Get the results

Partial results can be reviewed while the query is running. This snippet gets the results and prints the device
information for each.

>>> result_query = api.select(Result).run_id(run.id)
>>> list_result = list(result_query)
>>> for result in list_result:
>>> print(f'Device: {result.device_.id} has status {result.status}. Device message: {result.device_message}')
Device: 1234578 has status matched. Device message:
Device: 3456789 has status error. Device message: Error: database or disk is full
Device: 8765432 has status matched. Device message:

	There is also a helper option to get the results:
	>>> results_by_helper = run.query_results()

Export results

It is possible to export the results in several formats including csv, zipped csv and streaming
lines. These options are documented in cbc_sdk.audit_remediation.base.ResultQuery()

This snippet shows writing the results to a zipped csv file.

>>> result_query.export_zipped_csv("/Users/myname/mydir/livequeryresults.zip")

For very large result sets there is an asynchronous API call. The SDK makes use of Python Futures to wait for the
underlying call to complete.

For this call, in addition to live query permissions the API Key will require jobs.status(READ).

The sequence of calls are:

>>> # first an extra import
>>> from cbc_sdk.platform import Job
>>> # then start the job
>>> job = result_query.async_export()
>>> # show the status in progress
>>> print(job.status)
IN_PROGRESS
>>> # wait for it to finish and refresh the information in the SDK
>>> job_future = job.await_completion()
>>> finished_job = job_future.result()
>>> finished_job.refresh()
>>> # show the job has completed
>>> print(finished_job.status)
COMPLETED
>>> # write the results to a csv file
>>> finished_job.get_output_as_file("/Users/myname/mydir/livequeryresults_async.csv")

Scroll results

If you would like to ingest all the Live Query results whether that be from one Run or multiple Runs consider using the scroll option
to fetch the latest results. The scroll option is limited to the last 24 hours for results across all Runs. You either need to specify
a time_received or a list of one or more Run ids

>>> result_query = api.select(Result).set_time_received(range="-3h")
>>> list_results = result_query.scroll(10)
>>> print(f"num_remaining: {result_query.num_remaining}")
num_remaining: 35
>>> while result_query.num_remaining > 0:
>>> list_results.extend(result_query.scroll(10))
>>> print(f"total results: {len(list_results)}")
total_results: 45

Alternatively if you wanted to get all the results over multiple days for a single Run then use the Run’s id

>>> result_query = api.select(Result).set_run_ids([run.id])
>>> list_results = result_query.scroll(10)
>>> print(f"num_remaining: {result_query.num_remaining}")
num_remaining: 62
>>> while result_query.num_remaining > 0:
>>> list_results.extend(result_query.scroll(10))
>>> print(f"total results: {len(list_results)}")
total_results: 72

Clean up

Since this is a tutorial we’ll clean up when we’re done by first stopping the run and then deleting it.

Stopping the run will prevent the request going to any devices that have not yet checked in but will not stop the
query running on any that are in progress. Checking in the console, the run and results will be visible with a
status of Stopped.

>>> run.stop()
True
>>> print(run.status)
CANCELLED

Since this is a tutorial, we can fully clean up. This deletes the results so is probably not what you usually want.
It will not be visible in the console and attempting to refresh the object will return the error “cannot refresh a deleted query”.

>>> run.delete()
True

Scheduled runs (templates)

A template is a query that is scheduled to run periodically. It is likely easier to configured these using the Carbon Black
Cloud console, but retrieving the result for import to another system may be useful.

An additional import:

>>> from cbc_sdk.audit_remediation import Template, TemplateHistory

List all the templates (scheduled queries):

>>> all_templates = api.select(TemplateHistory)
>>> for t in list(all_templates):
>>> print(f'Name = {t.name}, id = {t.id}, next run time = {t.next_run_time}')

A where clause can be added to limit the templates returned. Each time the scheduled query has executed is a run.

>>> templates = list(api.select(TemplateHistory).where("CBC SDK Demo Template"))
>>> for template in templates:
>>> print(f'template name = {template.name}, id = {template.id}, next run time = {t.next_run_time}')
>>> # and then get all the runs for each template
>>> runs = list(api.select(Template, template.id).query_runs())
>>> for run in runs:
>>> print(f'Run id = {run.id}, Run Status = {run.status}, Run create time = {run.create_time}, Results Returned = {run.total_results}, Template Id = {run.template_id}')
name = CBC SDK Demo Template id = p7qtvxms0oaju46whcrfmyppa9fiqpn9
Run id = huoobhistdtxxpzhmg52yns7wmsuvjyx, Run Status = ACTIVE, Run create time = 2022-01-19T21:00:00.000Z, Results Returned = 2333, Template Id = p7qtvxms0oaju46whcrfmyppa9fiqpn9
Run id = bdygnd8jvpjdqjmatdsuqzopaxebquqb, Run Status = TIMED_OUT, Run create time = 2022-01-18T21:00:00.000Z, Results Returned = 2988, Template Id = p7qtvxms0oaju46whcrfmyppa9fiqpn9

Live Response

You can use Live Response with the Carbon Black Cloud Python SDK to:

	Upload, download, or remove files

	Create, retrieve and remove registry entries

	Dump contents of physical memory

	Execute, terminate and list processes

Before any commands are sent to the live response session, the proper permissions need to be configured for the Custom Key that is used.
The below table explains what permissions are needed for each of the SDK commands.

	Command

	Required Permissions

	Explanation

	
Create LR session for device

device.lr_session()

	CREATE, READ org.liveresponse.session

	CREATE is needed to start the LR session and
READ is needed to check the status of the command

	
Close session

lr_session.close()

	READ, DELETE org.liveresponse.session

	DELETE is needed to terminate the LR session and
READ is needed to check the status of the command

	
Get Raw File

lr_session.get_raw_file(…)

	READ org.liveresponse.file

	

	
Get File

lr_session.get_file(…)

	READ org.liveresponse.file

	

	
Upload File

lr_session.put_file(…)

	CREATE, READ org.liveresponse.file

	CREATE is needed to upload the file and READ is
needed to check the status of the command

	
Delete file

lr_session.delete_file(…)

	READ, DELETE org.liveresponse.file

	DELETE is needed to delete the file and READ is
needed to check the status of the command

	
List Directory

lr_session.list_directory(…)

	READ org.liveresponse.file

	

	
Create Directory

lr_session.create_directory(…)

	CREATE, READ org.liveresponse.file

	CREATE is needed to create the directory and
READ is needed to check the status of the command

	
Walk Directory

lr_session.walk(…)

	READ org.liveresponse.file

	

	
Kill Process

lr_session.kill_process(…)

	READ, DELETE org.liveresponse.process

	DELETE is needed to kill the process and READ is
needed to check the status of the command

	
Create Process

lr_session.create_process(…)

	
EXECUTE org.liveresponse.process

OR

EXECUTE org.liveresponse.process

READ, DELETE org.liveresponse.file

	If wait_for_completion = False, wait_for_output =
False only EXECUTE is needed.
Otherwise also file permissions are needed.

	
List Processes

lr_session.list_processes(…)

	READ org.liveresponse.process

	

	
List Registry Keys and Values

lr_session.list_registry_keys_and_values(…)

	READ org.liveresponse.registry

	

	
List Registry Values

lr_session.list_registry_values(…)

	READ org.liveresponse.registry

	

	
Get Registry Value

lr_session.get_registry_value(…)

	READ org.liveresponse.registry

	

	
Set Registry

lr_session.set_registry_value(…)

	READ, UPDATE org.liveresponse.registry

	UPDATE is needed to set/create the value for the
registry and READ to check the status of the command

	
Create Registry Key

lr_session.create_registry_key(…)

	CREATE, READ org.liveresponse.registry

	CREATE is needed to create the key and READ to
check the status of the command.

	
Delete Registry Key

lr_session.delete_registry_key(…)

	READ, DELETE org.liveresponse.registry

	DELETE is needed to delete the key and READ to
check the status of the command.

	
Delete Registry Value

lr_session.delete_registry_value(…)

	READ, DELETE org.liveresponse.registry

	DELETE is needed to delete the value and READ to
check the status of the command.

	
Memdump

lr_session.memdump(…)

	READ org.liveresponse.memdump
READ, DELETE org.liveresponse.file

	The command to dump the memory includes three
commands - dumping the memory in a file on the
remote machine, downloading the file on the local
machine and deleting the file.

To send commands to an endpoint, first establish a “session” with a device.

Note

As of version 1.3.0, Live Response has been changed to support CUSTOM type API Keys which enables the platform
Device model and Live Response session to be used with a single API key. Ensure your API key has the
Device READ permission along with the desired Live Response permissions.

Establish A Session With A Device

Connect to a device by querying the Device object.

>>> from cbc_sdk import CBCloudAPI
>>> api = CBCloudAPI(profile='sample')
>>> from cbc_sdk.platform import Device
>>> device = api.select(Device).first()
>>> lr_session = device.lr_session()

File Commands

Once a session is established, create a directory and upload a file to that directory.
The list directory command returns the content of the directory, including the uploaded file.

>>> lr_session.create_directory('C:\\\\demo\\\\')
>>> lr_session.put_file(open("demo.txt", "r"), 'C:\\\\demo\\\\demo.txt')
>>> directories = lr_session.list_directory('C:\\\\demo\\\\')
>>> for directory in directories:
... print(f"{directory['attributes'][0]} {directory['filename']}")
...
DIRECTORY .
DIRECTORY ..
ARCHIVE demo.txt

Note that the creation of the directory will fail if the directory already exists.

Next, get the contents of the file and then delete the file and the directory.

>>> contents = lr_session.get_file('C:\\\\demo\\\\demo.txt')
>>> lr_session.delete_file('C:\\\\demo\\\\demo.txt')
>>> lr_session.delete_file('C:\\\\demo\\\\')

Note: you can also delete a directory with the delete file command.

Process Commands

You can also execute commands to manage processes. Once you have established a session, you can check running processes.

>>> processes = lr_session.list_processes()
>>> for process in processes:
... print(f"{process['process_pid']} {process['process_path']}")
...
42 c:\windows\explorer.exe
43 c:\windows\system32\svchost.exe

You can also create or kill a process.

>>> lr_session.create_process(r'cmd.exe /c "ping.exe -t 127.0.0.1"',
 wait_for_completion=False, wait_for_output=False)
>>> processes = lr_session.list_processes()
>>> for process in processes:
... if 'ping.exe' in process['process_path']:
... lr_session.kill_process(process['process_pid'])

Note: you must pass the PID of the process to kill it.

Additional Resources

Find a full list of supported commands in the
Live Response API documentation [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/live-response-api/].

For tips on migrating from Live Response v3 to v6, check the migration guide.

Policy

A policy determines preventative behavior and establishes sensor settings. Each endpoint sensor or sensor group
is assigned a policy.

Policies are a collection of prevention rules and behavioral settings that define how your sensor interacts and
prevents or allows behavior on your endpoint. Within Policies, you can create custom blocking rules, allow
applications, and modify the way your sensor communicates with the Carbon Black Cloud.

Example scripts are available in the GitHub repository in examples/platform that demonstrate

	Basic Create, Read, Update, Delete and Export/Import operations for Prevention, Local Scan and Sensor rules

	policy_service_crud_operations.py

	Core Prevention policy rule operations

	policy_core_prevention.py

	Host-Based Firewall policy rule operations

	policy_host_based_firewall.py

	Data Collection policy rule operations

	Demonstrates how to enable and disable Auth Event collection.

	policy_data_collection.py

Recommendations

Recommendations offer a quick shortcut for helping tune your policy configurations in an environment, by providing
suggested reputation overrides which you may add to improve your policy. They can speed up the process of tuning your
policy to an environment, rather than having to manually investigate endpoint activity and reconfigure the policy in
response to those investigations.

The Carbon Black Cloud SDK for Python offers assistance for dealing with Recommendations.

Getting the List of Recommendations

By querying the Recommendation object, you can see which recommendations have already been generated for you by
the Carbon Black Cloud.

>>> from cbc_sdk import CBCloudAPI
>>> api = CBCloudAPI(profile='sample')
>>> from cbc_sdk.endpoint_standard import Recommendation
>>> query = api.select(Recommendation).set_statuses(['NEW', 'ACCEPTED', 'REJECTED']).sort_by('impact_score', 'DESC')
>>> recslist = list(query)
>>> for rec in recslist:
... print(rec)
...
Recommendation object, bound to https://example.org.

 impact: [RecommendationImpact object]:
 event_count: 2
 impact_score: 1.1710311
 impacted_devices: 44
 org_adoption: HIGH
 update_time: 2021-05-18T16:37:07.000Z

 new_rule: [RecommendationNewRule object]:
 filename: zoom.exe
 override_list: WHITE_LIST
 override_type: SHA256
 sha256_hash: 56f560d8254ebb453daeaf9abe5c3c6de2e18eafaa5a9e4...

 policy_id: 0
 recommendation_id: 5e6926d4-0c55-4757-a94d-e05883d5ee4c
 rule_type: reputation_override
 workflow: [RecommendationWorkflow object]:
 changed_by: estark@example.com
 comment: test_recommendation_review_dismissed
 create_time: 2021-05-18T16:37:07.000Z
 ref_id: 6d90188a0d4f11ecb02e15835b040340
 status: ACCEPTED
 update_time: 2021-09-04T07:12:13.000Z

Recommendation object, bound to https://example.org.

 impact: [RecommendationImpact object]:
 event_count: 9
 impact_score: 0.2678737
 impacted_devices: 5
 org_adoption: HIGH
 update_time: 2021-05-18T16:37:07.000Z

 new_rule: [RecommendationNewRule object]:
 filename: cxuiuexe.exe
 override_list: WHITE_LIST
 override_type: SHA256
 sha256_hash: 90b196987fe62657bfce2627ab0a08a7096737363e13806...

 policy_id: 0
 recommendation_id: 100503cd-1897-425f-93b5-1ccba320438d
 rule_type: reputation_override
 workflow: [RecommendationWorkflow object]:
 changed_by: jbaratheon@example.com
 comment:
 create_time: 2021-05-18T16:37:07.000Z
 status: NEW
 update_time: 2021-09-14T07:12:13.000Z

Recommendation object, bound to https://example.org.

 impact: [RecommendationImpact object]:
 event_count: 12
 impact_score: 0.11177378
 impacted_devices: 315
 org_adoption: MEDIUM
 update_time: 2021-05-18T16:37:07.000Z

 new_rule: [RecommendationNewRule object]:
 filename: mbcloudea.exe
 override_list: WHITE_LIST
 override_type: SHA256
 sha256_hash: 0a2190c4ccfde82ef950836d014f31b2b188423bb67b51a...

 policy_id: 0
 recommendation_id: 3f89a837-034c-4b81-9f4c-f673a36ccb5c
 rule_type: reputation_override
 workflow: [RecommendationWorkflow object]:
 changed_by: tlannister@example.com
 comment: test_recommendation_review_dismissed
 create_time: 2021-05-18T16:37:07.000Z
 ref_id: 16e842eb152b11eca8407fb13248831f
 status: ACCEPTED
 update_time: 2021-09-14T07:12:15.000Z

Recommendation object, bound to https://example.org.

 impact: [RecommendationImpact object]:
 event_count: 20
 impact_score: 0.05499694
 impacted_devices: 44
 org_adoption: MEDIUM
 update_time: 2021-05-18T16:37:07.000Z

 new_rule: [RecommendationNewRule object]:
 filename: svctcom.exe
 override_list: WHITE_LIST
 override_type: SHA256
 sha256_hash: d49a2beb44a603faf8aab2f5dfae3a292497c63f0b30d0e...

 policy_id: 0
 recommendation_id: 26ddb565-aff6-4b68-895c-fc286aa5f101
 rule_type: reputation_override
 workflow: [RecommendationWorkflow object]:
 changed_by: mtyrell@example.com
 comment: test_recommendation_review_dismissed
 create_time: 2021-05-18T16:37:07.000Z
 status: REJECTED
 update_time: 2021-09-11T07:12:14.000Z

N.B.: If you do not set status values on the recommendation query with set_statuses(), the search defaults to
looking for NEW recommendations only.

Recommendations Workflow

Individual recommendations in the NEW state may be accepted or rejected by calling their accept() or
reject() methods, respectively.

>>> from cbc_sdk import CBCloudAPI
>>> api = CBCloudAPI(profile='sample')
>>> from cbc_sdk.endpoint_standard import Recommendation
>>> query = api.select(Recommendation).set_statuses(['NEW'])
>>> recommendation = query[0]
>>> recommendation.accept('Comment for acceptance')
>>> print(recommendation.workflow_.status)
ACCEPTED
>>> recommendation = query[1]
>>> recommendation.reject('Comment for rejection')
>>> print(recommendation.workflow_.status)
REJECTED

Individual recommendations in the ACCEPTED or REJECTED states may be reverted to the NEW state by calling
their reset() method.

>>> from cbc_sdk import CBCloudAPI
>>> api = CBCloudAPI(profile='sample')
>>> from cbc_sdk.endpoint_standard import Recommendation
>>> query = api.select(Recommendation).set_statuses(['REJECTED'])
>>> recommendation = query.first()
>>> recommendation.reset()
>>> print(recommendation.workflow_.status)
NEW

Recommendations and Reputation Overrides

A recommendation in the ACCEPTED state will have a reputation override created for it. You can retrieve that
object with the reputation_override() method.

>>> from cbc_sdk import CBCloudAPI
>>> api = CBCloudAPI(profile='sample')
>>> from cbc_sdk.endpoint_standard import Recommendation
>>> query = api.select(Recommendation).set_statuses(['ACCEPTED'])
>>> reputation_override = query.first().reputation_override()
>>> print(reputation_override)
ReputationOverride object, bound to https://example.org.
 Last refreshed at Wed Oct 6 08:51:49 2021

 create_time: 2021-09-15T07:12:12.594Z
 created_by: estark@example.com
 description: test_recommendation_review
 filename: pangphip.exe
 id: 3fa9f84515f411ecb2525dd14785e643
 override_list: WHITE_LIST
 override_type: SHA256
 sha256_hash: 6a2cac7f36af5cebe0debbdb161d4f66b694b75192f1af4...
 source: RECOMMENDATION
 source_ref: 7b4e20d9-db28-408b-b7e9-af4008fa65cc

More information about reputation overrides may be found in Reputation Override.

Reputation Override

Using the Carbon Black Cloud SDK, you can manage your ReputationOverrides to create a
list of approved or banned applications using a SHA-256 hash, a certificate signer,
or a path to a known IT tool application

Creating a Reputation Override

Using the ReputationOverride model, you can create new overrides directly provided you
have the necessary required properties. For a SHA256 you need the hash and optionally the filename,
IT_TOOL needs a file path with or without wildcards and optionally an indicator for including the child processes,
CERT needs the signer of the application and optionally the certificate authority.
See the developer documentation [https://developer.carbonblack.com/reference/carbon-black-cloud/cb-defense/latest/reputation-override-api/#configure-reputation-override]
for more details.

>>> from cbc_sdk import CBCloudAPI
>>> cb = CBCloudAPI(profile='sample')
>>> from cbc_sdk.platform import ReputationOverride
>>> ReputationOverride.create(cb, {
... "description": "An override for a sha256 hash",
... "override_list": "BLACK_LIST",
... "override_type": "SHA256",
... "sha256_hash": "af62e6b3d475879c4234fe7bd8ba67ff6544ce6510131a069aaac75aa92aee7a",
... "filename": "foo.exe"
... })
<cbc_sdk.platform.reputation.ReputationOverride: id 83008db065a611eb9a953907c2e1ed66> @ https://defense.conferdeploy.net
>>> ReputationOverride.create(cb, {
... "description": "An override for an IT Tool",
... "override_list": "WHITE_LIST",
... "override_type": "IT_TOOL",
... "path": "C://tools//*.exe",
... "include_child_processes": True
... })
<cbc_sdk.platform.reputation.ReputationOverride: id 9e5c7a2f5ef140a989550c2351de1a32> @ https://defense.conferdeploy.net
>>> ReputationOverride.create(cb, {
... "description": "An override for a CERT",
... "override_list": "WHITE_LIST",
... "override_type": "CERT",
... "signed_by": "VMware Inc.",
... "certificate_authority": "VMware"
... })
<cbc_sdk.platform.reputation.ReputationOverride: id 1768b71d356744498eec5ecd6526ca10> @ https://defense.conferdeploy.net

If you have an EnrichedEvent or Process object then you can use either
ban_process_sha256 or approve_process_sha256 to add the applications sha256
hash to either the WHITE_LIST or BLACK_LIST.

>>> from cbc_sdk import CBCloudAPI
>>> cb = CBCloudAPI(profile='sample')
>>> from cbc_sdk.platform import Process
>>> proc = cb.select(Process, "ABCD1234-00348f83-0000015c-00000000-1d667eb58a2ec94")
>>> proc.approve_process_sha256("Example approved sha256 from Process")
<cbc_sdk.platform.reputation.ReputationOverride: id 829e252b65aa11ebb1c7a965f279498c> @ https://defense.conferdeploy.net

Retrieving existing Reputation Overrides

Using a query of the ReputationOverride object, you can see the reputation overrides that
have been created within your organization. If you want to filter the results try including
set_override_list or set_override_type in your query or include a more restrictive
where claus which can include wildcards such as *tools*.

>>> from cbc_sdk import CBCloudAPI
>>> cb = CBCloudAPI(profile='sample')
>>> from cbc_sdk.platform import ReputationOverride
>>> overrides = cb.select(ReputationOverride).where("1")
>>> for override in overrides:
... print(override)
...

 create_time: 2021-02-02T22:32:20.176Z
 created_by: ABCDE12345
 description: An override for an IT Tool
 id: 83008db065a611eb9a953907c2e1ed66
include_child_processes: True
 override_list: WHITE_LIST
 override_type: IT_TOOL
 path: C://tools//*.exe

If you already have an id for a ReputationOverride then you can make a query including
the id as seen below.

>>> override = cb.select(ReputationOverride, 83008db065a611eb9a953907c2e1ed66)
>>> print(override)

 create_time: 2021-02-02T22:32:20.176Z
 created_by: ABCDE12345
 description: An override for an IT Tool
 id: 83008db065a611eb9a953907c2e1ed66
include_child_processes: True
 override_list: WHITE_LIST
 override_type: IT_TOOL
 path: C://tools//*.exe

Deleting a Reputation Override

If you no longer need a ReputationOverride then you can delete the override using delete()
or bulk_delete([]) if you have a few that need deleted at once.

>>> from cbc_sdk import CBCloudAPI
>>> cb = CBCloudAPI(profile='sample')
>>> from cbc_sdk.platform import ReputationOverride
>>> override = cb.select(ReputationOverride, 83008db065a611eb9a953907c2e1ed66)
>>> override.delete()
>>> ReputationOverride.bulk_delete([
... "9e5c7a2f5ef140a989550c2351de1a32",
... "1768b71d356744498eec5ecd6526ca10"
...])

Unified Binary Store

The unified binary store (UBS) is a centralized service that is part of the Carbon Black Cloud. The UBS is responsible
for storing all binaries and corresponding metadata for those binaries. The UBS is a feature of Enterprise EDR.

Get Download URL

>>> from cbc_sdk import CBCloudAPI
>>> cb = CBCloudAPI(profile='sample')
>>> from cbc_sdk.enterprise_edr.ubs import Binary
>>> sha256_hash = '8005557c1614c1e2c89f7db3702199de2b1e4605718fa32ff6ffdb2b41ed3759'
>>> binary = Binary(cb, sha256_hash)
>>> download_url = binary.download_url()
>>> print(download_url)
...
https://cdc-file-storage-staging-us-east-1.s3.amazonaws.com/80/05/55/7c/16/14/c1/<...truncated...>

Note: The download link for the binary will be active for 1 hour (default expiration period).

Get Download URL Valid For Specific Period

We could set expiration period for the download link (in seconds).

>>> from cbc_sdk import CBCloudAPI
>>> cb = CBCloudAPI(profile='sample')
>>> from cbc_sdk.enterprise_edr.ubs import Binary
>>> sha256_hash = '8005557c1614c1e2c89f7db3702199de2b1e4605718fa32ff6ffdb2b41ed3759'
>>> binary = Binary(cb, sha256_hash)
>>> download_url = binary.download_url(expiration_seconds=30)
>>> print(download_url)
...
https://cdc-file-storage-staging-us-east-1.s3.amazonaws.com/80/05/55/7c/16/14/c1/<...truncated...>

Note: The download link for the binary will be active for 30 seconds.

Searching Binaries

Currently searching binaries is not possible, but we could use the following syntax to obtain a single binary.

>>> from cbc_sdk import CBCloudAPI
>>> cb = CBCloudAPI(profile='sample')
>>> from cbc_sdk.enterprise_edr.ubs import Binary
>>> sha256_hash = '8005557c1614c1e2c89f7db3702199de2b1e4605718fa32ff6ffdb2b41ed3759'
>>> binary = cb.select(Binary, sha256_hash)
>>> print(download_url)
...
https://cdc-file-storage-staging-us-east-1.s3.amazonaws.com/80/05/55/7c/16/14/c1/<...truncated...>

Note: If we try to use binary = cb.select(Binary) , it will fail with exception that the model is a non queryable model.

Find the full documentation at
Unified Binary Store [https://carbon-black-cloud-python-sdk.readthedocs.io/en/latest/cbc_sdk.enterprise_edr/#module-cbc_sdk.enterprise_edr.ubs].

Users and Grants

Using the Carbon Black Cloud SDK, you can work with the users in your organization, as well as their access grants
and profiles.

Audience for This Guide

This guide is geared towards SDK users seeking to automate specialized management tasks in the Carbon Black Cloud.
Typically, they will have administrative privilege.

Uniform Resource Names (URNs)

The various API functions that work with users and grants often make use of uniform resource names (URNs) that
uniquely represent various pieces of the Carbon Black Cloud environment. These pieces include:

	Organizations, represented as psc:org:ORGKEY, where ORGKEY is the organization’s alphanumeric key value.

	The special URN psc:org:ORKGEY:CHILDREN, where ORGKEY is the organization’s alphanumeric key value,
refers to all the child organizations of that organization, but not the organization itself.

	Users, represented as psc:user:ORGKEY:USERID, where ORGKEY is the organization’s alphanumeric key value
and USERID is the user’s numeric login ID.

	Access roles, represented as psc:role:OPT-ORGKEY:NAME, where OPT-ORGKEY is (optionally) the alphanumeric
key value of the organization containing that role, and NAME is the name of the role. A role that does not have
an OPT-ORGKEY is a default/global role created for all organizations.

Most of these are dealt with for you by the Carbon Black Cloud SDK.

Getting a List of Users

We can do a query on the User object to get a list of users within the organization we’re accessing.

>>> from cbc_sdk import CBCloudAPI
>>> api = CBCloudAPI(profile='sample')
>>> from cbc_sdk.platform import User
>>> query = api.select(User)
>>> user_list = list(query)
>>> for user in user_list:
... print(f"{user.first_name} {user.last_name} (#{user.login_id}) <{user.email}>")
...
Lysa Arryn (#2345670) <larryn@example.com>
Olenna Redwyne (#2345671) <oredwyne@example.com>
Arianne Martell (#2345672) <amartell@example.com>
Jorah Mormont (#2345673) <jmormont@example.com>

We can restrict the query by user IDs or E-mail addresses by using the user_ids([str]) or email_addresses([str])
methods on the query object returned by select() before enumerating its results.

Modifying a User

A User can be modified by changing one or more of its fields and then calling its save() method.

>>> from cbc_sdk import CBCloudAPI
>>> api = CBCloudAPI(profile='sample')
>>> from cbc_sdk.platform import User
>>> user = api.select(User, 2345672)
>>> print(user.phone)
800-555-0000
>>> user.phone = '888-555-9753'
>>> user.save()
<cbc_sdk.platform.users.User: id 2345672> @ https://defense.conferdeploy.net (*)
>>> print(user.phone)
888-555-9753

Note: A user’s role can only be modified by updating the user’s access grant, detailed below.

Creating a New User

Creating a user may be done with the help of a builder object, which is returned from the User.create()
function.

>>> from cbc_sdk import CBCloudAPI
>>> api = CBCloudAPI(profile='sample')
>>> from cbc_sdk.platform import User
>>> builder = User.create(api)
>>> builder.set_first_name('Samwell').set_last_name('Tarly')
<cbc_sdk.platform.users.User.UserBuilder object at 0x00000209B8123D00>
>>> builder.set_email('starly@example.com').set_phone('800-555-8008')
<cbc_sdk.platform.users.User.UserBuilder object at 0x00000209B8123D00>
>>> builder.set_role('psc:role::BETA_SYSTEM_ADMIN')
<cbc_sdk.platform.users.User.UserBuilder object at 0x00000209B8123D00>
>>> builder.build()

Alternately, you may construct a template object (a Python dict) that contains the user’s information and
create the user directly.

>>> from cbc_sdk import CBCloudAPI
>>> api = CBCloudAPI(profile='sample')
>>> from cbc_sdk.platform import User
>>> user_template = {'first_name': 'Selyse', 'last_name': 'Florent', 'email': 'sflorent@example.com',
... 'phone': '877-555-9099', 'role_urn': 'psc:role::BETA_SYSTEM_ADMIN'}
>>> User.create(api, user_template)

Note: A user that has just been created will not be visible in either the UI or in a User query as detailed
above, until the user activates their account through the invitation E-mail message and sets a password.

User Access Grants

Every user object has an access grant object associated with it, defining the access roles they are permitted to use.
You can use the grant() method on a User to get the grant and inspect or modify it.

>>> from cbc_sdk import CBCloudAPI
>>> api = CBCloudAPI(profile='sample')
>>> from cbc_sdk.platform import User
>>> user = api.select(User, 2345672)
>>> print(f"{user.first_name} {user.last_name}")
Arianne Martell
>>> grant = user.grant()
>>> print(grant.roles)
['psc:role::BETA_SYSTEM_ADMIN']
>>> grant.roles = ['psc:role::BETA_VIEW_ONLY']
>>> grant.save()
<cbc_sdk.platform.grants.Grant: id psc:user:1A2B3C4DE:2345672> @ https://defense.conferdeploy.net
>>> print(grant.roles)
['psc:role::psc:role::BETA_VIEW_ONLY']

You can see what roles your API key is able to access and assign using the get_permitted_role_urns() function:

>>> from cbc_sdk import CBCloudAPI
>>> api = CBCloudAPI(profile='sample')
>>> from cbc_sdk.platform import Grant
>>> for index, role_urn in enumerate(Grant.get_permitted_role_urns(api)):
... print(f"{index}. {role_urn}")
...
0. psc:role::BETA_LEVEL_3_ANALYST
1. psc:role::KUBERNETES_SECURITY_DATAPLANE_ONLY
2. psc:role::ALL_AND_LR
3. psc:role::BETA_LEVEL_1_ANALYST
4. psc:role::BETA_SYSTEM_ADMIN
5. psc:role::KUBERNETES_SECURITY_DATAPLANE
6. psc:role::VIEW_ONLY
7. psc:role::ALL
8. psc:role::KUBERNETES_SECURITY_ADMIN_USER
9. psc:role::BETA_SUPER_ADMIN
10. psc:role::KUBERNETES_SECURITY_READ_ONLY_USER
11. psc:role::CONTAINER_IMAGE_CLI_TOOL
12. psc:role::KUBERNETES_SECURITY_DEVOPS
13. psc:role::BETA_VIEW_ALL
14. psc:role::KUBERNETES_SECURITY_DEVOPS_VIEW_ONLY
15. psc:role::BETA_LEVEL_2_ANALYST
16. psc:role::KUBERNETES_SECURITY_DEVELOPER

Users created in the Carbon Black Cloud console employ access profiles on the access grants, which allow roles for
a user to be specified for the organization and/or any child organizations. Access profiles may be accessed and
manipulated through the access grant object.

>>> from cbc_sdk import CBCloudAPI
>>> api = CBCloudAPI(profile='sample')
>>> from cbc_sdk.platform import User
>>> user = api.select(User, 3456789)
>>> grant = user.grant()
>>> for profile in grant.profiles_:
... print(f"{profile.allowed_orgs} - {profile.roles}")
...
['psc:org:1A2B3C4DE'] - ['psc:role::BETA_LEVEL_3_ANALYST']
['psc:org:2F3G4H5JK'] - ['psc:role::BETA_LEVEL_1_ANALYST']

Adding an access profile may be done via the create_profile() method on Grant:

>>> from cbc_sdk import CBCloudAPI
>>> api = CBCloudAPI(profile='sample')
>>> from cbc_sdk.platform import User
>>> user = api.select(User, 3450987)
>>> grant = user.grant()
>>> builder = grant.create_profile()
>>> builder.add_org('psc:org:2F3G4H5JK').add_role('psc:role::BETA_VIEW_ALL')
<cbc_sdk.platform.grants.Grant.ProfileBuilder object at 0x00000232942C8400>
>>> profile = builder.build()
{'orgs': {'allow': ['psc:org:2F3G4H5JK']}, 'roles': ['psc:role::BETA_VIEW_ALL']}

Or it may be added via a template object (as with User):

>>> from cbc_sdk import CBCloudAPI
>>> api = CBCloudAPI(profile='sample')
>>> from cbc_sdk.platform import User
>>> user = api.select(User, 3450987)
>>> grant = user.grant()
>>> profile_template = {'orgs': {'allow': ['psc:org:2F3G4H5JK']}, 'roles': ['psc:role::BETA_VIEW_ALL']}
>>> profile = grant.create_profile(profile_template)
{'orgs': {'allow': ['psc:org:2F3G4H5JK']}, 'roles': ['psc:role::BETA_VIEW_ALL']}

Vulnerabilities

The Vulnerability Assessment API allows users to view asset (Endpoint or Workload) vulnerabilities,
increase security visibility, and undertake prioritized proactive security patching on critical systems.
The API provides a summary of vulnerability information filtered at the organization level,
by device, or by vulnerability CVE ID. With a list of vulnerabilities prioritized by severity,
exploitability, and current activity, users can apply proactive and impactful vulnerability patches.
The Carbon Black Cloud Python SDK provides all of the functionalities you might need to use vulnerabilities efficiently.
You can use all of the operations shown in the API such as retrieving, filtering, exporting, and performing actions.
The full list of operations and attributes can be found in the Vulnerability() class.

For more information see
the developer documentation [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/vulnerability-assessment/]

Retrieving Vulnerabilities

With the example below, you can retrieve the 5 most recent non-critical vulnerabilities for an organization.

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.platform import Vulnerability
>>> api = CBCloudAPI(profile='sample')
>>> vulnerabilities = api.select(Vulnerability).set_severity("CRITICAL", "NOT_EQUALS")[:5]
>>> print(vulnerabilities[0])

 affected_assets: [list:1 item]:
 [0]: DESKTOP-KLVRRM4
 category: APP
 cve_id: CVE-1999-0794
 device_count: 1
 os_info: [dict] {
 os_arch: 64-bit
 os_name: Microsoft Windows 10 Pro
 os_type: WINDOWS
 os_version: 10.0.18363
 }
 os_product_id: 37_282511
 product_info: [dict] {
 arch:
 product: Microsoft Office
 release: None
 vendor: Microsoft Corporation
 version: 15.0.4693.1005
 }
 vuln_info: [dict] {
 active_internet_breach: False
 created_at: 1999-10-01T04:00:00Z
 cve_description: Microsoft Excel does not warn a user when a mac...
 cve_id: CVE-1999-0794
 cvss_access_complexity: Low
 cvss_access_vector: Local access
 cvss_authentication: None required
 cvss_availability_impact: Partial
 cvss_confidentiality_impact: Partial
 cvss_exploit_subscore: 3.9
 cvss_impact_subscore: 6.4
 cvss_integrity_impact: Partial
 cvss_score: 4.6
 cvss_v3_exploit_subscore: None
 cvss_v3_impact_subscore: None
 cvss_v3_score: None
 cvss_v3_vector: None
 cvss_vector: AV:L/AC:L/Au:N/C:P/I:P/A:P
 easily_exploitable: False
 fixed_by: None
 malware_exploitable: False
 nvd_link: https://nvd.nist.gov/vuln/detail/CVE-1999-0794
 risk_meter_score: 1.6
 severity: LOW
 solution: None
 }

With the example below, you can retrieve the most recent vulnerability for a specific device type and operating system type.

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.platform import Vulnerability
>>> api = CBCloudAPI(profile='sample')
>>> vulnerability = api.select(Vulnerability).set_device_type("ENDPOINT","EQUALS").set_os_type("WINDOWS","EQUALS").first()
>>> print(vulnerability)

 affected_assets: [list:1 item]:
 [0]: DESKTOP-KLVRRM4
 category: APP
 cve_id: CVE-1999-0794
 device_count: 1
 os_info: [dict] {
 os_arch: 64-bit
 os_name: Microsoft Windows 10 Pro
 os_type: WINDOWS
 os_version: 10.0.18363
 }
 os_product_id: 37_282511
 product_info: [dict] {
 arch:
 product: Microsoft Office
 release: None
 vendor: Microsoft Corporation
 version: 15.0.4693.1005
 }
 vuln_info: [dict] {
 active_internet_breach: False
 created_at: 1999-10-01T04:00:00Z
 cve_description: Microsoft Excel does not warn a user when a mac...
 cve_id: CVE-1999-0794
 cvss_access_complexity: Low
 cvss_access_vector: Local access
 cvss_authentication: None required
 cvss_availability_impact: Partial
 cvss_confidentiality_impact: Partial
 cvss_exploit_subscore: 3.9
 cvss_impact_subscore: 6.4
 cvss_integrity_impact: Partial
 cvss_score: 4.6
 cvss_v3_exploit_subscore: None
 cvss_v3_impact_subscore: None
 cvss_v3_score: None
 cvss_v3_vector: None
 cvss_vector: AV:L/AC:L/Au:N/C:P/I:P/A:P
 easily_exploitable: False
 fixed_by: None
 malware_exploitable: False
 nvd_link: https://nvd.nist.gov/vuln/detail/CVE-1999-0794
 risk_meter_score: 1.6
 severity: LOW
 solution: None
 }

With the example below you can retrieve the 5 most recent vulnerabilities for a device type sorted by status.

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.platform import Vulnerability
>>> api = CBCloudAPI(profile='sample')
>>> vulnerabilities = api.select(Vulnerability).set_device_type("WORKLOAD","EQUALS").sort_by("status")[:5]
>>> for vulnerability in vulnerabilities:
... print(vulnerability.cve_id, vulnerability.category, vulnerability.device_count, vulnerability.os_product_id)
...

CVE-2008-5915 APP 1 4_820212
CVE-2008-5915 APP 1 4_1027024
CVE-2008-5915 APP 1 4_1107922
CVE-2008-5915 APP 1 4_1336654
CVE-2008-5915 APP 1 7_64452

Filtering

You can use the where method to filter the vulnerabilities. The where supports strings and solr like queries, alternatively you can use the solrq query objects
for more complex searches. The example below will search with a solr query search string for the last 5 vulnerabilities in the OS category.

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.platform import Vulnerability
>>> api = CBCloudAPI(profile='sample')
>>> vulnerabilities = api.select(Vulnerability).where("OS")[:5]
>>> for vulnerability in vulnerabilities:
... print(vulnerability.cve_id, vulnerability.category, vulnerability.device_count, vulnerability.os_product_id)
...

CVE-2010-3974 OS 2 14_0
CVE-2010-3974 OS 1 61_0
CVE-2011-0032 OS 2 14_0
CVE-2011-0032 OS 1 61_0
CVE-2011-0034 OS 2 14_0

Tip

More information about the solrq can be found in the
their documentation [https://solrq.readthedocs.io/en/latest/index.html].

Retrieving Vulnerability Details

With the example below, you can retrieve vulnerability details for the most recent vulnerability.

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.platform import Vulnerability
>>> api = CBCloudAPI(profile='sample')
>>> vulnerability = api.select(Vulnerability).first()
>>> print(vulnerability.vuln_info)

{
 'cve_id': 'CVE-1999-0794',
 'cve_description': 'Microsoft Excel does not warn a user when a macro is present in a Symbolic Link (SYLK) format file.',
 'risk_meter_score': 1.6,
 'severity': 'LOW',
 'fixed_by': None,
 'solution': None,
 'created_at': '1999-10-01T04:00:00Z',
 'nvd_link': 'https://nvd.nist.gov/vuln/detail/CVE-1999-0794',
 'cvss_access_complexity': 'Low',
 'cvss_access_vector': 'Local access',
 'cvss_authentication': 'None required',
 'cvss_availability_impact': 'Partial',
 'cvss_confidentiality_impact': 'Partial',
 'cvss_integrity_impact': 'Partial',
 'easily_exploitable': False,
 'malware_exploitable': False,
 'active_internet_breach': False,
 'cvss_exploit_subscore': 3.9,
 'cvss_impact_subscore': 6.4,
 'cvss_vector': 'AV:L/AC:L/Au:N/C:P/I:P/A:P',
 'cvss_v3_exploit_subscore': None,
 'cvss_v3_impact_subscore': None,
 'cvss_v3_vector': None,
 'cvss_score': 4.6,
 'cvss_v3_score': None
}

Retrieving Affected Assets for a Vulnerability

With the example below, you can retrieve a list of affected assets for the last 5 critical vulnerabilities.

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.platform import Vulnerability
>>> api = CBCloudAPI(profile='sample')
>>> vulnerabilities = api.select(Vulnerability).set_severity("CRITICAL", "EQUALS")[:5]
>>> for vulnerability in vulnerabilities:
... print(vulnerability.affected_assets)
...

['DESKTOP-KLVRRM4']
['DESKTOP-KLVRRM4']
['DESKTOP-KLVRRM4']
['Windowhost-MAD', 'WINDOWHOST2-MAD']
['Windowhost-MAD', 'WINDOWHOST2-MAD']

Watchlists, Feeds, Reports, and IOCs

Watchlists are a powerful feature of Carbon Black Cloud Enterprise EDR. They allow an organization to set-and-forget
searches on their endpoints’ incoming events data, providing the administrator the opportunity to sift through high
volumes of activity and focus attention on those that matter.

Note: Use of these APIs requires that the organization be enabled for Enterprise EDR. Verify this by logging into
the Carbon Black Cloud Console, opening the menu in the upper right corner, and checking for an ENABLED flag
against the “Enterprise EDR” entry.

All examples here assume that a Carbon Black Cloud SDK connection has been set up, such as with the following code:

>>> from cbc_sdk import CBCloudAPI
>>> api = CBCloudAPI(profile='sample')

Setting up a connection is documented here: Getting Started with the Carbon Black Cloud Python SDK - “Hello CBC”

About the Objects

An indicator of compromise (IOC) is a query, list of strings, or list of regular expressions which constitutes
actionable threat intelligence that the Carbon Black Cloud is set up to watch for. Any activity that matches one of
these may indicate a compromise of an endpoint.

A report groups one or more IOCs together, which may reflect a number of possible conditions to look for, or a number
of conditions related to a particular target program or type of malware. Reports can be used to organize IOCs.

A watchlist contains reports (either directly or through a feed) that the Carbon Black Cloud is matching against
events coming from the endpoints. A positive match will trigger a “hit,” which may be logged or result in an alert.

A feed contains reports which have been gathered by a single source. They resemble “potential watchlists.”
A watchlist may be easily subscribed to a feed, so that any reports in the feed act as if they were in the watchlist
itself, triggering logs or alerts as appropriate.

Setting Up a Basic Custom Watchlist

Creating a custom watchlist that can watch incoming events and/or generate alerts requires three steps:

	Create a report including one or more Indicators of Compromise (IOCs).

	Add that report to a watchlist.

	Enable alerting on the watchlist.

Creating a Report

In this example, a report is created, adding one or more IOCs to it:

>>> from cbc_sdk.enterprise_edr import Report, IOC_V2
>>> builder = Report.create(api, "Unsigned Browsers", "Unsigned processes impersonating browsers", 5)
>>> builder.add_tag("compliance").add_tag("unsigned_browsers")
>>> builder.add_ioc(IOC_V2.create_query(api, "unsigned-chrome",
... "process_name:chrome.exe NOT process_publisher_state:FILE_SIGNATURE_STATE_SIGNED"))
>>> report = builder.build()
>>> report.save_watchlist()

Reports should always be given a title that’s sufficiently unique within your organization, so as to minimize
the chances of confusing two or more Reports with each other. Carbon Black Cloud will generate unique id values
for each report, but does not enforce any uniqueness constraint on the title of reports.

Alternatively, you can update an existing report, adding more IOCs and/or replacing existing ones. To find an existing
report associated with a watchlist, you must look in the watchlist’s reports collection:

>>> from cbc_sdk.enterprise_edr import Watchlist, Report, IOC_V2
>>> watchlist = api.select(Watchlist, 'R4cMgFIhRaakgk749MRr6Q')
>>> report_list = [report for report in watchlist.reports if report.id == '47474d40-1f94-4995-b6d9-1d1eea3528b3']
>>> report = report_list[0]
>>> report.append_iocs([IOC_V2.create_query(api, 'evil-connect', 'netconn_ipv4:10.8.16.4')])
>>> report.update()

Adding the Report to a Watchlist

Now, add the new Report to a new Watchlist:

>>> from cbc_sdk.enterprise_edr import Watchlist
>>> builder = Watchlist.create(api, "Suspicious Applications")
>>> builder.set_description("Any signs of suspicious applications running on endpoints").add_reports([report])
>>> watchlist = builder.build()
>>> watchlist.save()

If you already have an existing Watchlist you wish to enhance, you can add Reports to the existing Watchlist:

>>> # "report" contains the Report that was created in the previous example
>>> from cbc_sdk.enterprise_edr import Watchlist
>>> watchlist = api.select('Watchlist', 'R4cMgFIhRaakgk749MRr6Q')
>>> watchlist.add_reports([report])
>>> watchlist.save()

Enabling Alerting on a Watchlist

When either the alerts_enabled or tags_enabled attributes of a watchlist are True, that Watchlist will
create data you can act on - either alerts or hits, respectively; if both are False, the Watchlist is effectively
disabled.

Once you have the Watchlist configured with the IOCs that are generating the kinds of hits (results) you are after,
you can enable Alerting for the Watchlist, which will allow matches against the reports in the watchlist to generate
alerts. If a watchlist identifies suspicious behavior and known threats in your environment, you will want to enable
alerts to advise you of situations where you may need to take action or modify policies.

>>> watchlist.enable_alerts()

A Closer Look at IOCs

In this document, only the “v2” IOCs are covered; the “v1” IOCs are only provided for backwards compatibility
reasons. They are officially deprecated, and are converted, internally, to this type.

IOCs can be classified into two general types, depending on their match_type value:

Query IOCs are those with a match_type of query; their values_list contains a single string that
specifies a query compatible with process searches. For example, the following IOC looks for the process git.exe
that does not connect to one of a specified list of IP addresses:

{
 "id": "example_1",
 "match_type": "query",
 "values": ["process_name:git.exe NOT (netconn_ipv4:35.158.151.206 OR netconn_ipv4:1.1.244.78
 OR netconn_ipv4:80.18.61.229 OR netconn_ipv4:80.18.61.228)"]
}

Query IOCs must always use field-prefixed queries (key-value pairs); they do not support just searching for a value
without a field specified. Values in query clauses that do not specify fields will be ignored.

	Wrong:

	process_name:chrome.exe AND 192.168.1.1

	Right:

	process_name:chrome.exe AND netconn_ipv4:192.168.1.1

Query IOCs may search on CIDR address ranges, e.g.: netconn_ipv4:192.168.0.0/16.

Query IOCs are searched every 5 minutes by the Carbon Black Cloud, and are tested against a rolling window of the
last hour’s worth of data for the organization. (They will not generate hits or alerts for process attributes that
were reported more than an hour in the past.) They may employ any searchable field as documented
here [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/platform-search-fields/],
and may employ complex query logic.

Ingress IOCs are those with a match_type of equality or regex; they use the field element to specify
the name of a field to examine the value of, and the values_list element to specify a list of values to match
against (in the case of match_type being equality) or regular expressions to match against (in the case of
match_type being regex). For example, this IOC will match any process that initiates a connection to one of
two listed IP addresses:

{
 "id": "example_2",
 "match_type": "equality",
 "field": "netconn_ipv4",
 "values": ["8.8.8.8", "1.160.120.15"]
}

This IOC will match any process running with an executable name beginning with “quake”:

{
 "id": "example_3",
 "match_type": "regex",
 "field": "process_name",
 "values": ["quake.*\\.exe"]
}

(Note the use of the backslash to escape the ‘.’ that separates the file extension from the name. It must be doubled
to escape it in Python itself.)

Ingress IOCs are searched as soon as the data is received from any endpoint, and may use any process field
(as documented
here [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/platform-search-fields/];
the fields that may be used in this context are tagged with PROCESS)
in their field element, whether searchable or not. For the searches they are capable of, they are more efficient
than query IOCs, and also easier to add additional search target values to. They can, however, only search on a single
field at a time.

Note: Ingress IOCs cannot be edited in the Carbon Black Cloud console UI at this time, due to a UI limitation
on editing two properties of an IOC at the same time.

You can include more than one entry (query or match element) in an individual IOC, but in order to ignore or disable
one of those entries, you would either have to edit the IOC or disable it entirely (thus disabling all entries in
that IOC). It is recommended to use only one entry per IOC, for ease of management, unless you have already vetted the
entries and don’t expect to have to disable them individually.

Both IOCs and reports may include a link property, which is used by the Carbon Black Cloud console UI as a hint
to indicate that this IOC or report is being managed outside of the console. If this property is not None,
the console UI will disable the ability to edit the IOC or report, but they can still be edited via the API.

Creating an IOC

You can create an IOC via the IOC_V2 class, there are 3 avaliable methods that you can use to initiate your IOC:
IOC_V2.create_query, IOC_V2.create_equality, IOC_V2.create_regex.

Creating an equality IOC

>> from cbc_sdk import CBCloudAPI
>> from cbc_sdk.enterprise_edr import IOC_V2
>> cbcsdk = CBCloudAPI(profile="default")
>> IOC_V2.create_equality(cbcsdk, None, "netconn_domain", ["localhost.local"])
<cbc_sdk.enterprise_edr.threat_intelligence.IOC_V2: id ad361179-d586-4c99-af3e-821224cc0fd9> @ https://<CBCInstanceURL>

Creating a query IOC

>> IOC_V2.create_query(cbcsdk, None, "{process_hash:098f6bcd4621d373cade4e832627b4f6}")
<cbc_sdk.enterprise_edr.threat_intelligence.IOC_V2: id 36d68cab-4739-4aa6-afcc-2921d2e5573e> @ https://<CBCInstanceURL>

Creating a regex IOC

>> IOC_V2.create_regex(cbcsdk, None, "process_name", r"(^/usr/.*$)|(^/bin/.*$)")
<cbc_sdk.enterprise_edr.threat_intelligence.IOC_V2: id 5170a04c-bbfc-4449-b939-d5fc9f55d555> @ https://<CBCInstanceURL>

Removing and adding an IOC from a Report

If you want to remove an IOC from a report, you will need the IOC id and the report id.

>> from cbc_sdk.enterprise_edr import Report
>> ioc_id = "<ioc_id>"
>> report = cbcsdk.select(Report).where(id="<report_id>", feed_id="<feed_id>")[0]
<cbc_sdk.enterprise_edr.threat_intelligence.Report: id 1e69c54e-7cc9-41b8-9d1d-3fd59a003d8a> @ https://<CBCInstanceURL>
>> report.remove_iocs_by_id([ioc_id])
>> report.update()
<cbc_sdk.enterprise_edr.threat_intelligence.Report: id 1e69c54e-7cc9-41b8-9d1d-3fd59a003d8b> @ https://<CBCInstanceURL> (*)

Adding the IOC into the report works the same way:

>> from cbc_sdk.enterprise_edr import Report, IOC_V2
>> ioc_id = "<ioc_id>"
>> report = cbcsdk.select(Report).where(id="<report_id>", feed_id="<feed_id>")[0]
<cbc_sdk.enterprise_edr.threat_intelligence.Report: id 1e69c54e-7cc9-41b8-9d1d-3fd59a003d8a> @ https://<CBCInstanceURL>
>> ioc = IOC_V2.create_regex(cbcsdk, None, "process_name", r"(^/usr/.*$)|(^/bin/.*$)")
>> report.append_iocs([ioc])
>> report.update()
<cbc_sdk.enterprise_edr.threat_intelligence.Report: id 1e69c54e-7cc9-41b8-9d1d-3fd59a003d8b> @ https://<CBCInstanceURL> (*)

Note

Calling the Report.save() method after the insertion or removal of IOC does not update the report
and it’s likely to result in a bad call to the API.

If the report is in a watchlist instead of a feed then you have to get the appropriate watchlist and iterate over the reports.

>> from cbc_sdk.enterprise_edr import Watchlist, Report, IOC_V2
>> ioc_id = "<ioc_id>"
>> report_id = "<report_id>"
>> watchlist = cbcsdk.select(Watchlist, "<watchlist_id>")
<cbc_sdk.enterprise_edr.threat_intelligence.Watchlist: id <watchlist_id>> @ https://<CBCInstanceURL>
>> ioc = IOC_V2.create_regex(cbcsdk, None, "process_name", r"(^/usr/.*$)|(^/bin/.*$)")
>> reports = watchlist.reports
>> report = [report_ for report_ in reports if report_.id == report_id][0]
>> report.append_iocs([ioc])
>> report.update()
<cbc_sdk.enterprise_edr.threat_intelligence.Report: id 1e69c54e-7cc9-41b8-9d1d-3fd59a003d8b> @ https://<CBCInstanceURL> (*)

Tips for Using IOCs

	You can safely ignore certain fields in an IOC. For example, fields like alert_id and process_guid will
always uniquely identify just a single record in your organization’s data, whereas a field like org_id will be
a constant across all your organization’s data.

	Timestamp fields such as backend_timestamp are useful in ad-hoc queries, to look for data occurring before or
after a certain date, but are of limited usefulness over the span of time a watchlist may be running.

	A list of hashes (such as with process_sha256) can be of limited value. They are inconvenient to keep current,
especially as software (whether legitimate or malicious) gets updated over time, but are definitely easier to manage
with equality IOCs.

	Counter fields (such as netconn_count) can be useful with range queries to locate processes that are using a
large number of resources. For example, the query netconn_count:[500 TO *] will match only processes that make
a large number of network connections.

	When using ingress IOCs, be careful of errant characters in the values list, such as leading or trailing
whitespace or embedded newline characters. These errant characters may cause the IOCs to fail to match, leading to
false negative results.

	equality IOCs for IPv4 fields (e.g. netconn_remote_ipv4) cannot support CIDR notation; full IP addresses
must be used.

	equality IOCs for IPv6 fields (e.g. netconn_remote_ipv6) do not support standard or CIDR notation at this
time. All IPv6 addresses must omit colon characters, spell out all zeroes in the address, and represent all
alphabetic characters in uppercase. For example, “ff02::fb” becomes “FF0200000000000000000000000000FB”.

Feeds

Another way of managing reports is to attach them to a feed. Feeds can contain multiple reports, and a feed can be
attached to a watchlist, effectively making the contents of the watchlist equivalent to the contents of the feed.

Feeds are in effect “potentially-subscribable Watchlists”. A Feed has no effect on your organization until it is
subscribed to, by creating a Watchlist containing that feed. Once subscribed (and until it’s disabled or unsubscribed),
a watchlist will generate hits (and alerts if you have enabled them) for any matches against any of the IOCs in any of
that feed’s enabled reports.

Note: The feeds that are created by these examples are private feeds, meaning they are only visible within an
organization and can be created by anyone with sufficient privileges in the organization. There are additional types
of feeds; reserved feeds can only be created by MSSPs, and public feeds can only be created or edited by
VMware Carbon Black.

A new feed may be created as follows (assuming the new report for that feed is stored in the report variable):

>>> from cbc_sdk.enterprise_edr import Feed
>>> builder = Feed.create(api, 'Suspicious Applications', 'http://example.com/location',
... 'Any signs of suspicious applications running on our endpoints', 'external_threat_intel')
>>> builder.set_source_label('Where the info is coming from')
>>> builder.add_reports([report])
>>> feed = builder.build()
>>> feed.save()

If you have an existing feed, a new report may be added to it as follows (assuming the new report is stored in the
report variable):

>>> from cbc_sdk.enterprise_edr import Feed
>>> feed = cb.select(Feed, 'ABCDEFGHIJKLMNOPQRSTUVWX')
>>> feed.append_reports([report])

To update or delete an existing report in a feed, look for it in the feed’s reports collection, then call the
update() method on the report to replace its contents, or the delete() method on the report to delete it
entirely. The replace_reports() method on the Feed object may also be used, but caution must be taken, as
that method will replace all of the reports in a feed at once.

To subscribe to a feed, a new watchlist must be created around it:

>>> watchlist = Watchlist.create_from_feed(feed, "Subscribed feed", "Subscription to the new feed")
>>> watchlist.save()

Limitations of Reports and Watchlists

Individual reports may contain no more than 10,000 IOCs. Reports containing more than 1,000 IOCs will not be editable
via the Carbon Black Cloud console UI, but may still be managed using APIs.

Individual watchlists may contain no more than 10,000 reports. Any more than that may lead to timeouts when managing
the watchlist through the Carbon Black Cloud console UI, and possibly when managing it through APIs as well.

Workloads

These APIs allow you to visualize the inventory of compute resources available under either vSphere
or AWS.

Note

A compute resource is a virtual machine without a sensor installed.

The API operations center around the VCenterComputeResource object for vSphere compute resources,
or around the AWSComputeResource for AWS compute resources.

Note

The object name ComputeResource is an alias for VCenterComputeResource, provided for
backwards compatibility with earlier versions of the SDK.

Search Compute Resources

By querying on one of the compute resource object types, you can obtain a list of matching
compute resources. The SDK supports filtering by a number of different criteria, which are different
for each compute resource type.

For VCenterComputeResource:

	appliance_uuid

	cluster_name

	datacenter_name

	esx_host_name

	esx_host_uuid

	vcenter_name

	vcenter_host_url

	vcenter_uuid

	name

	host_name

	ip_address

	device_guid

	registration_id

	eligibility

	eligibility_code

	installation_status

	installation_type

	uuid

	os_description

	os_type

	os_architecture

	vmwaretools_version

For AWSComputeResource:

	auto_scaling_group_name

	availability_zone

	cloud_provider_account_id

	cloud_provider_resource_id

	cloud_provider_tags

	id

	installation_status

	name

	platform

	platform_details

	region

	subnet_id

	virtual_private_cloud_id

Any of these criteria may be specified to be included in search results by calling the method set_XXX,
or excluded by calling the method exclude_XXX, where XXX is the specific criteria name.

Example (vSphere workloads):

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.workload import VCenterComputeResource

>>> cbc = CBCloudAPI()
>>> query = cbc.select(VCenterComputeResource).set_os_type(['WINDOWS']).set_cluster_name(['example-cluster-name'])
>>> for result in list(query):
... print(result)

Example Output:

VCenterComputeResource object, bound to https://defense-dev01.cbdtest.io.

 appliance_uuid: c74bca54-e903-49e8-9962-2bb895f428c1
 cluster_name: example-cluster-name
 created_at: 2021-02-25T04:54:41.362Z
 datacenter_name: cwp-bucket-1-datacenter
 eligibility: ELIGIBLE
 eligibility_code: None
 esx_host_name: 10.105.17.113
 esx_host_uuid: a2311b42-3e53-8f21-97d7-66680007185f
 host_name: appd2012
 id: 19902164
 installation_status: NOT_INSTALLED
 installation_status_code:
 ip_address: 10.105.17.84
 name: cwp-bucket-1-windows_2012
 os_architecture: 64
 os_description: Microsoft Windows Server 2012 (64-bit)
 os_type: WINDOWS
 uuid: 500e14e6-3ea6-23aa-11bd-8e68444c6ce4
 vcenter_host_url: 10.105.17.114
 vcenter_name: VMware vCenter Server 6.7.0 build-14368073
 vcenter_uuid: 9a8a0be5-ae1e-49ce-b2aa-34bc7dc445e3
 vmwaretools_version: 11328
VCenterComputeResource object, bound to https://defense-dev01.cbdtest.io.

 appliance_uuid: c74bca54-e903-49e8-9962-2bb895f428c1
 cluster_name: example-cluster-name
 created_at: 2021-02-25T04:54:41.362Z
 datacenter_name: cwp-bucket-1-datacenter
 eligibility: ELIGIBLE
 eligibility_code: None
 esx_host_name: 10.105.17.113
 esx_host_uuid: a2311b42-3e53-8f21-97d7-66680007185f
 host_name: appd2k8r2
 id: 19902168
 installation_status: NOT_INSTALLED
 installation_status_code:
 ip_address: 10.105.17.237
 name: cwp-bucket-1-windows_2008
 os_architecture: 64
 os_description: Microsoft Windows Server 2008 R2 (64-bit)
 os_type: WINDOWS
 uuid: 500e51ff-ca0d-5a70-a799-2595c9e87000
 vcenter_host_url: 10.105.17.114
 vcenter_name: VMware vCenter Server 6.7.0 build-14368073
 vcenter_uuid: 9a8a0be5-ae1e-49ce-b2aa-34bc7dc445e3
 vmwaretools_version: 11328 ComputeResource object, bound to https://defense-dev01.cbdtest.io.

Example (AWS workloads):

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.workload import AWSComputeResource

>>> cbc = CBCloudAPI()
>>> query = cbc.select(AWSComputeResource).set_region(['us-west-1'])
>>> results = list(query)
>>> for result in results:
... print(result)

Example Output:

AWSComputeResource object, bound to https://defense-dev01.cbdtest.io.

 auto_scaling_group_name: Demo-AutoScalingGroup
 availability_zone: us-west-1c
 cloud_provider_account_id: 267678331262
 cloud_provider_resource_id: i-043de738ce129b77a
 cloud_provider_tags: [list:4 items]:
 [0]: Name##Demo-ASG
 [1]: aws:ec2launchtemplate:id##lt-0e3d35dba4f5ba16f
 [2]: aws:autoscaling:groupName##Demo-AutoScalingGroup
 [...]
 create_time: 2022-06-02T05:23:27Z
 deployment_type: AWS
 eligibility: NOT_ELIGIBLE
 eligibility_code: [list:1 item]:
 [0]: SSM_DOC_NOT_INSTALLED
 external_ip: 18.144.80.202
 id: 8x5tjvywq-aws-i-043de738ce129b77a
 image_description: Amazon Linux 2 Kernel 5.10 AMI 2.0.20220426.0 x...
 image_id: ami-02541b8af977f6cdd
 image_name: amzn2-ami-kernel-5.10-hvm-2.0.20220426.0-x86_64...
 installation_status: NOT_INSTALLED
 installation_status_code: None
 installation_status_code_key: None
 instance_state: running
 instance_type: t2.micro
 internal_ip: 172.31.11.73
 name: Demo-ASG
 org_key: 8X5TJVYWQ
 platform: Unix/Linux
 platform_details: Linux/UNIX
 platform_name: None
 platform_version: None
 region: us-west-1
 security_group_id: [list:1 item]:
 [0]: sg-085972ee2f0be60aa
 subnet_id: subnet-03cb2d09e07350698
 virtual_private_cloud_id: vpc-0faa4803c3de51c87
AWSComputeResource object, bound to https://defense-dev01.cbdtest.io.

 auto_scaling_group_name: None
 availability_zone: us-west-1c
 cloud_provider_account_id: 267678331262
 cloud_provider_resource_id: i-0febda35fcaf2dbd1
 cloud_provider_tags: [list:1 item]:
 [0]: Name##Rushit-Test-2
 create_time: 2022-07-11T08:26:58Z
 deployment_type: AWS
 eligibility: NOT_ELIGIBLE
 eligibility_code: [list:1 item]:
 [0]: SSM_DOC_NOT_INSTALLED
 external_ip: 54.193.100.2
 id: 8x5tjvywq-aws-i-0febda35fcaf2dbd1
 image_description: Amazon Linux 2 Kernel 5.10 AMI 2.0.20220606.1 x...
 image_id: ami-0d9858aa3c6322f73
 image_name: amzn2-ami-kernel-5.10-hvm-2.0.20220606.1-x86_64...
 installation_status: NOT_INSTALLED
 installation_status_code: None
 installation_status_code_key: None
 instance_state: running
 instance_type: t2.micro
 internal_ip: 172.31.7.55
 name: Rushit-Test-2
 org_key: 8X5TJVYWQ
 platform: Unix/Linux
 platform_details: Linux/UNIX
 platform_name: None
 platform_version: None
 region: us-west-1
 security_group_id: [list:1 item]:
 [0]: sg-08473e77b9e4921e3
 subnet_id: subnet-03cb2d09e07350698
 virtual_private_cloud_id: vpc-0faa4803c3de51c87
AWSComputeResource object, bound to https://defense-dev01.cbdtest.io.

 auto_scaling_group_name: Demo-AutoScalingGroup
 availability_zone: us-west-1a
 cloud_provider_account_id: 267678331262
 cloud_provider_resource_id: i-0b8b62d7c3aea1f9f
 cloud_provider_tags: [list:5 items]:
 [0]: Name##Demo-ASG
 [1]: Test##Rushit-ASG
 [2]: aws:ec2launchtemplate:id##lt-0e3d35dba4f5ba16f
 [...]
 create_time: 2022-06-02T05:21:26Z
 deployment_type: AWS
 eligibility: NOT_ELIGIBLE
 eligibility_code: [list:1 item]:
 [0]: SSM_DOC_NOT_INSTALLED
 external_ip: 54.176.174.194
 id: 8x5tjvywq-aws-i-0b8b62d7c3aea1f9f
 image_description: Amazon Linux 2 Kernel 5.10 AMI 2.0.20220426.0 x...
 image_id: ami-02541b8af977f6cdd
 image_name: amzn2-ami-kernel-5.10-hvm-2.0.20220426.0-x86_64...
 installation_status: NOT_INSTALLED
 installation_status_code: None
 installation_status_code_key: None
 instance_state: running
 instance_type: t2.micro
 internal_ip: 172.31.17.166
 name: Demo-ASG
 org_key: 8X5TJVYWQ
 platform: Unix/Linux
 platform_details: Linux/UNIX
 platform_name: None
 platform_version: None
 region: us-west-1
 security_group_id: [list:1 item]:
 [0]: sg-085972ee2f0be60aa
 subnet_id: subnet-02ccab8946d24f386
 virtual_private_cloud_id: vpc-0faa4803c3de51c87

Fetch Compute Resource by ID

Using a query of the VCenterComputeResource or AWSComputeResource objects, you can get the
compute resource by ID from your organization.

Example (vCenter workloads):

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.workload import VCenterComputeResource

>>> # This is an example id that we want to query
>>> id = 15054425

>>> cbc = CBCloudAPI()
>>> query = cbc.select(VCenterComputeResource, id)

>>> # A string object is returned here, so we can print the result directly.
>>> print(query)

VCenterComputeResource object, bound to https://defense-dev01.cbdtest.io.
 Last refreshed at Mon Mar 1 12:02:14 2021

 appliance_uuid: c89f183b-f201-4bca-bacc-80184b5b8823
 cluster_name: example-cluster-name
 created_at: 2020-11-18T07:41:16.834Z
 datacenter_name: None
 eligibility: NOT_ELIGIBLE
 eligibility_code: ['Launcher not found']
 esx_host_name: 10.105.7.129
 esx_host_uuid: bb8d2842-0438-9a74-7964-1d0efad10f28
 host_name: localhost.localdomain
 id: 15054425
 installation_status: NOT_INSTALLED
 installation_status_code: None
 ip_address: 10.105.7.201
 name: CB-ServiceTest
 os_architecture: 64
 os_description: CentOS 7 (64-bit)
 os_type: CENTOS
 uuid: 5022227f-947a-84f8-5816-747f5e18e5ac
 vcenter_host_url: 10.105.5.63
 vcenter_name: VMware vCenter Server 7.0.0 build-15952599
 vcenter_uuid: 4a6b1382-f917-4e1a-8564-374cb7274bd7
 vmwaretools_version: 10336

Example (AWS workloads):

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.workload import AWSComputeResource

>>> # This is an example id that we want to query
>>> id = '8x5tjvywq-aws-i-043de738ce129b77a'

>>> cbc = CBCloudAPI()
>>> query = cbc.select(AWSComputeResource, id)

>>> # A string object is returned here, so we can print the result directly.
>>> print(query)
AWSComputeResource object, bound to https://defense-dev01.cbdtest.io.
 Last refreshed at Wed Oct 12 11:11:41 2022

 auto_scaling_group_name: Demo-AutoScalingGroup
 availability_zone: us-west-1c
 cloud_provider_account_id: 267678331262
 cloud_provider_resource_id: i-043de738ce129b77a
 cloud_provider_tags: [list:4 items]:
 [0]: Name##Demo-ASG
 [1]: aws:ec2launchtemplate:id##lt-0e3d35dba4f5ba16f
 [2]: aws:autoscaling:groupName##Demo-AutoScalingGroup
 [...]
 create_time: 2022-06-02T05:23:27Z
 deployment_type: AWS
 eligibility: NOT_ELIGIBLE
 eligibility_code: [list:1 item]:
 [0]: SSM_DOC_NOT_INSTALLED
 external_ip: 18.144.80.202
 id: 8x5tjvywq-aws-i-043de738ce129b77a
 image_description: Amazon Linux 2 Kernel 5.10 AMI 2.0.20220426.0 x...
 image_id: ami-02541b8af977f6cdd
 image_name: amzn2-ami-kernel-5.10-hvm-2.0.20220426.0-x86_64...
 installation_status: NOT_INSTALLED
 installation_status_code: None
 installation_status_code_key: None
 instance_state: running
 instance_type: t2.micro
 internal_ip: 172.31.11.73
 name: Demo-ASG
 org_key: 8X5TJVYWQ
 platform: Unix/Linux
 platform_details: Linux/UNIX
 platform_name: None
 platform_version: None
 region: us-west-1
 security_group_id: [list:1 item]:
 [0]: sg-085972ee2f0be60aa
 subnet_id: subnet-03cb2d09e07350698
 virtual_private_cloud_id: vpc-0faa4803c3de51c87

Facet Compute Resources

Any compute resource search may be turned into a faceting by calling the facet() method on the
query object returned by select(), after setting search criteria. A faceting breaks down each
specified field for all compute resources matching the criteria, showing which values that field can take
and how many times that field value shows up in the matching compute resources. Only a subset of fields
can be faceted on, as listed here:

For VCenterComputeResource:

	eligibility

	installation_status

	vmwaretools_version

	os_type

For AWSComputeResource:

	auto_scaling_group_name

	cloud_provider_tags

	platform

	platform_details

	virtual_private_cloud_id

Example (vCenter workloads):

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.workload import VCenterComputeResource
>>> cbc = CBCloudAPI()
>>> query = cbc.select(VCenterComputeResource)
>>> facets = query.facet(['os_type', 'eligibility'])
>>> for facet in facets:
... print facet
...
ComputeResourceFacet object, bound to https://defense-dev01.cbdtest.io.

 field: os_type
 id: os_type
 values: [list:6 items]:
 [0]: [ComputeResourceFacetValue object]:
 id: OTHER
 name: OTHER
 total: 230

 [1]: [ComputeResourceFacetValue object]:
 id: UBUNTU
 name: UBUNTU
 total: 68

 [2]: [ComputeResourceFacetValue object]:
 id: WINDOWS
 name: WINDOWS
 total: 46

 [...]
ComputeResourceFacet object, bound to https://defense-dev01.cbdtest.io.

 field: eligibility
 id: eligibility
 values: [list:3 items]:
 [0]: [ComputeResourceFacetValue object]:
 id: NOT_ELIGIBLE
 name: NOT_ELIGIBLE
 total: 237

 [1]: [ComputeResourceFacetValue object]:
 id: UNSUPPORTED
 name: UNSUPPORTED
 total: 185

 [2]: [ComputeResourceFacetValue object]:
 id: ELIGIBLE
 name: ELIGIBLE
 total: 25

Example (AWS workloads):

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.workload import AWSComputeResource
>>> cbc = CBCloudAPI()
>>> query = cbc.select(AWSComputeResource)
>>> facets = query.facet(['platform', 'virtual_private_cloud_id'])
>>> for facet in facets:
... print facet
...
ComputeResourceFacet object, bound to https://defense-dev01.cbdtest.io.

 field: virtual_private_cloud_id
 id: virtual_private_cloud_id
 values: [list:8 items]:
 [0]: [ComputeResourceFacetValue object]:
 id: vpc-02371233d7ac6d33c
 name: vpc-02371233d7ac6d33c
 total: 28

 [1]: [ComputeResourceFacetValue object]:
 id: vpc-5102d53a
 name: vpc-5102d53a
 total: 12

 [2]: [ComputeResourceFacetValue object]:
 id: vpc-0968a1d4ea101fc26
 name: vpc-0968a1d4ea101fc26
 total: 7

 [...]
ComputeResourceFacet object, bound to https://defense-dev01.cbdtest.io.

 field: platform
 id: platform
 values: [list:2 items]:
 [0]: [ComputeResourceFacetValue object]:
 id: Unix/Linux
 name: Unix/Linux
 total: 56

 [1]: [ComputeResourceFacetValue object]:
 id: Windows
 name: Windows
 total: 5

Download Compute Resource Listings

The details of compute resources matching a search may be directly downloaded from the Carbon Black Cloud
by callin the download() method on the query object returned by select(), after setting
search criteria. The format for downloading may be specified as either JSON or CSV.

The download() method returns a Job object, which is processed asynchronously and from which
the results are available once the job has been completed.

Example (vCenter workloads):

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.workload import VCenterComputeResource
>>> cbc = CBCloudAPI()
>>> query = cbc.select(VCenterComputeResource).set_os_type(["UBUNTU"]).set_eligibility(["ELIGIBLE"])
>>> query.set_installation_status(["ERROR"])
>>> job = query.download("CSV")
>>> job.await_completion()
>>> print(job.get_output_as_string())
Eligibility,Install Status,Name,OS,VMware Tools,Added Time,VM ID,VM name,IP address,Datacenter,Cluster,vCenter [...]
"ELIGIBLE",""ERROR"","wdc-10-180-200-134","UBUNTU","10336",""2021-07-27T11:01:01.636","776bf589-923e-4ccd-869d-[...]
"ELIGIBLE",""ERROR"","","UBUNTU","0",""2021-11-19T08:49:20.882","50294288-5baa-6e71-18f0-71c8a17f0caf","POC-DB-[...]
"ELIGIBLE",""ERROR"","ubunti1804desktop","UBUNTU","10338",""2022-04-04T04:54:50.861","503410f6-80aa-1f69-0285-[...]
"ELIGIBLE",""ERROR"","ubunti1804desktop","UBUNTU","10338",""2022-02-28T09:22:32.235","503410f6-80aa-1f69-0285-[...]
>>> # note: lines truncated in above output for formatting purposes

Example (AWS workloads):

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.workload import AWSComputeResource

>>> cbc = CBCloudAPI()
>>> query = cbc.select(AWSComputeResource).set_region(['us-west-1'])
>>> job = query.download("CSV")
>>> job.await_completion()
>>> print(job.get_output_as_string())
Instance ID,Platform,Account ID,VPC ID,Added Time,AWS Tags,ASG,Instance Type,Image ID,Image name,Image [...]
"i-043de738ce129b77a","Unix/Linux","267678331262","vpc-0faa4803c3de51c87","2022-06-02T05:23:27",[...]
"i-0febda35fcaf2dbd1","Unix/Linux","267678331262","vpc-0faa4803c3de51c87","2022-07-11T08:26:58",[...]
"i-0b8b62d7c3aea1f9f","Unix/Linux","267678331262","vpc-0faa4803c3de51c87","2022-06-02T05:21:26",[...]
>>> # note: lines truncated in above output for formatting purposes

Summarize Compute Resources

Note

This functionality is not available for vCenter compute resources.

By calling the summarize() method on the query object returned by select(), after setting
search criteria, a summary of compute resources may be generated. The fields which may be summarized
are as follows:

For AWSComputeResource:

	availability_zone

	region

	subnet_id

	virtual_private_cloud_id

	security_group_id

Example (AWS workloads):

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.workload import AWSComputeResource
>>> cbc = CBCloudAPI()
>>> query = cbc.select(AWSComputeResource)
>>> summary = query.summarize(['availability_zone', 'region', 'virtual_private_cloud_id'])
>>> print(summary)
{'region': 5, 'availability_zone': 12, 'virtual_private_cloud_id': 8}

Interactive example script featuring Workloads Search

We have a number of example scripts you can use with the CBC SDK.

[image: _images/workloads_example_script.gif]
This interactive script highlights the capabilities of the CBC SDK. It uses user input to guide you
through the functionalities of the Workloads Search.

You can download it from: here [https://github.com/carbonblack/carbon-black-cloud-sdk-python/blob/develop/examples/workload/workloads_search_example.py]

Alert Migration

Use this guide to update from SDK v1.4.3 or earlier (using Alerts v6 API) to
SDK v1.5.0 or (Alerts v7 API).

We recommend that customers evaluate the new fields that are available in Alerts v7 API and supported in SDK 1.5.0 onwards
to maximize the benefits from the new data. A lot of new metadata is included in the Alert record that can help simplify your integration. For example, if you were previously getting process information to enrich the command
line, the process commandline is now included in the Alert record.

Resources

	Alerts Migration Guide [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration]

	Alerts v7 Announcement [https://developer.carbonblack.com/2023/06/announcing-vmware-carbon-black-cloud-alerts-v7-api/]

	Alert Search and Response Fields [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alert-search-fields]

	Example script showing breaking and compatibility features alert_v6_v7_migration.py in GitHub Examples [https://github.com/carbonblack/carbon-black-cloud-sdk-python/tree/develop/examples/platform].

	SDK 1.5.0 Alert Example Script alerts_common_scenarios.py in GitHub Examples [https://github.com/carbonblack/carbon-black-cloud-sdk-python/tree/develop/examples/platform].

Overview

In SDK 1.5.0, we balance backwards compatibility with making
breaking changes apparent to avoid silent integration failures. Such failures might lead to the perception that things continue to work
when they do not work.

	Breaking Changes

	Default Search Time Period is reduced to two weeks. See Default Search Time Period.

	Fields that do not exist in Alert v7 API: FunctionalityDecommissioned exception is raised if called. See
SDK Treatment of Fields that have been removed.

	get_events() method has been removed. See Enriched Events have been Replaced by Observations.

	Facet terms match the field names. See Facet Terms.

	Workflow is rebuilt. See Streamlined Alert Workflow.

	Create Note returns a single Note instance instead of a list. See create_note() return type.

	Backwards compatibility:

	Class name change: Alert replaces BaseAlert, but BaseAlert is retained. See Class Name Changes.

	Field name changes: The previous name is aliased to the new name on get, set, and access by property name. See Field names aliased.

	The single field port is separated into local and remote fields. See Port - split into local and remote.

New Features

Enjoy all the new features!

See an example script that demonstrates the SDK 1.5.0 features in
GitHub Examples, alerts_common_scenarios.py [https://github.com/carbonblack/carbon-black-cloud-sdk-python/tree/develop/examples/platform].

	New metadata fields include command lines. View the new fields and identify which fields can be used in criteria, exclusions,
and as a facet term on the Developer Network Alerts Search Fields [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alert-search-fields/].

	add_exclusions(): This new method exposes the exclusion element. Any records that match these values
are excluded from the result set.

	get_observations(): Gets the Observations that are related to the alert. This feature is available for most Alert types.

	get_process(): This method previously got the process related to a Watchlist Alert. It is extended to get processes for other Alert Types if the Alert has a process_guid set.

	Notes can be added to an Alert or a Threat.

	Alert History can be retrieved.

	to_json(version) is a new method that returns the alert object in json format.

	This method has been added to replace the use of the _info attribute because it is an internal representation.

	If no version parameter is provided, the version will default to API version v7.

	“v6” can be passed as a parameter and the attribute names will be translated to the Alert v6 names.

	to_json("v6") translates field names from the v7 field name to v6 field names and returns a structure as
close to v6 (SDK 1.4.3) as possible. The fields that do not have equivalents in the v7 API will be omitted.

	The to_json method is intended to ease the update path if the _info attribute was being used.

	Example method: show_to_json(api).

The following code snippet shows how to call the to_json method for an alert:

>>> cb = get_cb_cloud_object(args)
>>> alert_query = cb.select(Alert)
>>> alert = alert_query.first()
>>> v7_dict = alert.to_json()
>>> v6_dict = alert.to_json("v6")

The returned object v7_dict will have a dictionary representation of the alert using v7 attribute names and structure.

The returned object v6_dict will have a dictionary representation of the alert using v6 attribute names and structure.
If the field does not exist in v7, the field will be omitted from the json representation.

Breaking Changes

The following changes require integration updates to avoid using functionality that is no longer available.

The “Example Method” refers to the example script alert_v6_v7_migration.py in GitHub [https://github.com/carbonblack/carbon-black-cloud-sdk-python/tree/develop/examples/platform].

Default Search Time Period

The default search period was one month. The default search period is now two weeks.

	The SDK does not make any compensating changes for this change of time.

	Example method: base_class_and_default_time_range(api).

The following snippet shows how to set the search window to the previous month. See the Developer Network for details on the
Time Range Filter [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alerts-api/#time-range-filter]

>>> alerts = api.select(Alert).set_time_range(range="-1M")

SDK Treatment of Fields that have been removed

Some fields from the Alert API v6 (SDK 1.4.3 and earlier) do not have an equivalent in
Alert v7 API (SDK 1.5.0+). A FunctionalityDecommissioned exception will be raised if they are used.

See Removed Fields for a list of these fields.

We recommend that you do the following:

	Review the fields that do not have an equivalent.

	After updating to the SDK 1.5.0, check your integrations for error logs that contain FunctionalityDecommissioned
exceptions.

	Review the new fields and determine what changes can enhance your use cases.

	Use the add_criteria method to search for alerts. This method replaces the hand-crafted set_<field_name> methods.

	Example method: set_methods_backwards_compatibility(api).

For Removed Fields, the SDK 1.5.0+ has the following behavior:

	set_<v6 field name>() will raise a FunctionalityDecommissioned exception.

	get(<v6 field name>) will raise a FunctionalityDecommissioned exception.

	alert.field_name will raise a FunctionalityDecommissioned exception.

	Example method: get_methods_backwards_compatibility(api) and category_monitored_removed(api).

Details of all changes to API endpoints and fields are in the
Alerts Migration Guide [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration] on the Developer Network.

The following code block calls the decommissioned method

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.platform import BaseAlert
>>> api = CBCloudAPI(profile="sample")
>>> alert_query = api.select(BaseAlert).set_blocked_threat_categories(["NON_MALWARE"])

It generates the following exception:

cbc_sdk.errors.FunctionalityDecommissioned: The set_kill_chain_statuses method does not exist in in SDK v1.5.0
because kill_chain_status is not a valid field on Alert v7 API. The functionality has been decommissioned.

Similarly, the following code block calls the get attribute function by using the decommissioned attribute: blocked_threat_categories:

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.platform import BaseAlert
>>> api = CBCloudAPI(profile="sample")
>>> alert_query = api.select(BaseAlert)
>>> alert = alert_query.first()
>>> alert.get("blocked_threat_category")

It generates the following exception:

cbc_sdk.errors.FunctionalityDecommissioned:
The Attribute 'blocked_threat_category' does not exist in object 'WatchlistAlert' because it was
deprecated in Alerts v7. In SDK 1.5.0 the functionality is decommissioned.

Removed Fields

Field that have been removed from Alert v7 API

	Field Name

	Alert Types

	blocked_threat_category

	CB Analytics

	category

	All

	count

	Watchlist

	document_guid

	Watchlist

	group_details

	All

	kill_chain_status

	CB Analytics

	not_blocked_threat_category

	CB Analytics

	target_value

	Container Runtime

	threat_activity_dlp

	CB Analytics

	threat_activity_phish

	CB Analytics

	threat_cause_threat_category

	All

	threat_cause_vector

	All

	threat_indicators

	Watchlist

	workload_id

	Container Runtime

Enriched Events have been Replaced by Observations

CBAnalytics get_events() is removed.

	The Enriched Events that this method returns have been deprecated.

	Instead, use Observations [https://developer.carbonblack.com/2023/07/how-to-take-advantage-of-the-new-observations-api/].

	More information is on the Developer Network Blog,
How to Take Advantage of the New Observations API [https://developer.carbonblack.com/2023/07/how-to-take-advantage-of-the-new-observations-api/].

Instead of:

>>> cb = get_cb_cloud_object(args)
>>> alert_query = cb.select(CBAnalyticsAlert)
>>> alert = alert_query.first()
>>> alert.get_events()

Use get_observations. Observations are available for many Alert Types whereas Enriched Events were limited to
CB_Analytics Alerts. Watchlist Alerts do not have associated observations, so Alerts of type Watchlist
are excluded from the search.

>>> alert_query = cb.select(Alert).add_exclusions("type", "WATCHLIST")
>>> alert = alert_query.first()
>>> observations_list = alert.get_observations()
>>> len(observations_list) # execute the query

	Example method: observation_replaces_enriched_event(api)

Facet Terms

In Alerts v6 API and SDK 1.4.3, the terms available for use in facet requests
were very limited and the facet terms did not always match the field name upon which it operated.

In Alerts v7 API and SDK 1.5.0, more fields are available and the facet term matches the field name.

	If the term used in v6 is the same as the field in v7, the facet term continues to work

	If the term used in v6 is not the same as v7, a FunctionalityDecommissioned exception is raised.

	Raising the exception was a conscious decision to reduce the complexity and ongoing maintenance effort in the SDK,
and to ensure visibility to customers that the Facet capability has significant improvements from which
integrations will benefit.

	Example method: facet_terms(api)

The following snippet shows a pre-SDK 1.4.3 facet request and the FunctionalityDecommissioned exception that the
SDK 1.5.0 SDK generates.

>>> from cbc_sdk.errors import FunctionalityDecommissioned
>>> try:
... print("Calling facets with invalid term.")
... facet_list = api.select(BaseAlert).facets(["ALERT_TYPE"])
... except FunctionalityDecommissioned as e:
... print(e)
...
Calling facets with invalid term.
The Field 'ALERT_TYPE' is not a valid facet name because it was deprecated in Alerts v7. functionality has been decommissioned.

The following snippet shows a valid request and printed response.

>>> import json
>>> facet_list = api.select(Alert).facets(["policy_applied", "attack_technique"])
>>> print("This is a valid facet response: {}".format(json.dumps(facet_list, indent=4)))
This is a valid facet response: [
 {
 "field": "attack_technique",
 "values": [
 {
 "total": 2,
 "id": "T1048.002",
 "name": "T1048.002"
 },
 {
 "total": 1,
 "id": "T1490",
 "name": "T1490"
 }
]
 },
 {
 "field": "policy_applied",
 "values": [
 {
 "total": 69224,
 "id": "NOT_APPLIED",
 "name": "NOT_APPLIED"
 },
 {
 "total": 450,
 "id": "APPLIED",
 "name": "APPLIED"
 }
]
 }
]

Streamlined Alert Workflow

The Alert Closure workflow is updated to be more streamlined and improves Alert lifecycle management.

The workflow leverages the alert search structure to specify the alerts to close and has the following status’:

	Open, the initial status

	In Progress, a new intermediate status

	Closed which replaces Dismissed

As a result of the underlying change, the workflow does not have backwards compatibility built into it. The new workflow is:

	Use an Alert Search to specify which Alerts will have their status updated.

	The request body is a search request and all alerts matching the request will be updated.

	Two common uses are to update one alert or to update all alerts that have a specific threat id.

	Any search request can be used as the criteria to select alerts to update the alert status.

>>> # This query selects only the alert that has the specified id:
>>> ALERT_ID = "id of the alert to close"
>>> alert_query = api.select(Alert).add_criteria("id", [ALERT_ID])
>>> # This query selects all alerts that have the specified threat id. It is not used again in this example
>>> alert_query_for_threat = api.select(Alert).add_criteria("threat_id","CFED0B211ED09F8EC1C83D4F3FBF1709")

	Submit a job to update the status of Alerts.

	The status can be OPEN, IN PROGRESS or CLOSED (previously DISMISSED).

	You can include a Closure Reason.

	The immediate response confirms that the job was successfully submitted.

	Use the Job() cbc_sdk.platform.jobs.Job class to determine when the update is complete.

Use the Job object to wait until the Job has completed. Your python script will wait while
the SDK manages the polling to determine when the job is complete.

>>> job.await_completion().result()

	Refresh the Alert Search to get the updated alert data into the SDK.

>>> alert.refresh()
>>> print("Status = {}, Expecting CLOSED".format(alert.workflow["status"]))

	The Dismissal of Future Alerts for the same threat id has not changed.

The following sequence of calls updates future alerts that have the same threat id. It is usually used in combination
with the alert closure; that is, you can use it to dismiss future alerts call to close future occurrences and call
alert closure to close current open alerts that have the threat id.

>>> alert_threat_query = api.select(Alert).add_criteria("threat_id","CFED0B211ED09F8EC1C83D4F3FBF1709")
>>> alert.dismiss_threat("threat remediation done", "testing dismiss_threat in the SDK")
>>> # To undo the dismissal, call update
>>> alert.update_threat("threat remediation un-done", "testing update_threat in the SDK")

create_note() Return Type

alert.create_note() returns a Note object instead of a list.

>>> alert_query = api.select(Alert)
>>> alert = alert_query.first()
>>> new_note = alert.create_note("Adding note from SDK with current timestamp: {}".format(time.time()))
>>> print(type(new_note))
<class 'cbc_sdk.platform.alerts.Alert.Note'>

Backwards Compatibility

The following changes have code in the SDK to map updated functionality to previous SDK functions. The SDK will continue
to work, but new features should be reviewed to enhance integration and automation.

The “Example Method” refers to the example script alert_v6_v7_migration.py in GitHub [https://github.com/carbonblack/carbon-black-cloud-sdk-python/tree/develop/examples/platform].

Class Name Changes

	The base class for Alerts in the SDK has changed from BaseAlert to Alert.

	Backwards compatibility is retained.

	Example method: base_class_and_default_time_range(api).

Field Names Aliased

To align with other parts of Carbon Black Cloud and industry conventions, many fields were deprecated
from Alerts API v6 and have equivalent fields using a different name in v7. In the SDK v1.5.0, aliases are in place
to minimize breaks.

Details of all changes to API endpoints and fields are in the
Alerts Migration Guide [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration] on the Developer Network.

set_<v6 field name>() on the query object translates to the new field name for the request.

	Update to use `add_criteria(field_name, [field_value]).

	You can use many new fields in criteria to search Alerts using add_criteria,
but do not have set_<field_name> methods.

	Example method: set_methods_backwards_compatibility(api).

get(<v6 field name>) translates to the new field name to look up the value.

	Example method: get_methods_backwards_compatibility(api).

alert.field_name translates the field name to the new name and returns the matching value.

	Example method: set_methods_backwards_compatibility(api).

The following fields have a new name in Alert v7 and the new field name contains the same value.

Field mappings where the field has been renamed

	Alert v6 API - SDK 1.4.3 or earlier

	Alert v7 API - SDK 1.5.0 or later

	cluster_name

	k8s_cluster

	create_time

	backend_timestamp

	first_event_time

	first_event_timestamp

	last_event_time

	last_event_timestamp

	last_update_time

	backend_update_timestamp

	namespace

	k8s_namespace

	notes_present

	alert_notes_present

	policy_id

	device_policy_id

	policy_name

	device_policy

	port

	netconn_local_port

	protocol

	netconn_protocol

	remote_domain

	netconn_remote_domain

	remote_ip

	netconn_remote_ip

	remote_namespace

	remote_k8s_namespace

	remote_replica_id

	remote_k8s_pod_name

	remote_workload_kind

	remote_k8s_kind

	remote_workload_name

	remote_k8s_workload_name

	replica_id

	k8s_pod_name

	rule_id

	rule_id

	run_state

	run_state

	target_value

	device_target_value

	threat_cause_actor_certificate_authority

	process_issuer

	threat_cause_actor_name

	process_name. Note that threat_cause_actor_name was only the name of the executable. process_name contains the full path.

	threat_cause_actor_publisher

	process_publisher

	threat_cause_actor_sha256

	process_sha256

	threat_cause_cause_event_id

	primary_event_id

	threat_cause_md5

	process_md5

	threat_cause_parent_guid

	parent_guid

	threat_cause_reputation

	process_reputation

	threat_indicators

	ttps

	watchlists

	watchlists.id

	workflow.last_update_time

	workflow.change_timestamp

	workload_kind

	k8s_kind

	workload_name

	k8s_workload_name

Port - split into local and remote

	In SDK 1.4.3 and earlier, there was a single field port.

	In Alerts v7 API and SDK 1.5.0, there are two fields; netconn_local_port and netconn_remote_port.

	The legacy method set_ports() sets the criteria for netconn_local_port.

>>> # This legacy search request:
>>> api.select(BaseAlert).set_ports(["NON_MALWARE"])

Migration Guide For Live Response From v3 To v6

This guide will help you migrate from Live Response v3 to v6.

Overview

Most of the changes from v3 to v6 are on the routes. Thе updated API (v6) includes a more granular approach to roles-based access
control (RBAC).

This change was implemented in CBC SDK 1.3.0, Released June 8, 2021. If you are on a more recent version of this SDK,
you are already using the new version.

Access Permissions

A key wth a Custom Access Level with appropriate permissions needs to be created for the Live Response. The following
table shows the corresponding permissions that needs to be enabled, based on the existing roles.

	Permission

	What it controls (commands)

	Which existing roles have access

	org.liveresponse

	
Permanently disabling the Live Response feature on an individual endpoint:

Disable Live Response on the Endpoints page

	
Level 3 Analyst

Live Response Admin - Legacy

Super Admin

	org.liveresponse.files

	
Read, write and/or delete files on the endpoint:

cd, delete, dir, drives, get, mkdir, put, pwd

	
Level 2 Analyst

Level 3 Analyst

Live Response Admin - Legacy

Super Admin

	org.liveresponse.memdump

	
Dump kernel memory on the endpoint:

memdump

	
Level 3 Analyst

Live Response Admin - Legacy

Super Admin

	org.liveresponse.process

	
List, stop and execute processes on the endpoint:

exec, execfg, kill, ps

	
Level 2 Analyst (cannot execute)

Level 3 Analyst

Live Response Admin - Legacy

Super Admin

	org.liveresponse.registry

	
View, add, edit and delete registry entries:

reg add, reg delete, reg query, reg set

	
Level 2 Analyst

Level 3 Analyst

Live Response Admin - Legacy

Super Admin

	org.liveresponse.session

	
Initiate live response sessions, plus:

clear, help

	
Level 2 Analyst

Level 3 Analyst

Live Response Admin - Legacy

Super Admin

Changes in the routes and response codes

	v3

	v6

	/integrationServices/v3/cblr/

	/appservices/v6/orgs/{org_key}/liveresponse/

	POST /sessions/{session_id} 200

	POST /sessions 201

	POST /session/{session_id)/file 200

	POST /sessions/{session_id)/files 201

	POST /session/{session_id}/command

	POST /sessions/{session_id}/commands

	PUT /session {“session_id”: “1:37191”, “status”: “CLOSE”}

	DELETE /sessions/{session_id} 204

	GET /session/{sessionId}/file/{fileId}/content 200

	GET /sessions/{session_id}/files/{file_id}/content 302

	DELETE /session/{sessionId}/file/{fileId} 200

	DELETE /sessions/{session_id}/files/{file_id} 204

Changes in some of the request/response fields

	Where is the change?

	v3

	v6

	All API endpoints

	sensor_id

	device_id

	Process command

	username

	process_username

	Process command

	path

	process_path

	Process command

	pid

	process_pid

	Process command

	command_line

	process_cmdline

	Process command

	parent

	parent_pid

	Registry command

	valueType

	value_type

	Registry command

	valueData

	value_data

	Registry command

	valueName

	value_name

Additional Information

	(CBC) Live Response API releasing v6: now with granular RBAC! [https://community.carbonblack.com/t5/Developer-Relations/CBC-Live-Response-API-releasing-v6-now-with-granular-RBAC/m-p/102358/thread-id/2595]

	Live Response Documentation [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/live-response-api/]

	Live Response API Migration Guide [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/live-response-migration/]

Notifications to Alerts Migration

Use this guide to update from using `get_notifications()`, which leverages the
`/integrationServices/v3/notification` API to using Alerts in SDK v1.5.0 or higher with Alerts v7 API.

Note

The /integrationServices/v3/notification API is deprecated, and deactivation is planned for 31 October 2024.

The Access Level Type `SIEM` used to access the Notifications API is also deprecated. Deactivation of the legacy access level type `SIEM` is planned for 31 January 2025.

For more information about migrating from the API and alternative solutions, see
IntegrationService notification v3 API Migration Guide [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/notification-migration/]

The key differences between Notifications and Alerts are:

	In Notifications, the criteria that defines when a notification is sent is defined in the Carbon Black Cloud console. When using the Alerts v7 API, the criteria is part of the API request

	Notifications work on a subscription-based principle and they require a SIEM authentication key. By using that key, you are subscribing to a certain criteria of alerts.

	As the API Notification API is deprecated, new alert types such as Intrusion Detection System Alerts cannot be retrieved from the Notifications API.

	The Notifications endpoint is a read-once queue whereas the Alerts v7 is a search request. When calling the Alerts v7 API, the caller (your script) must manage state, keeping track of the timestamp of the last Alert retrieved and using that for the start timestamp on the next request. See the Alert Bulk Export guide for details on the polling algorithm.

We recommend that customers evaluate the new fields that are available in Alerts v7 API and supported in SDK 1.5.0 onwards
to maximize the benefits from the new data. A lot of new metadata is included in the Alert record that can help simplify your integration. For example, if you were previously getting process information to enrich the command
line, the process commandline is now included in the Alert record.

As at SDK 1.5.0, Notifications are deprecated and functional; there has not been a breaking change.
The underlying API will be deactivated on October 31, 2024 so you must move to Alerts in SDK 1.5.0 or newer which uses Alerts v7 API, or to the
Data Forwarder [https://docs.vmware.com/en/VMware-Carbon-Black-Cloud/services/carbon-black-cloud-user-guide/GUID-E8D33F72-BABB-4157-A908-D8BBDB5AF349.html] with Alert Schema 2.x before then.

Resources

	IntegrationServices Notification v3 API Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/notification-migration/]

	Carbon Black Cloud Syslog Connector 2.0 [https://developer.carbonblack.com/2023/10/announcing-the-carbon-black-cloud-syslog-connector-2.0.0-release/]

	Alert Bulk Export [http://localhost:1313/reference/carbon-black-cloud/guides/alert-bulk-export/]

	Alerts Migration Guide [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration]

	Alerts v7 Announcement [https://developer.carbonblack.com/2023/06/announcing-vmware-carbon-black-cloud-alerts-v7-api/]

	Alert Search and Response Fields [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alert-search-fields]

	SDK 1.5.0 Alert Example Script alerts_common_scenarios.py in GitHub Examples [https://github.com/carbonblack/carbon-black-cloud-sdk-python/tree/develop/examples/platform].

	Alerts Bulk Export Example Script alerts_bulk_export.py in GitHub Examples [https://github.com/carbonblack/carbon-black-cloud-sdk-python/tree/develop/examples/platform].

How to Update the SDK Usage

This screen shot shows the Notification configuration page in the Carbon Black Cloud console.

[image: Editing a notification in the CBC Platform]
You can replicate the settings shown in the screenshot by running the following search on Alerts:

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.platform import Alert
>>> alerts = api.select(Alert).set_minimum_severity(7).\
>>> add_criteria("type", ["CB_ANALYTICS", "DEVICE_CONTROL"]).\
>>> add_criteria("device_policy", "Standard")

An Alert contains a lot more information than a Notification, and most of the fields are available for searching.

The other modification required is that where the Notifications was a read one queue, Alerts are retrieved using a search.
An example script with the polling logic implemented is in the GitHub Repository, alerts_bulk_export.py in GitHub Examples [https://github.com/carbonblack/carbon-black-cloud-sdk-python/tree/develop/examples/platform].

There is also a guide to Alert Bulk Export [http://localhost:1313/reference/carbon-black-cloud/guides/alert-bulk-export/]
on the developer network with a detailed explanation of the logic.

Porting Applications from CBAPI to Carbon Black Cloud SDK

This guide will help you migrate from CBAPI to the Carbon Black Cloud Python SDK.

This is necessary to take advantage of new functionality in Carbon Black Cloud and also to ensure
that functionality is not lost from your integrations when APIs are deactivated in July 2024. Read more
about the new features in the Developer Network Blogs [https://developer.carbonblack.com/blog/].

Note

CBAPI applications using Carbon Black EDR (Response) or Carbon Black App Control (Protection) cannot be ported,
as support for on-premise products is not present in the CBC SDK. Continue to use CBAPI for these applications.

Overview

CBC SDK has changes to package names, folder structure, and functions. Import statements will need to change for the
packages, modules, and functions listed in this guide.

Package Name Changes

A number of packages have new name equivalents in the CBC SDK. Endpoint Standard and Enterprise EDR have had parts
replaced to use the most current API routes.

Top-level Package Name Change

The top-level package name has changed from CBAPI to CBC SDK.

	CBAPI Name (old)

	CBC SDK Name (new)

	cbapi.psc

	cbc_sdk

Product Name Changes

Carbon Black Cloud product names have been updated in the SDK.

	CBAPI Name (old)

	CBC SDK Name (new)

	cbapi.psc.defense

	cbc_sdk.endpoint_standard

	cbapi.psc.livequery

	cbc_sdk.audit_remediation

	cbapi.psc.threathunter

	cbc_sdk.enterprise_edr

	cbapi.psc

	cbc_sdk.platform

Features for new products such as Container Security and Workload Security have also been added in the appropriate
namespace.

APIs that have been deprecated or deactivated

Some modules made use of APIs that have been deactivated and are either no longer included in the Carbon Black Cloud,
or are planned for deprecation in the second half of 2024. The following table shows
the original module, the replacement module, and where to find more information.

For a complete list of APIs that are deprecated and the associated migration information, see the
Migration Guide [https://developer.carbonblack.com/reference/carbon-black-cloud/api-migration/] on the
Developer Network. This is important if you have integrations with Carbon Black Cloud that do not use the
Carbon Black Cloud Python SDK (this).

Deprecated Modules and their replacements

	CBAPI module

	Replacement CBC SDK Module

	More Information

	cbapi.psc.defense Event

	cbc_sdk.platform Observation

	This was deactivated in January 2021. Review the Carbon Black Cloud User Guide to learn more about Observations [https://docs.vmware.com/en/VMware-Carbon-Black-Cloud/services/carbon-black-cloud-user-guide/GUID-5EAF4BA6-601C-46AD-BA8E-D0BD05681ADF.html/]

	cbapi.psc.defense Policy

	cbc_sdk.platform Policy

	IntegrationServices Policy v3 API Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/policy-migration/]

	cbc_sdk.endpoint_standard EnrichedEvent

	cbc_sdk.platform Observation

	Enriched Events will remain available until July 2024. Enriched Events API Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/observations-migration/]

	cbc_sdk.platform Alert

	Module path is unchanged. Attributes and methods will change

	In SDK 1.5.0 the Alert module will be updated to use the new Alert v7 API. A migration guide will be included with that release. Planned for October 2023.

	SIEM Notifications - cbc_sdk.rest_api CBCloudAPI get_notifications()

	cbc_sdk.platform Alert or Alert Data Forwarder

	Notification Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/notification-migration/]

Modules that have been moved and need new import statements

Import statements will need to change:

Endpoint Standard (Defense)

CBAPI
from cbapi.psc.defense import Device

CBC SDK
from cbc_sdk.platform import Device

Audit and Remediation (LiveQuery)

CBAPI
from cbapi.psc.livequery import Run, RunHistory, Result, DeviceSummary

CBC SDK
from cbc_sdk.audit_remediation import Run, RunHistory, Result, DeviceSummary

Enterprise EDR (ThreatHunter)

CBAPI
from cbapi.psc.threathunter import Feed, Report, Watchlist

CBC SDK
from cbc_sdk.enterprise_edr import Feed, Report, Watchlist

Moved Packages and Models

Some modules have been moved to a more appropriate location.

	CBAPI Name (old)

	CBC SDK Name (new)

	cbapi.example_helpers

	cbc_sdk.helpers

	cbapi.psc.alerts_query

	cbc_sdk.platform

	cbapi.psc.devices_query

	cbc_sdk.platform

Import statements will need to change:

Example Helpers

CBAPI
from cbapi.example_helpers import build_cli_parser

CBC SDK
from cbc_sdk.helpers import build_cli_parser

Alerts

CBAPI
from cbapi.psc.alerts_query import *

CBC SDK
from cbc_sdk.platform import *

Devices

CBAPI
from cbapi.psc.devices_query import *

CBC SDK
from cbc_sdk.platform import *

Replaced Modules

In 2020, Carbon Black Cloud APIs were updated to provide a more consistent search
experience. Platform search replaced Endpoint Standard Event searching, and Enterprise EDR Process and Event
searching.

For help beyond import statement changes, check out these resources:

	Unified Platform Experience: What to Expect [https://community.carbonblack.com/t5/Carbon-Black-Cloud-Discussions/Unified-Platform-Experience-What-to-Expect/m-p/95699#M666]

	Migration Guide: Carbon Black Cloud Events API [https://community.carbonblack.com/t5/Developer-Relations/Migration-Guide-Carbon-Black-Cloud-Events-API/m-p/95915/thread-id/2519]

	Advanced Search Tips for Carbon Black Cloud Platform Search [https://community.carbonblack.com/t5/Carbon-Black-Cloud-Knowledge/Advanced-search-tips-for-Carbon-Black-Cloud-Platform-Search/ta-p/93230]

Endpoint Standard

Endpoint Standard Events have been replaced with Platform Observations and the old event functionality has been
decommissioned:

Endpoint Standard Enriched Events

CBAPI
from cbapi.psc.defense import Event

CBC SDK - decommissioned--do not use
from cbc_sdk.endpoint_standard import Event

CBC SDK - deprecated--stop using before July 31st 2024
from cbc_sdk.endpoint_standard import EnrichedEvent

CBC SDK - Observations. Use this!
from cbc_sdk.platform import Observation

Enterprise EDR

Enterprise EDR Processes and Events have been removed and replaced with Platform Processes and Events:

Enterprise EDR Process and Event

CBAPI
from cbapi.psc.threathunter import Process, Event

CBC SDK
from cbc_sdk.platform import Process, Event

Folder Structure Changes

The directory structure for the SDK has been refined compared to CBAPI.

	Addition of the Platform folder

	Removal of Response and Protection folders

	Consolidation of model objects and query objects

	Product-specific rest_api.py files replaced with package level rest_api.py

	from cbapi.psc.threathunter import CbThreatHunterAPI becomes from cbc_sdk import CBCloudAPI, etc.

Directory Tree Changes

In general, each module’s models.py and query.py files were combined into their respective base.py files.

CBAPI had the following abbreviated folder structure:

src
└── cbapi
 └── psc
 ├── defense
 │ ├── models.py
 │ │ ├── Device
 │ │ ├── Event
 │ │ └── Policy
 │ └── rest_api.py
 │ └── CbDefenseAPI
 ├── livequery
 │ ├── models.py
 │ │ ├── Run
 │ │ ├── RunHistory
 │ │ ├── Result
 │ │ ├── ResultFacet
 │ │ ├── DeviceSummary
 │ │ └── DeviceSummaryFacet
 │ └── rest_api.py
 │ └── CbLiveQueryAPI
 └── threathunter
 ├── models.py
 │ ├── Process
 │ ├── Event
 │ ├── Tree
 │ ├── Feed
 │ ├── Report
 │ ├── IOC
 │ ├── IOC_V2
 │ ├── Watchlist
 │ ├── ReportSeverity
 │ ├── Binary
 │ └── Downloads
 └── rest_api.py
 └── CbThreatHunterAPI

Each product had a models.py and rest_api.py file.

CBC SDK has the following abbreviated folder structure:

src
└── cbc_sdk
 ├── audit_remediation
 │ └── base.py
 │ ├── Run
 │ ├── RunHistory
 │ ├── Result
 │ ├── ResultFacet
 │ ├── DeviceSummary
 │ └── DeviceSummaryFacet
 ├── endpoint_standard
 │ └── base.py
 │ ├── Device
 │ ├── Event
 │ ├── Policy
 │ ├── EnrichedEvent
 │ └── EnrichedEventFacet
 ├── enterprise_edr
 │ ├── base.py
 │ ├── threat_intelligence.py
 │ │ ├── Watchlist
 │ │ ├── Feed
 │ │ ├── Report
 │ │ ├── ReportSeverity
 │ │ ├── IOC
 │ │ └── IOC_V2
 │ └── ubs.py
 │ ├── Binary
 │ └── Downloads
 └── platform
 │ ├── alerts.py
 │ │ ├── WatchlistAlert
 │ │ ├── CBAnalyticsAlert
 │ │ ├── Workflow
 │ │ └── WorkflowStatus
 │ ├── processes.py
 │ │ ├── Process
 │ │ ├── ProcessFacet
 │ ├── events.py
 │ │ ├── Event
 │ │ └── EventFacet
 │ └── devices.py
 │ └── Device
 └── rest_api.py
 └── CBCloudAPI.py

Now, each product has either a base.py file with all of its objects, or categorized files like
platform.alerts.py and platform.devices.py. The package level rest_api.py replaced each product-specific
rest_api.py file.

Function Changes

Helper Functions:

	CBAPI Name (old)

	CBC SDK Name (new)

	cbapi.example_helpers.get_cb_defense_object()
cbapi.example_helpers.get_cb_livequery_object()
cbapi.example_helpers.get_cb_threathunter_object()
cbapi.example_helpers.get_cb_psc_object()

	cbc_sdk.helpers.get_cb_cloud_object()

Audit and Remediation Queries:

	CBAPI Name (old)

	CBC SDK Name (new)

	cb.query(sql_query)

	cb.select(Run).where(sql=sql_query)

	cb.query_history(query_string)

	cb.select(RunHistory).where(query_string)

	cb.query(sql_query).policy_ids()

	cb.select(Run).policy_id()

API Objects:

	CBAPI Name (old)

	CBC SDK Name (new)

	cbapi.psc.defense.CbDefenseAPI
cbapi.psc.livequery.CbLiveQueryAPI
cbapi.psc.threathunter.CbThreatHunterAPI
cbapi.psc.CbPSCBaseAPI

	cbc_sdk.CBCloudAPI

The CBCloudAPI Object

The CBCloudAPI object is the key object used in working with the Carbon Black Cloud. It represents the connection
to the Carbon Black Cloud server, to the specific organization to which you have access. It is used to search for
objects representing specific data items on the server, such as devices, alerts, policies, and so forth. It also has
a number of utility functions and properties providing access to additional functionality on the server, such as
Live Response.

A program using the Carbon Black Cloud SDK will start by creating a CBCloudAPI object, passing it the parameters
necessary to authenticate to the server. The authentication parameters may be specified as direct arguments when the
object is created, or may be provided by a credential provider (see Credential Providers Package). This object
is then called upon for SDK operations, or passed as a parameter to other SDK functions.

As the CBCloudAPI object relies upon REST calls to the server, it does not hold network connections open, and
hence need not be explicitly closed.

CBCloudAPI Creation Examples

Authenticate to the Carbon Black Cloud server with directly-supplied parameters:

from cbc_sdk import CBCloudAPI
api = CBCloudAPI(url='https://defense.conferdeploy.net', token='ABCDEFGHIJKLMNOPQRSTUVWX/YZ12345678',
 org_key='ABCD1234')

as an example, get the list of all watchlist alerts
from cbc_sdk.platform import WatchlistAlert
query = api.select(WatchlistAlert)
alerts_list = list(query)

Authenticate to the Carbon Black Cloud server using a profile with the default credential provider:

from cbc_sdk import CBCloudAPI
api = CBCloudAPI(profile='my_profile')

as an example, get the list of all watchlist alerts
from cbc_sdk.platform import WatchlistAlert
query = api.select(WatchlistAlert)
alerts_list = list(query)

Authenticate to the Carbon Black Cloud server using a profile supplied by a different credential provider:

from cbc_sdk import CBCloudAPI
from cbc_sdk.credentials import KeychainCredentialProvider
creds = KeychainCredentialProvider('keychain-to-use', 'my-username')
api = CBCloudAPI(profile='my_profile', credential_provider=creds)

as an example, get the list of all watchlist alerts
from cbc_sdk.platform import WatchlistAlert
query = api.select(WatchlistAlert)
alerts_list = list(query)

Class Documentation

	
class CBCloudAPI(*args, **kwargs)

	Bases: BaseAPI

A connection to the Carbon Black Cloud.

The core object for interacting with the Carbon Black Cloud SDK.

Example

>>> from cbc_sdk import CBCloudAPI
>>> cb = CBCloudAPI(profile="production")

Create a new instance of the CBCloudAPI object.

	Parameters:

	
	*args (list) – List of arguments to pass to the API object.

	**kwargs (dict) – Keyword arguments to pass to the API object.

	Keyword Arguments:

	
	credential_file (str) – The name of a credential file to be used by the default credential provider.

	credential_provider (cbc_sdk.credentials.CredentialProvider) – An alternate credential provider to use to
find the credentials to be used when accessing the Carbon Black Cloud.

	csp_api_token (str) – The CSP API Token for Carbon Black Cloud.

	csp_oauth_app_id (str) – The CSP OAuth App ID for Carbon Black Cloud.

	csp_oauth_app_secret (str) – The CSP OAuth App Secret for Carbon Black Cloud.

	integration_name (str) – The name of the integration using this connection. This should be specified as
a string in the format ‘name/version’

	max_retries (int) – The maximum number of times to retry failing API calls. Default is 5.

	org_key (str) – The organization key value to use when accessing the Carbon Black Cloud.

	pool_block (bool) – True if the connection pool should block when no free connections are available.
Default is False.

	pool_connections (int) – Number of HTTP connections to be pooled for this instance. Default is 1.

	pool_maxsize (int) – Maximum size of the connection pool. Default is 10.

	profile (str) – Use the credentials in the named profile when connecting to the Carbon Black Cloud server.
Uses the profile named ‘default’ when not specified.

	proxy_session (requests.session.Session) – Proxy session to be used for cookie persistence, connection
pooling, and configuration. Default is None (use the standard session).

	thread_pool_count (int) – The number of threads to create for asynchronous queries. Defaults to 3.

	timeout (float) – The timeout to use for for API connection requests. Default is None (no timeout).

	token (str) – The API token to use when accessing the Carbon Black Cloud.

	url (str) – The URL of the Carbon Black Cloud provider to use.

	
alert_search_suggestions(query)

	Returns suggestions for keys and field values that can be used in a search.

	Parameters:

	query (str) – A search query to use.

	Returns:

	A list of search suggestions expressed as dict objects.

	Return type:

	list[dict]

	
api_json_request(method, uri, **kwargs)

	Submit a request to the server.

Normally only used by other SDK objects; used from user code only to submit a request to the server that is
not currently implemented in the SDK.

	Parameters:

	
	method (str) – HTTP method to use.

	uri (str) – URI to submit the request to.

	**kwargs (dict) – Additional arguments.

	Keyword Arguments:

	
	data (object) – Body data to be passed to the request, formatted as JSON.

	headers (dict) – Header names and values to pass to the request.

	Returns:

	Result of the operation, as JSON

	Return type:

	object

	Raises:

	ServerError – If there’s an error output from the server.

	
api_request_iterate(method, uri, **kwargs)

	Submit a request to the specified URI and iterate over the response as lines of text.

Should only be used for requests that can be expressed as large amounts of text that can be broken into lines.

Normally only used by other SDK objects; used from user code only to submit a request to the server that is
not currently implemented in the SDK.

	Parameters:

	
	method (str) – HTTP method to use.

	uri (str) – The URI to send the request to.

	**kwargs (dict) – Additional arguments for the request.

	Keyword Arguments:

	
	data (object) – Body data to be passed to the request, formatted as JSON.

	headers (dict) – Header names and values to pass to the request.

	Yields:

	str – Each line of text in the returned data.

	
api_request_stream(method, uri, stream_output, **kwargs)

	Submit a request to the specified URI and stream the results back into the given stream object.

Normally only used by other SDK objects; used from user code only to submit a request to the server that is
not currently implemented in the SDK.

	Parameters:

	
	method (str) – HTTP method to use.

	uri (str) – The URI to send the request to.

	stream_output (RawIOBase) – The output stream to write the data to.

	**kwargs (dict) – Additional arguments for the request.

	Keyword Arguments:

	
	data (object) – Body data to be passed to the request, formatted as JSON.

	headers (dict) – Header names and values to pass to the request.

	Returns:

	The return data from the request.

	Return type:

	object

	
audit_remediation(sql)

	Run an audit-remediation query.

	Parameters:

	sql (str) – The SQL for the query.

	Returns:

	The query object.

	Return type:

	cbc_sdk.base.Query

	
audit_remediation_history(query=None)

	Run an audit-remediation history query.

	Parameters:

	query (str) – The SQL for the query.

	Returns:

	The query object.

	Return type:

	cbc_sdk.base.Query

	
bulk_threat_dismiss(threat_ids, remediation=None, comment=None)

	Dismiss the alerts associated with multiple threat IDs.

The alerts will be left in a DISMISSED state.

	Parameters:

	
	threat_ids (list[str]) – List of string threat IDs.

	remediation (str) – The remediation state to set for all alerts.

	comment (str) – The comment to set for all alerts.

	Returns:

	The request ID of the pending request, which may be used to select a WorkflowStatus object.

	Return type:

	str

	
bulk_threat_update(threat_ids, remediation=None, comment=None)

	Update the alert status of alerts associated with multiple threat IDs.

The alerts will be left in an OPEN state

	Parameters:

	
	threat_ids (list[str]) – List of string threat IDs.

	remediation (str) – The remediation state to set for all alerts.

	comment (str) – The comment to set for all alerts.

	Returns:

	The request ID of the pending request, which may be used to select a WorkflowStatus object.

	Return type:

	str

	
convert_feed_query(query)

	Converts a legacy CB Response query to a ThreatHunter query.

	Parameters:

	query (str) – The query to convert.

	Returns:

	The converted query.

	Return type:

	str

	
create(cls, data=None)

	Creates a new model.

	Parameters:

	
	cls (class) – The model being created.

	data (dict) – The data to pre-populate the model with. Default None.

	Returns:

	An instance of cls.

	Return type:

	object

Examples

>>> feed = cb.create(Feed, feed_data)

	
property custom_severities

	List of active ReportSeverity instances.

	
delete_object(uri)

	Send a DELETE request to the specified URI.

Normally only used by other SDK objects; used from user code only to submit a request to the server that is
not currently implemented in the SDK.

	Parameters:

	uri (str) – The URI to send the DELETE request to.

	Returns:

	The return data from the DELETE request, as JSON.

	Return type:

	object

	
device_background_scan(device_ids, scan)

	Set the background scan option for the specified devices.

	Parameters:

	
	device_ids (list[int]) – List of IDs of devices to be set.

	scan (bool) – True to turn background scan on, False to turn it off.

	Returns:

	The parsed JSON output from the request.

	Return type:

	dict

	Raises:

	ServerError – If the API method returns an HTTP error code.

	
device_bypass(device_ids, enable)

	Set the bypass option for the specified devices.

	Parameters:

	
	device_ids (list[int]) – List of IDs of devices to be set.

	enable (bool) – True to enable bypass, False to disable it.

	Returns:

	The parsed JSON output from the request.

	Return type:

	dict

	Raises:

	ServerError – If the API method returns an HTTP error code.

	
device_delete_sensor(device_ids)

	Delete the specified sensor devices.

	Parameters:

	device_ids (list[int]) – List of IDs of devices to be deleted.

	Returns:

	The parsed JSON output from the request.

	Return type:

	dict

	Raises:

	ServerError – If the API method returns an HTTP error code.

	
device_quarantine(device_ids, enable)

	Set the quarantine option for the specified devices.

	Parameters:

	
	device_ids (list[int]) – List of IDs of devices to be set.

	enable (bool) – True to enable quarantine, False to disable it.

	Returns:

	The parsed JSON output from the request.

	Return type:

	dict

	Raises:

	ServerError – If the API method returns an HTTP error code.

	
device_uninstall_sensor(device_ids)

	Uninstall the specified sensor devices.

	Parameters:

	device_ids (list[int]) – List of IDs of devices to be uninstalled.

	Returns:

	The parsed JSON output from the request.

	Return type:

	dict

	Raises:

	ServerError – If the API method returns an HTTP error code.

	
device_update_policy(device_ids, policy_id)

	Set the current policy for the specified devices.

	Parameters:

	
	device_ids (list[int]) – List of IDs of devices to be changed.

	policy_id (int) – ID of the policy to set for the devices.

	Returns:

	The parsed JSON output from the request.

	Return type:

	dict

	Raises:

	ServerError – If the API method returns an HTTP error code.

	
device_update_sensor_version(device_ids, sensor_version)

	Update the sensor version for the specified devices.

	Parameters:

	
	device_ids (list[int]) – List of IDs of devices to be changed.

	sensor_version (dict) – New version properties for the sensor.

	Returns:

	The parsed JSON output from the request.

	Return type:

	dict

	Raises:

	ServerError – If the API method returns an HTTP error code.

	
fetch_process_queries()

	Retrieves a list of query IDs, active or complete, known by the ThreatHunter server.

	
get_auditlogs()

	Retrieve queued audit logs from the Carbon Black Cloud Endpoint Standard server.

Note

While this can be used with an ‘API’ key generated in the Carbon Black Cloud console, those key types are
officially deprecated. Use a Custom key type with permissions as given here.

	Required Permissions:
	org,audits(READ)

	Deprecated:
	Use AuditLog.getAuditLogs (from cbc_sdk.platform) instead.

	Returns:

	List of dictionary objects representing the audit logs, or an empty list if none available.

	Return type:

	list[dict]

	
get_notifications()

	Retrieve queued notifications (alerts) from the Cb Endpoint Standard server.

Note

This can only be used with a ‘SIEM’ key generated in the Cb Endpoint Standard console.

	Deprecated:
	Use the Alerts API or the Data Forwarder to get similar notifications.

	Returns:

	List of dictionary objects representing the notifications, or an empty list if none available.

	Return type:

	list[dict]

	
get_object(uri, query_parameters=None, default=None)

	Submit a GET request to the server and parse the result as JSON before returning.

Normally only used by other SDK objects; used from user code only to submit a request to the server that is
not currently implemented in the SDK.

	Parameters:

	
	uri (str) – The URI to send the GET request to.

	query_parameters (dict) – Parameters for the query.

	default (object) – What gets returned in the event of an empty response.

	Returns:

	Result of the GET request, as JSON.

	Return type:

	object

	
get_policy_ruleconfig_parameter_schema(ruleconfig_id)

	Returns the parameter schema for a specified rule configuration.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	ruleconfig_id (str) – The rule configuration ID (UUID).

	Returns:

	The parameter schema for this particular rule configuration (as a JSON schema).

	Return type:

	dict

	Raises:

	InvalidObjectError – If the rule configuration ID is not valid.

	
get_raw_data(uri, query_parameters=None, default=None, **kwargs)

	Submit a GET request to the server and return the result without parsing it.

Normally only used by other SDK objects; used from user code only to submit a request to the server that is
not currently implemented in the SDK.

	Parameters:

	
	uri (str) – The URI to send the GET request to.

	query_parameters (dict) – Parameters for the query.

	default (object) – What gets returned in the event of an empty response.

	**kwargs (dict) – Additional arguments.

	Keyword Arguments:

	headers (dict) – Header names and values to pass to the GET request.

	Returns:

	Result of the GET request.

	Return type:

	object

	
property live_response

	The Live Response session manager object.

It is created if it does not yet exist when this property is read.

	
notification_listener(interval=60)

	Continually polls the Cb Endpoint Standard server for notifications (alerts).

Note

This can only be used with a ‘SIEM’ key generated in the Cb Endpoint Standard console.

	Deprecated:
	Use the Alerts API or the Data Forwarder to get similar notifications.

	Parameters:

	interval (int) – Time period to wait in between polls for notifications, in seconds. Default is 60.

	Yields:

	dict – A dictionary representing a notification.

	
property org_urn

	The URN of the current organization, based on the configured org_key.

	
post_multipart(uri, param_table, **kwargs)

	Send a POST request to the specified URI, with parameters sent as multipart/form-data.

Normally only used by other SDK objects; used from user code only to submit a request to the server that is
not currently implemented in the SDK.

	Parameters:

	
	uri (str) – The URI to send the POST request to.

	param_table (dict) – A dict of known parameters to the underlying method, each element of which is a
parameter name mapped to a dict, which contains elements ‘filename’ and ‘type’
representing the pseudo-filename to be used for the data and the MIME type of the data.

	**kwargs (dict) – Arguments to pass to the API. Except for “headers,” these will all be added as parameters
to the form data sent.

	Keyword Arguments:

	headers (dict) – Header names and values to pass to the request.

	Returns:

	The return data from the POST request.

	Return type:

	object

	
post_object(uri, body, **kwargs)

	Send a POST request to the specified URI.

Normally only used by other SDK objects; used from user code only to submit a request to the server that is
not currently implemented in the SDK.

	Parameters:

	
	uri (str) – The URI to send the POST request to.

	body (object) – The data to be sent in the body of the POST request, as JSON.

	**kwargs (dict) – Additional arguments for the HTTP POST.

	Keyword Arguments:

	headers (dict) – Header names and values to pass to the request.

	Returns:

	The return data from the POST request, as JSON.

	Return type:

	object

	
process_limits()

	Returns a dictionary containing API limiting information.

Examples

>>> cb.process_limits()
{u'status_code': 200, u'time_bounds': {u'upper': 1545335070095, u'lower': 1542779216139}}

	
put_object(uri, body, **kwargs)

	Send a PUT request to the specified URI.

Normally only used by other SDK objects; used from user code only to submit a request to the server that is
not currently implemented in the SDK.

	Parameters:

	
	uri (str) – The URI to send the PUT request to.

	body (object) – The data to be sent in the body of the PUT request.

	**kwargs (dict) – Additional arguments for the HTTP PUT.

	Keyword Arguments:

	headers (dict) – Header names and values to pass to the request.

	Returns:

	The return data from the PUT request, as JSON.

	Return type:

	object

	
select(cls, unique_id=None, *args, **kwargs)

	Prepare a query against the Carbon Black data store.

Most objects returned by the SDK are returned via queries created using this method.

	Parameters:

	
	cls (class | str) – The Model class (for example, Computer, Process, Binary, FileInstance) to query

	unique_id (Any) – The unique id of the object to retrieve, to retrieve a single object by ID. Default
is None (create a standard query).

	*args (list) – Additional arguments to pass to a created object.

	**kwargs (dict) – Additional arguments to pass to a created object or query.

	Returns:

	An instance of the Model class if a unique_id is provided, otherwise a Query object.

	Return type:

	object

	
property url

	The connection URL.

	
validate_process_query(query)

	Validates the given IOC query.

	Parameters:

	query (str) – The query to validate.

	Returns:

	True if the query is valid, False if not.

	Return type:

	bool

Examples

>>> cb.validate_process_query("process_name:chrome.exe") # True

Audit and Remediation Package

Base Module

Model and Query Classes for Audit and Remediation

	
class DeviceSummary(cb, initial_data)

	Bases: UnrefreshableModel

Represents the summary of results from a single device during a single Audit and Remediation Run.

	Parameters:

	
	id – The result’s unique ID

	total_results – Number of results returned for this particular device

	device – Information associated with the device

	time_received – The time at which this result was received

	status – The result’s status

	device_message – Placeholder

	metrics – Metrics associated with the device

Initialize a DeviceSummary object with initial_data.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the result.

	
class Metrics(cb, initial_data)

	Bases: UnrefreshableModel

Represents the metrics for a result.

Initialize a DeviceSummary Metrics object with initial_data.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
property metrics_

	Returns the reified DeviceSummary.Metrics for this result.

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class DeviceSummaryFacet(cb, initial_data)

	Bases: ResultFacet

Represents the summary of results for a single device summary in an Audit and Remediation Run.

Initialize a DeviceSummaryFacet object with initial_data.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the result.

	
class Values(cb, initial_data)

	Bases: UnrefreshableModel

Represents the values associated with a field.

Initialize a ResultFacet Values object with initial_data.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
property values_

	Returns the reified ResultFacet.Values for this result.

	
class FacetQuery(doc_class, cb)

	Bases: BaseQuery, QueryBuilderSupportMixin, IterableQueryMixin, CriteriaBuilderSupportMixin, AsyncQueryMixin

Represents a query that receives facet information from a LiveQuery run.

Initialize the FacetQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
facet_field(field)

	Sets the facet fields to be received by this query.

	Parameters:

	field (str or [str]) – Field(s) to be received.

	Returns:

	FacetQuery that will receive field(s) facet_field.

	Return type:

	FacetQuery

Example

>>> cb.select(ResultFacet).run_id(my_run).facet_field(["device.policy_name", "device.os"])

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
run_id(run_id)

	Sets the run ID to query results for.

	Parameters:

	run_id (str) – The run ID to retrieve results for.

	Returns:

	FacetQuery object with specified run_id.

	Return type:

	FacetQuery

Example

>>> cb.select(ResultFacet).run_id(my_run)

	
set_device_ids(device_ids)

	Sets the device.id criteria filter.

	Parameters:

	device_ids ([int]) – Device IDs to filter on.

	Returns:

	The FacetQuery with specified device.id.

	Return type:

	FacetQuery

	
set_device_names(device_names)

	Sets the device.name criteria filter.

	Parameters:

	device_names ([str]) – Device names to filter on.

	Returns:

	The FacetQuery with specified device.name.

	Return type:

	FacetQuery

	
set_device_os(device_os)

	Sets the device.os criteria.

	Parameters:

	device_os ([str]) – Device OS’s to filter on.

	Returns:

	The FacetQuery object with specified device_os.

	Return type:

	FacetQuery

Note

Device OS’s can be one or more of [“WINDOWS”, “MAC”, “LINUX”].

	
set_policy_ids(policy_ids)

	Sets the device.policy_id criteria.

	Parameters:

	policy_ids ([int]) – Device policy ID’s to filter on.

	Returns:

	The FacetQuery object with specified policy_ids.

	Return type:

	FacetQuery

	
set_policy_names(policy_names)

	Sets the device.policy_name criteria.

	Parameters:

	policy_names ([str]) – Device policy names to filter on.

	Returns:

	The FacetQuery object with specified policy_names.

	Return type:

	FacetQuery

	
set_statuses(statuses)

	Sets the status criteria.

	Parameters:

	statuses ([str]) – Query statuses to filter on.

	Returns:

	The FacetQuery object with specified statuses.

	Return type:

	FacetQuery

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
MAX_RESULTS_LIMIT = 10000

	Audit and Remediation Models

	
class Result(cb, initial_data)

	Bases: UnrefreshableModel

Represents a single result from an Audit and Remediation Run.

	Parameters:

	
	id – The result’s unique ID

	device – The device associated with the result

	status – The result’s status

	time_received – The time at which this result was received

	device_message – Placeholder

	fields – The fields returned by the backing osquery query

	metrics – Metrics associated with the result’s host

Initialize a Result object with initial_data.

Device, Fields, and Metrics objects are attached using initial_data.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the result.

	
class Device(cb, initial_data)

	Bases: UnrefreshableModel

Represents device information for a result.

Initialize a Device Result object with initial_data.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class Fields(cb, initial_data)

	Bases: UnrefreshableModel

Represents the fields of a result.

Initialize a Result Fields object with initial_data.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class Metrics(cb, initial_data)

	Bases: UnrefreshableModel

Represents the metrics of a result.

Initialize a Result Metrics object with initial_data.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
property device_

	Returns the reified Result.Device for this result.

	
property fields_

	Returns the reified Result.Fields for this result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
property metrics_

	Returns the reified Result.Metrics for this result.

	
query_device_summaries()

	Returns a ResultQuery for a DeviceSummary.

This represents the search for a summary of results from a single device of a Run. The query may be further
augmented with additional criteria prior to enumerating its results.

	Returns:

	The query object returned by this operation.

	Return type:

	ResultQuery

	
query_device_summary_facets()

	Returns a ResultQuery for a DeviceSummaryFacet.

This represents the search for a summary of a single device summary of a Run. The query may be further
augmented with additional criteria prior to enumerating its results.

	Returns:

	The query object returned by this operation.

	Return type:

	ResultQuery

	
query_result_facets()

	Returns a ResultQuery for a ResultFacet.

This represents the search for a summary of results from a single field of a Run. The query may be further
augmented with additional criteria prior to enumerating its results.

	Returns:

	The query object returned by this operation.

	Return type:

	ResultQuery

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The raw json Result.

	Return type:

	dict

	
class ResultFacet(cb, initial_data)

	Bases: UnrefreshableModel

Represents the summary of results for a single field in an Audit and Remediation Run.

	Parameters:

	field – The name of the field being summarized

Initialize a ResultFacet object with initial_data.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the result.

	
class Values(cb, initial_data)

	Bases: UnrefreshableModel

Represents the values associated with a field.

Initialize a ResultFacet Values object with initial_data.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
property values_

	Returns the reified ResultFacet.Values for this result.

	
class ResultQuery(doc_class, cb)

	Bases: BaseQuery, QueryBuilderSupportMixin, IterableQueryMixin, CriteriaBuilderSupportMixin, AsyncQueryMixin

Represents a query that retrieves results from a LiveQuery run.

Initialize the ResultQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
async_export()

	Create an asynchronous job that exports the results from the run.

This is recommended if you are expecting a very large result set. Once the Job is created, wait for it to be
completed, then get the results from the Job using one of the get_output methods on the
cbc_sdk.platform.jobs() object. To wait asynchronously for the results, use the Job object’s
await_completion() method.

	Required Permissions:
	livequery.manage(READ), jobs.status(READ)

	Returns:

	The Job object that represents the asynchronous job.

	Return type:

	Job

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
export_csv_as_file(filename)

	Export the results from the run as CSV, writing the CSV to the named file.

	Required Permissions:
	livequery.manage(READ)

	Parameters:

	filename (str) – Name of the file to write the results to.

	
export_csv_as_lines()

	Export the results from the run as CSV, returning the CSV data as iterated lines.

	Required Permissions:
	livequery.manage(READ)

	Returns:

	An iterable that can be used to get each line of CSV text in turn as a string.

	Return type:

	iterable

	
export_csv_as_stream(output, compressed=False)

	Export the results from the run as CSV, writing the CSV to the given stream.

	Required Permissions:
	livequery.manage(READ)

	Parameters:

	
	output (RawIOBase) – Stream to write the CSV data from the request to.

	compressed (bool) – True to download as a compressed ZIP file, False to download as CSV.

	
export_csv_as_string()

	Export the results from the run as CSV, returning the CSV data as a string.

	Required Permissions:
	livequery.manage(READ)

	Returns:

	The CSV data as one big string.

	Return type:

	str

	
export_zipped_csv(filename)

	Export the results from the run as a zipped CSV, writing the zip data to the named file.

	Required Permissions:
	livequery.manage(READ)

	Parameters:

	filename (str) – Name of the file to write the results to.

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
run_id(run_id)

	Sets the run ID to query results for.

	Parameters:

	run_id (str) – The run ID to retrieve results for.

	Returns:

	ResultQuery object with specified run_id.

	Return type:

	ResultQuery

Example

>>> cb.select(Result).run_id(my_run)

	
scroll(rows=10000)

	Iteratively fetch results across Live Query Runs or paginate all results beyond the 10k search limits.

To fetch the next set of results repeatively call the scroll function until
ResultQuery.num_remaining == 0 or no results are returned.

Note: You must specify either a set_time_received or a set_run_ids on the query before using scroll

	Parameters:

	rows (int) – The number of rows to fetch

	Returns:

	The list of results

	Return type:

	list[Result]

	
set_device_ids(device_ids)

	Sets the device.id criteria filter.

	Parameters:

	device_ids ([int]) – Device IDs to filter on.

	Returns:

	The ResultQuery with specified device.id.

	Return type:

	ResultQuery

	
set_device_names(device_names)

	Sets the device.name criteria filter.

	Parameters:

	device_names ([str]) – Device names to filter on.

	Returns:

	The ResultQuery with specified device.name.

	Return type:

	ResultQuery

	
set_device_os(device_os)

	Sets the device.os criteria.

	Parameters:

	device_os ([str]) – Device OS’s to filter on.

	Returns:

	The ResultQuery object with specified device_os.

	Return type:

	ResultQuery

Note

Device OS’s can be one or more of [“WINDOWS”, “MAC”, “LINUX”].

	
set_policy_ids(policy_ids)

	Sets the device.policy_id criteria.

	Parameters:

	policy_ids ([int]) – Device policy ID’s to filter on.

	Returns:

	The ResultQuery object with specified policy_ids.

	Return type:

	ResultQuery

	
set_policy_names(policy_names)

	Sets the device.policy_name criteria.

	Parameters:

	policy_names ([str]) – Device policy names to filter on.

	Returns:

	The ResultQuery object with specified policy_names.

	Return type:

	ResultQuery

	
set_run_ids(run_ids)

	Sets the run IDs to query results for.

Note

Only supported for scroll

	Parameters:

	run_ids (list[str]) – The run IDs to retrieve results for.

	Returns:

	ResultQuery object with specified run_id.

	Return type:

	ResultQuery

	
set_statuses(statuses)

	Sets the status criteria.

	Parameters:

	statuses ([str]) – Query statuses to filter on.

	Returns:

	The ResultQuery object with specified statuses.

	Return type:

	ResultQuery

	
set_time_received(start=None, end=None, range=None)

	Set the time received to query results for.

Note: If you are using scroll you may only specify range, or start and end. range supports max of 24hrs

	Parameters:

	
	start (str) – Start time in ISO8601 UTC format

	end (str) – End time in ISO8601 UTC format

	range (str) – Relative time window using the following allowed time units y years, w weeks, d days, h hours,
m minutes, s seconds

	Returns:

	ResultQuery object with specified time_received.

	Return type:

	ResultQuery

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	ResultQuery object with specified sorting key and order.

	Return type:

	ResultQuery

Example

>>> cb.select(Result).run_id(my_run).where(username="foobar").sort_by("uid")

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
class Run(cb, model_unique_id=None, initial_data=None)

	Bases: NewBaseModel

Represents an Audit and Remediation run.

	Example:
	>>> run = cb.select(Run, run_id)
>>> print(run.name, run.sql, run.create_time)
>>> print(run.status, run.match_count)
>>> run.refresh()

	Parameters:

	
	org_key – The organization key for this run

	name – The name of the Audit and Remediation run

	id – The run’s unique ID

	sql – The Audit and Remediation query

	created_by – The user or API id that created the run

	create_time – When this run was created

	status_update_time – When the status of this run was last updated

	timeout_time – The time at which the query will stop requesting results from any devices who have not responded

	cancellation_time – The time at which a user or API id cancelled the run

	cancelled_by – The user or API id that cancelled the run

	notify_on_finish – Whether or not to send an email on query completion

	active_org_devices – The number of devices active in the organization

	status – The run status

	device_filter – Any device filter rules associated with the run

	last_result_time – When the most recent result for this run was reported

	total_results – The number of results received

	match_count – The number of devices which received a match to the query

	no_match_count – The number of devices which did not received a match to the query

	error_count – The number of devices which errored

	not_supported_count – The number of devices which do not support a portion of the osquery

	cancelled_count – The number of devices which were cancelled before they ran the query

	not_started_count – The number of devices which have not run the query

	success_count – The number of devices which succeeded in running the query

	in_progress_count – The number of devices which were currently executing the query

	recommended_query_id – The id of a query from the recommendedation route

	template_id – The template that created the run

Initialize a Run object with initial_data.

	Required Permissions:
	livequery.manage(READ)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the query run represented.

	initial_data (dict) – Initial data used to populate the query run.

	
delete()

	Delete a query.

	Required Permissions:
	livequery.manage(DELETE)

	Returns:

	True if the query was deleted successfully, False otherwise.

	Return type:

	bool

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
query_device_summaries()

	Create a DeviceSummary query that searches for all device summaries on this run.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all device summaries for this run.

	Return type:

	ResultQuery

	Raises:

	ApiError – If the query has been deleted.

	
query_facets()

	Create a ResultFacet query that searches for all result facets on this run.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all result facets for this run.

	Return type:

	FacetQuery

	Raises:

	ApiError – If the query has been deleted.

	
query_results()

	Create a Result query that searches for all results on this run.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all results for this run.

	Return type:

	ResultQuery

	Raises:

	ApiError – If the query has been deleted.

	
refresh()

	Reload this object from the server.

	
stop()

	Stop a running query.

	Required Permissions:
	livequery.manage(UPDATE)

	Returns:

	True if query was stopped successfully, False otherwise.

	Return type:

	bool

	Raises:

	ServerError – If the server response cannot be parsed as JSON.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class RunHistory(cb, initial_data=None)

	Bases: Run

Represents a historical Audit and Remediation Run.

Initialize a RunHistory object with initial_data.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the history object.

	
delete()

	Delete a query.

	Required Permissions:
	livequery.manage(DELETE)

	Returns:

	True if the query was deleted successfully, False otherwise.

	Return type:

	bool

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
query_device_summaries()

	Create a DeviceSummary query that searches for all device summaries on this run.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all device summaries for this run.

	Return type:

	ResultQuery

	Raises:

	ApiError – If the query has been deleted.

	
query_facets()

	Create a ResultFacet query that searches for all result facets on this run.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all result facets for this run.

	Return type:

	FacetQuery

	Raises:

	ApiError – If the query has been deleted.

	
query_results()

	Create a Result query that searches for all results on this run.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all results for this run.

	Return type:

	ResultQuery

	Raises:

	ApiError – If the query has been deleted.

	
refresh()

	Reload this object from the server.

	
stop()

	Stop a running query.

	Required Permissions:
	livequery.manage(UPDATE)

	Returns:

	True if query was stopped successfully, False otherwise.

	Return type:

	bool

	Raises:

	ServerError – If the server response cannot be parsed as JSON.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class RunHistoryQuery(doc_class, cb)

	Bases: BaseQuery, QueryBuilderSupportMixin, IterableQueryMixin, CriteriaBuilderSupportMixin, AsyncQueryMixin

Represents a query that retrieves historic LiveQuery runs.

Initialize the RunHistoryQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_template_ids(template_ids)

	Sets the template_id criteria filter.

	Parameters:

	template_ids ([str]) – Template IDs to filter on.

	Returns:

	The RunHistoryQuery with specified template_id.

	Return type:

	RunHistoryQuery

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	RunHistoryQuery object with specified sorting key and order.

	Return type:

	RunHistoryQuery

Example:

>>> cb.select(Result).run_id(my_run).where(username="foobar").sort_by("uid")

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
class RunQuery(doc_class, cb)

	Bases: BaseQuery, AsyncQueryMixin

Represents a query that either creates or retrieves the status of a LiveQuery run.

Initialize the RunQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
device_ids(device_ids)

	Restricts the devices that this Audit and Remediation run is performed on to the given IDs.

	Parameters:

	device_ids ([int]) – Device IDs to perform the Run on.

	Returns:

	The RunQuery with specified device_ids.

	Return type:

	RunQuery

	
device_types(device_types)

	Restricts the devices that this Audit and Remediation run is performed on to the given OS.

	Parameters:

	device_types ([str]) – Device types to perform the Run on.

	Returns:

	The RunQuery object with specified device_types.

	Return type:

	RunQuery

Note

Device type can be one of [“WINDOWS”, “MAC”, “LINUX”].

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
name(name)

	Sets this Audit and Remediation run’s name.

If no name is explicitly set, the run is named after its SQL.

	Parameters:

	name (str) – The name for this Run.

	Returns:

	The RunQuery object with specified name.

	Return type:

	RunQuery

	
notify_on_finish()

	Sets the notify-on-finish flag on this Audit and Remediation run.

	Returns:

	The RunQuery object with notify_on_finish set to True.

	Return type:

	RunQuery

	
policy_id(policy_id)

	Restricts this Audit and Remediation run to the given policy ID.

	Parameters:

	policy_id (int) or (list[int]) – Policy ID to perform the Run on.

	Returns:

	The RunQuery object with specified policy_id.

	Return type:

	RunQuery

	
schedule(rrule, timezone)

	Sets a schedule for the SQL Query to recur

A schedule requires an rrule and a timezone to determine the time to rerun the SQL query. rrule
is defined in RFC 2445 however only a subset of the functionality is supported here. If a Run
is created with a schedule then the Run will contain a template_id to the corresponding template
and a new Run will be created each time the schedule is met.

Example RRule, Daily

	Field

	Values

	BYSECOND

	0

	BYMINUTE

	0 or 30

	BYHOUR

	0 to 23

Daily at 1:30PM

RRULE:FREQ=DAILY;BYHOUR=13;BYMINUTE=30;BYSECOND=0

Example RRule, Weekly

	Field

	Values

	BYSECOND

	0

	BYMINUTE

	0

	BYHOUR

	0 to 23

	BYDAY

	One or more: SU, MO, TU, WE, TH, FR, SA

Monday and Friday of the week at 2:30 AM

RRULE:FREQ=WEEKLY;BYDAY=MO,FR;BYHOUR=13;BYMINUTE=30;BYSECOND=0

Example RRule, Monthly

Note: Either (BYDAY and BYSETPOS) or BYMONTHDAY is required.

	Field

	Values

	BYSECOND

	0

	BYMINUTE

	0 or 30

	BYHOUR

	0 to 23

	BYDAY

	One or more: SU, MO, TU, WE, TH, FR, SA

	BYSETPOS

	-1, 1, 2, 3, 4

	BYMONTHDAY

	One or more: 1 to 28

Last Monday of the Month at 2:30 AM

RRULE:FREQ=MONTHLY;BYDAY=MO;BYSETPOS=-1;BYHOUR=2;BYMINUTE=30;BYSECOND=0

1st and 15th of the Month at 2:30 AM

RRULE:FREQ=DAILY;BYMONTHDAY=1,15;BYHOUR=2;BYMINUTE=30;BYSECOND=0

	Parameters:

	
	rrule (string) – A recurrence rule (RFC 2445) specifying the frequency and time at which the query will recur

	timezone (string) – The timezone database name to use as a base for the rrule

	Returns:

	The RunQuery with a recurrence schedule.

	Return type:

	RunQuery

	
submit()

	Submits this Audit and Remediation run.

	Returns:

	A new Run instance containing the run’s status.

	Return type:

	Run

	Raises:

	ApiError – If the Run does not have SQL set, or if the Run has already been submitted.

	
where(sql)

	Sets this Audit and Remediation run’s underlying SQL.

	Parameters:

	sql (str) – The SQL to execute for the Run.

	Returns:

	The RunQuery object with specified sql.

	Return type:

	RunQuery

	
class Template(cb, model_unique_id=None, initial_data=None)

	Bases: Run

Represents an Audit and Remediation Live Query Template.

	Example:
	>>> template = cb.select(Template, template_id)
>>> print(template.name, template.sql, template.create_time)
>>> print(template.status, template.match_count, template.schedule)
>>> template.refresh()

	Parameters:

	
	org_key – The organization key for this run

	name – The name of the Audit and Remediation run

	id – The run’s unique ID

	sql – The Audit and Remediation query

	created_by – The user or API id that created the run

	create_time – When this run was created

	status_update_time – When the status of this run was last updated

	timeout_time – The time at which the query will stop requesting results from any devices who have not responded

	cancellation_time – The time at which a user or API id cancelled the run

	cancelled_by – The user or API id that cancelled the run

	archive_time – The time at which a user or API id cancelled the run

	archived_by – The user or API id that archived the run

	notify_on_finish – Whether or not to send an email on query completion

	active_org_devices – The number of devices active in the organization

	status – The run status

	device_filter – Any device filter rules associated with the run

	last_result_time – When the most recent result for this run was reported

	total_results – The number of results received

	match_count – The number of devices which received a match to the query

	no_match_count – The number of devices which did not received a match to the query

	error_count – The number of devices which errored

	not_supported_count – The number of devices which do not support a portion of the osquery

	cancelled_count – The number of devices which were cancelled before they ran the query

	not_started_count – The number of devices which have not run the query

	success_count – The number of devices which succeeded in running the query

	in_progress_count – The number of devices which were currently executing the query

	recommended_query_id – The id of a query from the recommendedation route

	template_id – The template that created the run

Initialize a Template object with initial_data.

	Required Permissions:
	livequery.manage(READ)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the query run represented.

	initial_data (dict) – Initial data used to populate the query run.

	
delete()

	Delete a query.

	Required Permissions:
	livequery.manage(DELETE)

	Returns:

	True if the query was deleted successfully, False otherwise.

	Return type:

	bool

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
query_device_summaries()

	Create a DeviceSummary query that searches for all device summaries on this run.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all device summaries for this run.

	Return type:

	ResultQuery

	Raises:

	ApiError – If the query has been deleted.

	
query_facets()

	Create a ResultFacet query that searches for all result facets on this run.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all result facets for this run.

	Return type:

	FacetQuery

	Raises:

	ApiError – If the query has been deleted.

	
query_results()

	Create a Result query that searches for all results on this run.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all results for this run.

	Return type:

	ResultQuery

	Raises:

	ApiError – If the query has been deleted.

	
query_runs()

	Create a RunHistory query that searches for all runs created by this template ID.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all runs based on this template.

	Return type:

	RunHistoryQuery

	
refresh()

	Reload this object from the server.

	
stop()

	Stop a template.

	Required Permissions:
	livequery.manage(UPDATE)

	Returns:

	True if query was stopped successfully, False otherwise.

	Return type:

	bool

	Raises:

	ServerError – If the server response cannot be parsed as JSON.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class TemplateHistory(cb, initial_data=None)

	Bases: Template

Represents a historical Audit and Remediation Template.

Initialize a Template object with initial_data.

	Required Permissions:
	livequery.manage(READ)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the query run.

	
delete()

	Delete a query.

	Required Permissions:
	livequery.manage(DELETE)

	Returns:

	True if the query was deleted successfully, False otherwise.

	Return type:

	bool

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
query_device_summaries()

	Create a DeviceSummary query that searches for all device summaries on this run.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all device summaries for this run.

	Return type:

	ResultQuery

	Raises:

	ApiError – If the query has been deleted.

	
query_facets()

	Create a ResultFacet query that searches for all result facets on this run.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all result facets for this run.

	Return type:

	FacetQuery

	Raises:

	ApiError – If the query has been deleted.

	
query_results()

	Create a Result query that searches for all results on this run.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all results for this run.

	Return type:

	ResultQuery

	Raises:

	ApiError – If the query has been deleted.

	
query_runs()

	Create a RunHistory query that searches for all runs created by this template ID.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all runs based on this template.

	Return type:

	RunHistoryQuery

	
refresh()

	Reload this object from the server.

	
stop()

	Stop a template.

	Required Permissions:
	livequery.manage(UPDATE)

	Returns:

	True if query was stopped successfully, False otherwise.

	Return type:

	bool

	Raises:

	ServerError – If the server response cannot be parsed as JSON.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class TemplateHistoryQuery(doc_class, cb)

	Bases: BaseQuery, QueryBuilderSupportMixin, IterableQueryMixin, CriteriaBuilderSupportMixin, AsyncQueryMixin

Represents a query that retrieves historic LiveQuery templates.

Initialize the TemplateHistoryQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	object with specified sorting key and order.

	Return type:

	TemplateHistoryQuery

Example:

>>> cb.select(Result).run_id(my_run).where(username="foobar").sort_by("uid")

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

Differential Module

Model and Query Classes for Differential Analysis

	
ASYNC_RATE_LIMIT = 100

	Differential Analysis Models

	
class Differential(cb, initial_data=None)

	Bases: NewBaseModel

Represents a Differential Analysis run.

	Example:
	>>> query = cb.select(Differential).newer_run_id(newer_run_id)
>>> run = query.submit()
>>> print(run)
>>> print(run.diff_results)

	Parameters:

	
	newer_run_id – id against which the older run id results will be compared

	newer_run_create_time – Timestamp of the primary run in ISO 8601 UTC format

	older_run_id – This can be optional. If not specified, the previous run as compared to the primary will be chosen. This can be optional if you are comparing reccuring runs only.

	older_run_create_time – Timestamp of the older run in ISO 8601 UTC format

	diff_processed_time – The time it took to process the results in seconds and milliseconds

	newer_run_not_responded_devices – Array of device IDs that have not responded

	older_run_not_responded_devices – Array of device IDs that have not responded

	diff_results – An object containing either count of changes only or count and actual diff results

Initialize a Differential object with initial_data.

	Required Permissions for CBC:
	livequery.manage(READ)

	Required Permissions for CSP:
	_API.Live.Query:livequery.Manage.read

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the query run.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class DifferentialQuery(doc_class, cb)

	Bases: BaseQuery, IterableQueryMixin, CriteriaBuilderSupportMixin

Query used to compare two Live Query runs.

Initialize the DifferentialQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
async_export()

	Create an asynchronous job that exports the results from the run.

This is recommended if you are expecting a very large result set. Once the Job is created, wait for it to be
completed, then get the results from the Job using one of the get_output methods on the
cbc_sdk.platform.jobs object. To wait for the results, use the Job object’s
await_completion() method.

Example

>>> # Get the differential
>>> query = cb.select(Differential).newer_run_id(newer_run_id)
>>> export = query.async_export()
>>> # wait for the export to finish
>>> export.await_completion()
>>> # write the results to a file
>>> export.get_output_as_file("example_data.json")

	Required CBC Permissions:
	livequery.manage(READ), jobs.status(READ)

	Required CSP Permissions:
	_API.Live.Query:livequery.Manage.read, _API.Background_Tasks.jobs.status.read

	Returns:

	The Job object that represents the asynchronous job.

	Return type:

	Job

	
count_only(count_only)

	Return only count of diff results per device or complete diff metadata result.

The default value is true, which means only the count will be returned.

Example

>>> query = cb.select(Differential).newer_run_id(newer_run_id).count_only(True)
>>> run = query.submit()

	Parameters:

	count_only (string) – Boolean that indicates whether to return actual metadata
or return just the count of differances

	Returns:

	This instance.

	Return type:

	DifferentialQuery

	Raises:

	ApiError – If invalid values are passed in the list.

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
newer_run_id(newer_run_id)

	Set the id against which the older_run_id results will be compared.

Example

>>> query = cb.select(Differential).newer_run_id(newer_run_id)
>>> run = query.submit()

	Parameters:

	newer_run_id (string) – id against which the older_run_id results will be compared.

	Returns:

	This instance.

	Return type:

	DifferentialQuery

	Raises:

	ApiError – If invalid values are passed.

	
older_run_id(older_run_id)

	This can be optional.

If not specified, the previous run as compared to the primary will be chosen if
it is a recurring one. If comparing two individual runs, this is required.

Example

>>> query = cb.select(Differential).newer_run_id(newer_run_id).older_run_id(older_run_id)
>>> run = query.submit()

	Parameters:

	older_run_id (string) – id against which the newer_run_id results will be compared.

	Returns:

	This instance.

	Return type:

	DifferentialQuery

	Raises:

	ApiError – If invalid values are passed.

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
set_device_ids(device_ids)

	Restricts the query on to the specified devices only.

Example

>>> query = cb.select(Differential).newer_run_id(newer_run_id).set_device_ids([12345, 56789])
>>> run = query.submit()

	Parameters:

	device_ids (list) – List of device id(s)

	Returns:

	This instance.

	Return type:

	DifferentialQuery

	Raises:

	ApiError – If invalid values are passed in the list.

	
submit()

	Submits this Differential Analysis run.

	Returns:

	A new Differential instance containing the run’s content.

	Return type:

	Run

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

Credential Providers Package

Default Module

Function which gives us the default credentials handler for use by CBCloudAPI.

	
class DefaultProvider

	Bases: object

Intermediate class defined to allow insertion of a “test point” into default_credential_provider().

	
get_default_provider(credential_file)

	Return the default credential provider that CBCloudAPI should use.

	Parameters:

	credential_file (str) – Credential file as specified to the initialization of the API.

	Returns:

	The default credential provider that CBCloudAPI should use.

	Return type:

	CredentialProvider

	
default_credential_provider(credential_file)

	Return the default credential provider that CBCloudAPI should use.

	Parameters:

	credential_file (str) – Credential file as specified to the initialization of the API.

	Returns:

	The default credential provider that CBCloudAPI should use.

	Return type:

	CredentialProvider

AWS SM Credential Provider Module

Credentials provider that reads the credentials from the AWS Secrets Manager

	
class AWSCredentialProvider(secret_arn, region_name='us-east-2', profile_name=None)

	Bases: CredentialProvider

This credential provider reads from the AWS Secrets Manager

Initialize the AWSCredentialProvider.

	Parameters:

	
	secret_arn (str) – The name of the secret in the AWS Secrets Manager.

	region_name (str) – The region name

	profile_name (str) – The credentials profile

	
get_credentials(section=None)

	Return a Credentials object containing the configured credentials.

	Parameters:

	
	section (None) – Since AWS deosn’t support sections it is left

	CredentialProvider (to satisfy the Signature of) –

	Returns:

	The credentials retrieved from that source.

	Return type:

	Credentials

Environ Credential Provider Module

Credentials provider that reads the credentials from the environment.

	
class EnvironCredentialProvider

	Bases: CredentialProvider

The object which provides credentials based on variables in the environment.

Initializes the EnvironCredentialProvider.

	
get_credentials(section=None)

	Return a Credentials object containing the configured credentials.

	Parameters:

	section (str) – The credential section to retrieve (not used in this provider).

	Returns:

	The credentials retrieved from that source.

	Return type:

	Credentials

	Raises:

	CredentialError – If there is any error retrieving the credentials.

File Credential Provider Module

Credentials provider that reads the credentials from a file.

	
class FileCredentialProvider(credential_file=None)

	Bases: CredentialProvider

The object which provides credentials based on a credential file.

Initialize the FileCredentialProvider.

	Parameters:

	credential_file (object) – A string or path-like object representing the credentials file, or a list
of strings or path-like objects representing the search path for the credentials file.

	
get_credentials(section=None)

	Return a Credentials object containing the configured credentials.

	Parameters:

	section (str) – The credential section to retrieve.

	Returns:

	The credentials retrieved from that source.

	Return type:

	Credentials

	Raises:

	CredentialError – If there is any error retrieving the credentials.

Keychain Credential Provider Module

Credentials provider that reads the credentials from the macOS’s keychain.

	
class KeychainCredentialProvider(keychain_name, keychain_username)

	Bases: CredentialProvider

This credential provider reads from the macOS’s Keychain.

Initialize the KeychainCredentialProvider.

	Parameters:

	
	keychain_name (str) – The name of the entry in the Keychain.

	keychain_username (str) – The username which you’ve set in the Keychain.

	Raises:

	CredentialError – If we attempt to instantiate this provider on a non-macOS system.

	
get_credentials(section=None)

	Return a Credentials object containing the configured credentials.

	Parameters:

	
	section (None) – Since Keychain doesn’t support sections it is left

	CredentialProvider (to satisfy the Signature of) –

	Returns:

	The credentials retrieved from that source.

	Return type:

	Credentials

	Raises:

	CredentialError – If there is any error retrieving the credentials.

Registry Credential Provider Module

Credentials provider that reads the credentials from the environment.

	
OpenKey(base, path)

	Stub to maintain source compatibility

	
QueryValueEx(key, name)

	Stub to maintain source compatibility

	
class RegistryCredentialProvider(keypath=None, userkey=True)

	Bases: CredentialProvider

The credentials provider that reads from the Windows Registry.

Initialize the RegistryCredentialProvider.

	Parameters:

	
	keypath (str) – Path from the selected base key to the key that will contain individual sections.

	userkey (bool) – True if the keypath starts at HKEY_CURRENT_USER, False if at HKEY_LOCAL_MACHINE.

	Raises:

	CredentialError – If we attempt to instantiate this provider on a non-Windows system.

	
get_credentials(section=None)

	Return a Credentials object containing the configured credentials.

	Parameters:

	section (str) – The credential section to retrieve.

	Returns:

	The credentials retrieved from that source.

	Return type:

	Credentials

	Raises:

	CredentialError – If there is any error retrieving the credentials.

Endpoint Standard Package

Base Module

Model and Query Classes for Endpoint Standard

	
class EnrichedEvent(cb, model_unique_id=None, initial_data=None, force_init=False, full_doc=True)

	Bases: UnrefreshableModel

Represents an enriched event retrieved by one of the Enterprise EDR endpoints.

Initialize the EnrichedEvent object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (Any) – The unique ID for this particular instance of the model object.

	initial_data (dict) – The data to use when initializing the model object.

	force_init (bool) – True to force object initialization.

	full_doc (bool) – True to mark the object as fully initialized.

	
approve_process_sha256(description='')

	Approves the application by adding the process_sha256 to the WHITE_LIST

	Parameters:

	description – The justification for why the application was added to the WHITE_LIST

	Returns:

	
	ReputationOverride object
	created in the Carbon Black Cloud

	Return type:

	ReputationOverride (cbc_sdk.platform.ReputationOverride)

	
ban_process_sha256(description='')

	Bans the application by adding the process_sha256 to the BLACK_LIST

	Parameters:

	description – The justification for why the application was added to the BLACK_LIST

	Returns:

	
	ReputationOverride object
	created in the Carbon Black Cloud

	Return type:

	ReputationOverride (cbc_sdk.platform.ReputationOverride)

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_details(timeout=0, async_mode=False)

	Requests detailed results.

	Parameters:

	
	timeout (int) – Event details request timeout in milliseconds. This value can never be greater than
the configured default timeout. If this value is 0, the configured default timeout is used.

	async_mode (bool) – True to request details in an asynchronous manner.

Note

	When using asynchronous mode, this method returns a python future.
You can call result() on the future object to wait for completion and get the results.

	
property process_sha256

	Returns a string representation of the SHA256 hash for this process.

	Returns:

	SHA256 hash of the process.

	Return type:

	hash (str)

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class EnrichedEventFacet(cb, model_unique_id, initial_data)

	Bases: UnrefreshableModel

Represents an enriched event retrieved by one of the Enterprise EDR endpoints.

	Parameters:

	
	job_id – The Job ID assigned to this query

	terms – Contains the Enriched Event Facet search results

	ranges – Groupings for search result properties that are ISO 8601 timestamps or numbers

	contacted – The number of searchers contacted for this query

	completed – The number of searchers that have reported their results

Initialize the Terms object with initial data.

	
class Ranges(cb, initial_data)

	Bases: UnrefreshableModel

Represents the range (bucketed) facet fields and values associated with an Enriched Event Facet query.

Initialize an EnrichedEventFacet Ranges object with initial_data.

	
property facets

	Returns the reified EnrichedEventFacet.Terms._facets for this result.

	
property fields

	Returns the ranges fields for this result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class Terms(cb, initial_data)

	Bases: UnrefreshableModel

Represents the facet fields and values associated with an Enriched Event Facet query.

Initialize an EnrichedEventFacet Terms object with initial_data.

	
property facets

	Returns the terms’ facets for this result.

	
property fields

	Returns the terms facets’ fields for this result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
property ranges_

	Returns the reified EnrichedEventFacet.Ranges for this result.

	
refresh()

	Reload this object from the server.

	
property terms_

	Returns the reified EnrichedEventFacet.Terms for this result.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class EnrichedEventQuery(doc_class, cb)

	Bases: Query

Represents the query logic for an Enriched Event query.

This class specializes Query to handle the particulars of enriched events querying.

Initialize the EnrichedEventQuery object.

	Parameters:

	
	doc_class (class) – The class of the model this query returns.

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
add_exclusions(key, newlist)

	Add to the exclusions on this query with a custom exclusions key.

Will overwrite any existing exclusion for the specified key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).add_exclusions("type", ["WATCHLIST"])
>>> query = api.select(Alert).add_exclusions("type", "WATCHLIST")

	
aggregation(field)

	Performs an aggregation search where results are grouped by an aggregation field

	Parameters:

	field (str) – The aggregation field, either ‘process_sha256’ or ‘device_id’

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
batch_size(new_batch_size)

	Set the batch size of the paginated query.

	Parameters:

	new_batch_size (int) – The new batch size.

	Returns:

	A new query with the updated batch size.

	Return type:

	PaginatedQuery

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(**kwargs)

	or_() criteria are explicitly provided to EnrichedEvent queries.

This method overrides the base class in order to provide or_() functionality rather than raising an exception.

	
set_fields(fields)

	Sets the fields to be returned with the response.

	Parameters:

	fields (str or list[str]) – Field or list of fields to be returned.

	
set_rows(rows)

	Sets the ‘rows’ query body parameter to the ‘start search’ API call, determining how many rows to request.

	Parameters:

	rows (int) – How many rows to request.

	
set_start(start)

	Sets the ‘start’ query body parameter, determining where to begin retrieving results from.

	Parameters:

	start (int) – Where to start results from.

	
set_time_range(start=None, end=None, window=None)

	Sets the ‘time_range’ query body parameter, determining a time window based on ‘device_timestamp’.

	Parameters:

	
	start (str in ISO 8601 timestamp) – When to start the result search.

	end (str in ISO 8601 timestamp) – When to end the result search.

	window (str) – Time window to execute the result search, ending on the current time.
Should be in the form “-2w”, where y=year, w=week, d=day, h=hour, m=minute, s=second.

Note

	window will take precendent over start and end if provided.

Examples

>>> query = api.select(Process).set_time_range(start="2020-10-20T20:34:07Z").where("query is required")
>>> second_query = api.select(Process).
... set_time_range(start="2020-10-20T20:34:07Z", end="2020-10-30T20:34:07Z").where("query is required")
>>> third_query = api.select(Process).set_time_range(window='-3d').where("query is required")

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	The query with sorting parameters.

	Return type:

	Query

Example

>>> cb.select(Process).where(process_name="cmd.exe").sort_by("device_timestamp")

	
timeout(msecs)

	Sets the timeout on a event query.

	Parameters:

	msecs (int) – Timeout duration, in milliseconds. This value can cever be greater than the configured
default timeout. If this value is 0, the configured default timeout is used.

	Returns:

	The Query object with new milliseconds parameter.

	Return type:

	Query (EnrichedEventQuery)

Example

>>> cb.select(EnrichedEvent).where(process_name="foo.exe").timeout(5000)

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
update_exclusions(key, newlist)

	Update the exclusion on this query with a custom exclusion key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (list) – List of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).update_exclusions("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
class Event(cb, model_unique_id, initial_data=None)

	Bases: object

Represents an Endpoint Standard Event.

This functionality has been decommissioned. Please use EnrichedEvent instead. More information may be found
here:
https://community.carbonblack.com/t5/Developer-Relations/Migration-Guide-Carbon-Black-Cloud-Events-API/m-p/95915/thread-id/2519

This functionality has been decommissioned. Do not use.

	Parameters:

	
	cb (BaseAPI) – Unused.

	model_unique_id (int) – Unused.

	initial_data (dict) – Unused.

	Raises:

	FunctionalityDecommissioned – Always.

	
log = <Logger cbc_sdk.endpoint_standard.base (WARNING)>

	Endpoint Standard Models

Standard Recommendation Module

Model and query APIs for Recommendations

	
class Recommendation(cb, model_unique_id, initial_data=None)

	Bases: NewBaseModel

Represents a recommended proposed policy change for the organization.

	Parameters:

	
	changed_by – Who made the last update to the workflow

	create_time – The time the recommendation was created

	ref_id – Reference id for an accepted Recommendation which is the id of the created Reputation Override

	status – Status of the recommendation

	update_time – The last time the recommendation was updated

	comment – A comment added when the recommendation was updated

Initialize the Recommendation object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the recommendation represented.

	initial_data (dict) – Initial data used to populate the recommendation.

	
class RecommendationApplication(cb, model_unique_id, initial_data=None)

	Bases: UnrefreshableModel

Represents the rule application of a proposed change to an organization’s policies.

	Parameters:

	
	type – Application type

	value – Application value

Initialize the RecommendationApplication object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – Should be None.

	initial_data (dict) – Initial data used to populate the object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class RecommendationImpact(cb, model_unique_id, initial_data=None)

	Bases: UnrefreshableModel

Represents metadata about a recommendation to be used in the decision to accept or reject it.

	Parameters:

	
	event_count – Number of alerts encountered for recommendation

	impact_score – Impact score

	impacted_devices – Number of devices impacted by the recommendation

	org_adoption – Priority for adoption of this recommendation

	update_time – The last time this impact was updated

Initialize the RecommendationImpact object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – Should be None.

	initial_data (dict) – Initial data used to populate the object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class RecommendationNewRule(cb, model_unique_id, initial_data=None)

	Bases: UnrefreshableModel

Represents the proposed change to an organization’s policies from a recommendation.

	Parameters:

	
	action – Rule action

	application – Rule application

	certificate_authority – Certificate authority

	filename – File name

	include_child_processes – Include child processes

	operation – Operation

	override_list – Override list

	override_type – Override type

	path – File path

	sha256_hash – SHA256 hash

	signed_by – Signed by

Initialize the RecommendationNewRule object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – Should be None.

	initial_data (dict) – Initial data used to populate the object.

	
property application_

	Return the object representing the rule application of a proposed change to an organization’s policies.

	Returns:

	The object representing the rule application of a proposed change.

	Return type:

	RecommendationApplication

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class RecommendationWorkflow(cb, model_unique_id, initial_data=None)

	Bases: UnrefreshableModel

Represents the lifecycle state of a recommendation.

	Parameters:

	
	changed_by – Who made the last update to the workflow

	create_time – The time the recommendation was created

	ref_id – Reference id for an accepted Recommendation which is the id of the created Reputation Override

	status – Status of the recommendation

	update_time – The last time the recommendation was updated

	comment – A comment added when the recommendation was updated

Initialize the RecommendationWorkflow object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – Should be None.

	initial_data (dict) – Initial data used to populate the object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
accept(comment=None)

	Accept this recommendation, converting it into a reputation override.

	Parameters:

	comment (str) – Optional comment associated with the action.

	Returns:

	True if we successfully refreshed this Recommendation’s state, False if not.

	Return type:

	bool

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
property impact_

	Return the object representing metadata about the recommendation.

	Returns:

	The object representing metadata about the recommendation.

	Return type:

	RecommendationImpact

	
property new_rule_

	Return the object representing the proposed change to an organization’s policies from the recommendation.

	Returns:

	The object representing the proposed change to an organization’s policies.

	Return type:

	RecommendationNewRule

	
refresh()

	Reload this object from the server.

	
reject(comment=None)

	Reject this recommendation.

	Parameters:

	comment (str) – Optional comment associated with the action.

	Returns:

	True if we successfully refreshed this Recommendation’s state, False if not.

	Return type:

	bool

	
reputation_override()

	Returns the reputation override associated with the recommendation (if the recommendation was accepted).

	Returns:

	The associated reputation override, or None if there is none.

	Return type:

	ReputationOverride

	
reset(comment=None)

	Reset the recommendation, undoing any created reputation override and setting it back to NEW state.

	Parameters:

	comment (str) – Optional comment associated with the action.

	Returns:

	True if we successfully refreshed this Recommendation’s state, False if not.

	Return type:

	bool

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
property workflow_

	Returns the object representing the lifecycle state of the recommendation.

	Returns:

	The object representing the lifecycle state of the recommendation.

	Return type:

	RecommendationWorkflow

	
class RecommendationQuery(doc_class, cb)

	Bases: BaseQuery, CriteriaBuilderSupportMixin, IterableQueryMixin, AsyncQueryMixin

Query used to locate Recommendation objects.

Initialize the RecommendationQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
set_hashes(hashes)

	Restricts the recommendations that this query is performed on to the specified hashes.

	Parameters:

	hashes (list) – List of hashes to restrict the search to.

	Returns:

	This instance.

	Return type:

	RecommendationQuery

	Raises:

	ApiError – If invalid values are passed in the list.

	
set_policy_types(policy_types)

	Restricts the recommendations that this query is performed on to the specified policy types.

	Parameters:

	policy_types (list) – List of policy types to restrict the search to.

	Returns:

	This instance.

	Return type:

	RecommendationQuery

	Raises:

	ApiError – If invalid values are passed in the list.

	
set_statuses(statuses)

	Restricts the recommendations that this query is performed on to the specified status values.

	Parameters:

	statuses (list) – List of status values to restrict the search to. If no statuses are specified, the search
defaults to NEW only.

	Returns:

	This instance.

	Return type:

	RecommendationQuery

	Raises:

	ApiError – If invalid values are passed in the list.

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(USBDevice).sort_by("product_name")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	This instance.

	Return type:

	USBDeviceQuery

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
log = <Logger cbc_sdk.endpoint_standard.recommendation (WARNING)>

	Recommendation models

USB Device Control Module

Model and Query Classes for USB Device Control

	
class USBDevice(cb, model_unique_id, initial_data=None)

	Bases: NewBaseModel

Represents a USB device.

	Parameters:

	
	created_at – the UTC date the external USB device configuration was created in ISO 8601 format

	device_friendly_name – human readable name for the external USB device

	device_name – name of the external USB device

	device_type – type of external USB device

	endpoint_count – number of endpoints that the external USB device has connected to

	first_seen – first timestamp that the external USB device was seen

	id – the id for this external USB device

	interface_type – type of interface used by external USB device

	last_endpoint_id – ID of the last endpoint the device accessed

	last_endpoint_name – name of the last endpoint the device accessed

	last_policy_id – ID of the last policy associated with the device

	last_seen – last timestamp that the external USB device was seen

	org_key – unique org key of the organization that the external USB device was connected to

	product_id – product ID of the external USB device in decimal form

	product_name – product name of the external USB device

	serial_number – serial number of external device

	status – Calculated status of device

	updated_at – the UTC date the external USB device configuration was updated in ISO 8601 format

	vendor_id – ID of the Vendor for the external USB device in decimal form

	vendor_name – vendor name of the external USB device

Initialize the USBDevice object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
approve(approval_name, notes)

	Creates and saves an approval for this USB device, allowing it to be treated as approved from now on.

	Required Permissions:
	external-device.manage (CREATE)

	Parameters:

	
	approval_name (str) – The name for this new approval.

	notes (str) – Notes to be added to this approval.

	Returns:

	The new approval.

	Return type:

	USBDeviceApproval

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_endpoints()

	Returns the information about endpoints associated with this USB device.

	Required Permissions:
	external-device.manage (READ)

	Returns:

	List of information about USB endpoints, each item specified as a dict.

	Return type:

	list

	
classmethod get_vendors_and_products_seen(cb)

	Returns all vendors and products that have been seen for the organization.

	Required Permissions:
	external-device.manage (READ)

	Parameters:

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	Returns:

	A list of vendors and products seen for the organization, each vendor being represented by a dict.

	Return type:

	list

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class USBDeviceApproval(cb, model_unique_id, initial_data=None)

	Bases: MutableBaseModel

Represents a USB device approval.

	Parameters:

	
	approval_name – the name of the approval

	created_at – the UTC date the approval was created in ISO 8601 format

	id – the id for this approval

	notes – the notes for the approval

	product_id – product ID of the approval’s external USB device in hex form

	product_name – product name of the approval’s external USB device

	serial_number – serial number of the approval’s external device

	updated_at – the UTC date the approval was updated in ISO 8601 format

	updated_by – the user who updated the record last

	vendor_id – ID of the Vendor for the approval’s external USB device in hex form

	vendor_name – vendor name of the approval’s external USB device

Initialize the USBDeviceApproval object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
classmethod bulk_create(cb, approvals)

	Creates multiple approvals and returns the USBDeviceApproval objects. Data is supplied as a list of dicts.

	Required Permissions:
	external-device.manage (CREATE)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	approvals (list) – List of dicts containing approval data to be created, formatted as shown below.

Example

>>> [
 {
 "approval_name": "string",
 "notes": "string",
 "product_id": "string",
 "serial_number": "string",
 "vendor_id": "string"
 }
]

	Returns:

	A list of USBDeviceApproval objects representing the approvals that were created.

	Return type:

	list

	
classmethod bulk_create_csv(cb, approval_data)

	Creates multiple approvals and returns the USBDeviceApproval objects. Data is supplied as text in CSV format.

	Required Permissions:
	external-device.manage (CREATE)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	approval_data (str) – CSV data for the approvals to be created. Header line MUST be included
as shown below.

Example

vendor_id,product_id,serial_number,approval_name,notes

string,string,string,string,string

	Returns:

	A list of USBDeviceApproval objects representing the approvals that were created.

	Return type:

	list

	
classmethod create_from_usb_device(usb_device)

	Creates a new, unsaved approval object from a USBDeviceObject, filling in its basic fields.

	Parameters:

	usb_device (USBDevice) – The USB device to create the approval from.

	Returns:

	The new approval object.

	Return type:

	USBDeviceApproval

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
refresh()

	Reload this object from the server.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this object.

	Returns:

	True if the object is validated.

	Return type:

	bool

	Raises:

	InvalidObjectError – If the object has missing fields.

	
class USBDeviceApprovalQuery(doc_class, cb)

	Bases: BaseQuery, QueryBuilderSupportMixin, CriteriaBuilderSupportMixin, IterableQueryMixin, AsyncQueryMixin

Represents a query that is used to locate USBDeviceApproval objects.

Initialize the USBDeviceApprovalQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
export(export_format)

	Starts the process of exporting USB device approval data from the organization in a specified format.

	Required Permissions:
	external-device.manage (READ)

	Parameters:

	export_format (str) – The format to export USB device approval data in. Must be either “CSV” or “JSON”.

	Returns:

	The asynchronous job that will provide the export output when the server has prepared it.

	Return type:

	Job

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_device_ids(device_ids)

	Restricts the device approvals that this query is performed on to the specified device IDs.

	Parameters:

	device_ids (list) – List of string device IDs.

	Returns:

	This instance.

	Return type:

	USBDeviceApprovalQuery

	
set_product_names(product_names)

	Restricts the device approvals that this query is performed on to the specified product names.

	Parameters:

	product_names (list) – List of string product names.

	Returns:

	This instance.

	Return type:

	USBDeviceApprovalQuery

	
set_vendor_names(vendor_names)

	Restricts the device approvals that this query is performed on to the specified vendor names.

	Parameters:

	vendor_names (list) – List of string vendor names.

	Returns:

	This instance.

	Return type:

	USBDeviceApprovalQuery

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
class USBDeviceBlock(cb, model_unique_id, initial_data=None)

	Bases: NewBaseModel

Represents a USB device block.

	Parameters:

	
	created_at – the UTC date the block was created in ISO 8601 format

	id – the id for this block

	policy_id – policy id which is blocked

	updated_at – the UTC date the block was updated in ISO 8601 format

Initialize the USBDeviceBlock object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
classmethod bulk_create(cb, policy_ids)

	Creates multiple blocks and returns the USBDeviceBlocks that were created.

	Required Permissions:
	org.policies (UPDATE), external-device.enforce (UPDATE)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	policy_ids (list) – List of policy IDs to have blocks created for.

	Returns:

	A list of USBDeviceBlock objects representing the approvals that were created.

	Return type:

	list

	
classmethod create(cb, policy_id)

	Creates a USBDeviceBlock for a given policy ID.

	Required Permissions:
	org.policies (UPDATE), external-device.enforce (UPDATE)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	policy_id (str/int) – Policy ID to create a USBDeviceBlock for.

	Returns:

	New USBDeviceBlock object representing the block.

	Return type:

	USBDeviceBlock

	
delete()

	Delete this object.

	Required Permissions:
	org.policies (DELETE), external-device.enforce (UPDATE)

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class USBDeviceBlockQuery(doc_class, cb)

	Bases: BaseQuery, IterableQueryMixin, AsyncQueryMixin

Represents a query that is used to locate USBDeviceBlock objects.

Initialize the USBDeviceBlockQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
class USBDeviceQuery(doc_class, cb)

	Bases: BaseQuery, QueryBuilderSupportMixin, CriteriaBuilderSupportMixin, IterableQueryMixin, AsyncQueryMixin

Represents a query that is used to locate USBDevice objects.

Initialize the USBDeviceQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
export(export_format)

	Starts the process of exporting USB device data from the organization in a specified format.

	Required Permissions:
	external-device.manage (READ)

	Parameters:

	export_format (str) – The format to export USB device data in. Must be either “CSV” or “JSON”.

	Returns:

	The asynchronous job that will provide the export output when the server has prepared it.

	Return type:

	Job

	
facets(fieldlist, max_rows=0)

	Return information about the facets for all known USB devices, using the defined criteria.

	Required Permissions:
	external-device.manage (READ)

	Parameters:

	
	fieldlist (list) – List of facet field names. Valid names are “vendor_name”, “product_name”,
“endpoint.endpoint_name”, and “status”.

	max_rows (int) – The maximum number of rows to return. 0 means return all rows.

	Returns:

	A list of facet information specified as dicts.

	Return type:

	list

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_endpoint_names(endpoint_names)

	Restricts the devices that this query is performed on to the specified endpoint names.

	Parameters:

	endpoint_names (list) – List of string endpoint names.

	Returns:

	This instance.

	Return type:

	USBDeviceQuery

	
set_max_rows(max_rows)

	Sets the max number of usb devices to fetch in a singular query

	Parameters:

	max_rows (integer) – Max number of usb devices

	Returns:

	This instance.

	Return type:

	USBDeviceQuery

	Raises:

	ApiError – If rows is negative or greater than 10000

	
set_product_names(product_names)

	Restricts the devices that this query is performed on to the specified product names.

	Parameters:

	product_names (list) – List of string product names.

	Returns:

	This instance.

	Return type:

	USBDeviceQuery

	
set_serial_numbers(serial_numbers)

	Restricts the devices that this query is performed on to the specified serial numbers.

	Parameters:

	serial_numbers (list) – List of string serial numbers.

	Returns:

	This instance.

	Return type:

	USBDeviceQuery

	
set_statuses(statuses)

	Restricts the devices that this query is performed on to the specified status values.

	Parameters:

	statuses (list) – List of string status values. Valid values are APPROVED and UNAPPROVED.

	Returns:

	This instance.

	Return type:

	USBDeviceQuery

	
set_vendor_names(vendor_names)

	Restricts the devices that this query is performed on to the specified vendor names.

	Parameters:

	vendor_names (list) – List of string vendor names.

	Returns:

	This instance.

	Return type:

	USBDeviceQuery

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(USBDevice).sort_by("product_name")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	This instance.

	Return type:

	USBDeviceQuery

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
log = <Logger cbc_sdk.endpoint_standard.usb_device_control (WARNING)>

	USB Device Control models

Enterprise EDR Package

Auth Events Module

Model and Query Classes for Auth Events

	
class AuthEvent(cb, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: NewBaseModel

Represents an AuthEvent

Initialize the AuthEvent object.

	Required RBAC Permissions:
	org.search.events (CREATE, READ)

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (Any) – The unique ID for this particular instance of the model object.

	initial_data (dict) – The data to use when initializing the model object.

	force_init (bool) – True to force object initialization.

	full_doc (bool) – False to mark the object as not fully initialized.

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> events = cb.select(AuthEvent).where("auth_username:SYSTEM")
>>> print(*events)

	
static bulk_get_details(cb, alert_id=None, event_ids=None, timeout=0)

	Bulk get details

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	alert_id (str) – An alert id to fetch associated events

	event_ids (list) – A list of event ids to fetch

	timeout (int) – AuthEvent details request timeout in milliseconds. This can never be greater than the
configured default timeout. If this value is 0, the configured default timeout is used.

	Returns:

	list of Auth Events

	Return type:

	list

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> bulk_details = AuthEvent.bulk_get_details(cb, event_ids=['example-value'])
>>> print(bulk_details)

	Raises:

	ApiError – if cb is not instance of CBCloudAPI

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
static get_auth_events_descriptions(cb)

	Returns descriptions and status messages of Auth Events.

	Parameters:

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	Returns:

	Descriptions and status messages of Auth Events as dict objects.

	Return type:

	dict

	Raises:

	ApiError – if cb is not instance of CBCloudAPI

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> descriptions = AuthEvent.get_auth_events_descriptions(cb)
>>> print(descriptions)

	
get_details(timeout=0, async_mode=False)

	Requests detailed results.

	Parameters:

	
	timeout (int) – AuthEvent details request timeout in milliseconds. This can never be greater than the
configured default timeout. If this is 0, the configured default timeout is used.

	async_mode (bool) – True to request details in an asynchronous manner.

	Returns:

	Auth Events object enriched with the details fields

	Return type:

	AuthEvent

Note

	When using asynchronous mode, this method returns a python future.
You can call result() on the future object to wait for completion and get the results.

Examples

>>> cb = CBCloudAPI(profile="example_profile")

>>> events = cb.select(AuthEvent).where(process_pid=2000)
>>> print(events[0].get_details())

	
refresh()

	Reload this object from the server.

	
static search_suggestions(cb, query, count=None)

	Returns suggestions for keys and field values that can be used in a search.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	query (str) – A search query to use.

	count (int) – (optional) Number of suggestions to be returned

	Returns:

	A list of search suggestions expressed as dict objects.

	Return type:

	list

	Raises:

	ApiError – if cb is not instance of CBCloudAPI

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> suggestions = AuthEvent.search_suggestions(cb, 'auth')
>>> print(suggestions)

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class AuthEventFacet(cb, model_unique_id, initial_data)

	Bases: UnrefreshableModel

Represents an AuthEvent facet retrieved.

	Example:
	>>> cb = CBCloudAPI(profile="example_profile")
>>> events_facet = cb.select(AuthEventFacet).where("auth_username:SYSTEM").add_facet_field("process_name")
>>> print(events_facet.results)

	Parameters:

	
	terms – Contains the Auth Event Facet search results

	ranges – Groupings for search result properties that are ISO 8601 timestamps or numbers

	contacted – The number of searchers contacted for this query

	completed – The number of searchers that have reported their results

Initialize the Terms object with initial data.

	
class Ranges(cb, initial_data)

	Bases: UnrefreshableModel

Represents the range (bucketed) facet fields and values associated with an AuthEvent Facet query.

Initialize an AuthEventFacet Ranges object with initial_data.

	
property facets

	Returns the reified AuthEventFacet.Terms._facets for this result.

	
property fields

	Returns the ranges fields for this result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class Terms(cb, initial_data)

	Bases: UnrefreshableModel

Represents the facet fields and values associated with an AuthEvent Facet query.

Initialize an AuthEventFacet Terms object with initial_data.

	
property facets

	Returns the terms’ facets for this result.

	
property fields

	Returns the terms facets’ fields for this result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
property ranges_

	Returns the reified AuthEventFacet.Ranges for this result.

	
refresh()

	Reload this object from the server.

	
property terms_

	Returns the reified AuthEventFacet.Terms for this result.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class AuthEventGroup(cb, initial_data=None)

	Bases: object

Represents AuthEventGroup

Initialize AuthEventGroup object

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	initial_data (dict) – The data to use when initializing the model object.

Notes

The constructed object will have the following data:
- group_start_timestamp
- group_end_timestamp
- group_key
- group_value

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> groups = set(cb.select(AuthEvent).where(process_pid=2000).group_results("device_name"))
>>> for group in groups:
>>> print(group._info)

	
class AuthEventQuery(doc_class, cb)

	Bases: Query

Represents the query logic for an AuthEvent query.

This class specializes Query to handle the particulars of Auth Events querying.

Initialize the AuthEventQuery object.

	Parameters:

	
	doc_class (class) – The class of the model this query returns.

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> events = cb.select(AuthEvent).where("auth_username:SYSTEM")
>>> print(*events)

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
add_exclusions(key, newlist)

	Add to the exclusions on this query with a custom exclusions key.

Will overwrite any existing exclusion for the specified key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).add_exclusions("type", ["WATCHLIST"])
>>> query = api.select(Alert).add_exclusions("type", "WATCHLIST")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
batch_size(new_batch_size)

	Set the batch size of the paginated query.

	Parameters:

	new_batch_size (int) – The new batch size.

	Returns:

	A new query with the updated batch size.

	Return type:

	PaginatedQuery

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
group_results(fields, max_events_per_group=None, rows=500, start=None, range_duration=None, range_field=None, range_method=None)

	Get group results grouped by provided fields.

	Parameters:

	
	fields (str / list) – field or fields by which to perform the grouping

	max_events_per_group (int) – Maximum number of events in a group, if not provided all events will be returned

	rows (int) – Number of rows to request, can be paginated

	start (int) – First row to use for pagination

	ranges (dict) – dict with information about duration, field, method

	Returns:

	grouped results

	Return type:

	dict

Examples

>>> cb = CBCloudAPI(profile="example_profile")
>>> groups = set(cb.select(AuthEvent).where(process_pid=2000).group_results("device_name"))
>>> for group in groups:
>>> print(group._info)

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(**kwargs)

	or_() criteria are explicitly provided to AuthEvent queries.

This method overrides the base class in order to provide or_() functionality rather than raising an exception.

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> events = cb.select(AuthEvent).where(process_name="chrome.exe").or_(process_name="firefox.exe")
>>> print(*events)

	
set_fields(fields)

	Sets the fields to be returned with the response.

	Parameters:

	fields (str or list[str]) – Field or list of fields to be returned.

	
set_rows(rows)

	Sets the ‘rows’ query body parameter to the ‘start search’ API call, determining how many rows to request.

	Parameters:

	rows (int) – How many rows to request.

	Returns:

	AuthEventQuery object

	Return type:

	Query

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> events = cb.select(AuthEvent).where(process_name="chrome.exe").set_rows(5)
>>> print(*events)

	
set_start(start)

	Sets the ‘start’ query body parameter, determining where to begin retrieving results from.

	Parameters:

	start (int) – Where to start results from.

	
set_time_range(start=None, end=None, window=None)

	Sets the ‘time_range’ query body parameter, determining a time window based on ‘device_timestamp’.

	Parameters:

	
	start (str in ISO 8601 timestamp) – When to start the result search.

	end (str in ISO 8601 timestamp) – When to end the result search.

	window (str) – Time window to execute the result search, ending on the current time.
Should be in the form “-2w”, where y=year, w=week, d=day, h=hour, m=minute, s=second.

Note

	window will take precendent over start and end if provided.

Examples

>>> query = api.select(Process).set_time_range(start="2020-10-20T20:34:07Z").where("query is required")
>>> second_query = api.select(Process).
... set_time_range(start="2020-10-20T20:34:07Z", end="2020-10-30T20:34:07Z").where("query is required")
>>> third_query = api.select(Process).set_time_range(window='-3d').where("query is required")

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	The query with sorting parameters.

	Return type:

	Query

Example

>>> cb.select(Process).where(process_name="cmd.exe").sort_by("device_timestamp")

	
timeout(msecs)

	Sets the timeout on a Auth Event query.

	Parameters:

	msecs (int) – Timeout duration, in milliseconds. This value can never be greater than the configured
default timeout. If this value is 0, the configured default timeout is used.

	Returns:

	The Query object with new milliseconds parameter.

	Return type:

	Query (AuthEventQuery)

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> events = cb.select(AuthEvent).where(process_name="chrome.exe").timeout(5000)
>>> print(*events)

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
update_exclusions(key, newlist)

	Update the exclusion on this query with a custom exclusion key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (list) – List of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).update_exclusions("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

Threat Intelligence Module

Model Classes for Enterprise Endpoint Detection and Response

	
class Feed(cb, model_unique_id=None, initial_data=None)

	Bases: FeedModel

Represents an Enterprise EDR feed’s metadata.

	Parameters:

	
	name – A human-friendly name for this feed

	owner – The feed owner’s connector ID

	provider_url – A URL supplied by the feed’s provider

	summary – A human-friendly summary for the feed

	category – The feed’s category

	source_label – The feed’s source label

	access – The feed’s access (public or private)

	id – The feed’s unique ID

Initialize the Feed object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (str) – The unique ID of the feed.

	initial_data (dict) – The initial data for the object.

	
class FeedBuilder(cb, info)

	Bases: object

Helper class allowing Feeds to be assembled.

Creates a new FeedBuilder object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	info (dict) – The initial information for the new feed.

	
add_reports(reports)

	Adds new reports to the new feed.

	Parameters:

	reports (list[Report]) – New reports to be added to the feed.

	Returns:

	This object.

	Return type:

	FeedBuilder

	
build()

	Builds the new Feed.

	Returns:

	The new Feed.

	Return type:

	Feed

	
set_alertable(alertable)

	Sets the alertable for the new feed. Defaults to true if not specified.

	Parameters:

	alertable (bool) – Indicator whether the feed supports alerting.

	Returns:

	This object.

	Return type:

	FeedBuilder

	
set_category(category)

	Sets the category for the new feed.

	Parameters:

	category (str) – New category for the feed.

	Returns:

	This object.

	Return type:

	FeedBuilder

	
set_name(name)

	Sets the name for the new feed.

	Parameters:

	name (str) – New name for the feed.

	Returns:

	This object.

	Return type:

	FeedBuilder

	
set_provider_url(provider_url)

	Sets the provider URL for the new feed.

	Parameters:

	provider_url (str) – New provider URL for the feed.

	Returns:

	This object.

	Return type:

	FeedBuilder

	
set_source_label(source_label)

	Sets the source label for the new feed.

	Parameters:

	source_label (str) – New source label for the feed.

	Returns:

	This object.

	Return type:

	FeedBuilder

	
set_summary(summary)

	Sets the summary for the new feed.

	Parameters:

	summary (str) – New summary for the feed.

	Returns:

	This object.

	Return type:

	FeedBuilder

	
append_reports(reports)

	Append the given Reports to this Feed’s current Reports.

	Parameters:

	reports ([Report]) – List of Reports to append to Feed.

	Raises:

	InvalidObjectError – If id is missing.

	
append_reports_rawdata(report_data)

	Append the given report data, formatted as per the API documentation for reports, to this Feed’s Reports.

	Parameters:

	report_data (list[dict]) –

	Raises:

	InvalidObjectError – If id is missing or validation of the data fails.

	
classmethod create(cb, name, provider_url, summary, category, alertable=True)

	Begins creating a new feed by making a FeedBuilder to hold the new feed data.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	name (str) – Name for the new feed.

	provider_url (str) – Provider URL for the new feed.

	summary (str) – Summary for the new feed.

	category (str) – Category for the new feed.

	Returns:

	The new FeedBuilder object to be used to create the feed.

	Return type:

	FeedBuilder

	
delete()

	Deletes this feed from the Enterprise EDR server.

	Raises:

	InvalidObjectError – If id is missing.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
refresh()

	Reload this object from the server.

	
replace_reports(reports)

	Replace this Feed’s Reports with the given Reports.

	Parameters:

	reports ([Report]) – List of Reports to replace existing Reports with.

	Raises:

	InvalidObjectError – If id is missing.

	
replace_reports_rawdata(report_data)

	Replace this Feed’s Reports with the given reports, specified as raw data.

	Parameters:

	report_data (list[dict]) –

	Raises:

	InvalidObjectError – If id is missing or validation of the data fails.

	
property reports

	Returns a list of Reports associated with this feed.

	Returns:

	List of Reports in this Feed.

	Return type:

	Reports ([Report])

	
reset()

	Undo any changes made to this object’s fields.

	
save(public=False)

	Saves this feed on the Enterprise EDR server.

	Parameters:

	public (bool) – Whether to make the feed publicly available.

	Returns:

	The saved Feed.

	Return type:

	Feed (Feed)

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
update(**kwargs)

	Update this feed’s metadata with the given arguments.

	Parameters:

	**kwargs (dict(str, str)) – The fields to update.

	Raises:

	
	InvalidObjectError – If id is missing or Feed.validate() fails.

	ApiError – If an invalid field is specified.

Example

>>> feed.update(access="private")

	
validate()

	Checks to ensure this feed contains valid data.

	Raises:

	InvalidObjectError – If the feed contains invalid data.

	
class FeedModel(cb, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: UnrefreshableModel, CreatableModelMixin, MutableBaseModel

A common base class for models used by the Feed and Watchlist APIs.

Initialize the NewBaseModel object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (Any) – The unique ID for this particular instance of the model object.

	initial_data (dict) – The data to use when initializing the model object.

	force_init (bool) – True to force object initialization.

	full_doc (bool) – True to mark the object as fully initialized.

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
refresh()

	Reload this object from the server.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this object.

	Returns:

	True if the object is validated.

	Return type:

	bool

	Raises:

	InvalidObjectError – If the object has missing fields.

	
class FeedQuery(doc_class, cb)

	Bases: SimpleQuery

Represents the logic for a Feed query.

>>> cb.select(Feed)
>>> cb.select(Feed, id)
>>> cb.select(Feed).where(include_public=True)

Initialize the FeedQuery object.

	Parameters:

	
	doc_class (class) – The class of the model this query returns.

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(new_query)

	Add an additional “where” clause to this query.

	Parameters:

	new_query (object) – The additional “where” clause, as a string or solrq.Q object.

	Returns:

	A new query with the extra “where” clause specified.

	Return type:

	SimpleQuery

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
property results

	Return a list of Feed objects matching self._args parameters.

	
sort(new_sort)

	Set the sorting for this query.

	Parameters:

	new_sort (object) – The new sort criteria for this query.

	Returns:

	A new query with the sort parameter specified.

	Return type:

	SimpleQuery

	
where(**kwargs)

	Add kwargs to self._args dictionary.

	
class IOC(cb, model_unique_id=None, initial_data=None, report_id=None)

	Bases: FeedModel

Represents a collection of categorized IOCs. These objects are officially deprecated and replaced by IOC_V2.

	Parameters:

	
	md5 – A list of MD5 checksums

	ipv4 – A list of IPv4 addresses

	ipv6 – A list of IPv6 addresses

	dns – A list of domain names

	query – A list of dicts, each containing an IOC query

Creates a new IOC instance.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – Unique ID of this IOC.

	initial_data (dict) – Initial data used to populate the IOC.

	report_id (str) – ID of the report this IOC belongs to (if this is a watchlist IOC).

	Raises:

	ApiError – If initial_data is None.

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
refresh()

	Reload this object from the server.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Checks to ensure this IOC contains valid data.

	Raises:

	InvalidObjectError – If the IOC contains invalid data.

	
class IOC_V2(cb, model_unique_id=None, initial_data=None, report_id=None)

	Bases: FeedModel

Represents a collection of IOCs of a particular type, plus matching criteria and metadata.

	Parameters:

	
	id – The IOC_V2’s unique ID

	match_type – How IOCs in this IOC_V2 are matched

	values – A list of IOCs

	field – The kind of IOCs contained in this IOC_V2

	link – A URL for some reference for this IOC_V2

Creates a new IOC_V2 instance.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (Any) – Unused.

	initial_data (dict) – Initial data used to populate the IOC.

	report_id (str) – ID of the report this IOC belongs to (if this is a watchlist IOC).

	Raises:

	ApiError – If initial_data is None.

	
classmethod create_equality(cb, iocid, field, *values)

	Creates a new “equality” IOC.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	iocid (str) – ID for the new IOC. If this is None, a UUID will be generated for the IOC.

	field (str) – Name of the field to be matched by this IOC.

	*values (list(str)) – String values to match against the value of the specified field.

	Returns:

	New IOC data structure.

	Return type:

	IOC_V2

	Raises:

	ApiError – If there is not at least one value to match against.

	
classmethod create_query(cb, iocid, query)

	Creates a new “query” IOC.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	iocid (str) – ID for the new IOC. If this is None, a UUID will be generated for the IOC.

	query (str) – Query to be incorporated in this IOC.

	Returns:

	New IOC data structure.

	Return type:

	IOC_V2

	Raises:

	ApiError – If the query string is not present.

	
classmethod create_regex(cb, iocid, field, *values)

	Creates a new “regex” IOC.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	iocid (str) – ID for the new IOC. If this is None, a UUID will be generated for the IOC.

	field (str) – Name of the field to be matched by this IOC.

	*values (list(str)) – Regular expression values to match against the value of the specified field.

	Returns:

	New IOC data structure.

	Return type:

	IOC_V2

	Raises:

	ApiError – If there is not at least one regular expression to match against.

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
ignore()

	Sets the ignore status on this IOC.

Only watchlist IOCs have an ignore status.

	Raises:

	InvalidObjectError – If id is missing or this IOC is not from a Watchlist.

	
property ignored

	Returns whether or not this IOC is ignored.

Only watchlist IOCs have an ignore status.

	Returns:

	True if the IOC is ignored, False otherwise.

	Return type:

	bool

	Raises:

	InvalidObjectError – If this IOC is missing an id or is not a Watchlist IOC.

Example

>>> if ioc.ignored:
... ioc.unignore()

	
classmethod ipv6_equality_format(input)

	Turns a canonically-formatted IPv6 address into a string suitable for use in an equality IOC.

	Parameters:

	input (str) – The IPv6 address to be translated.

	Returns:

	The translated form of IPv6 address.

	Return type:

	str

	Raises:

	ApiError – If the string is not in valid format.

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
refresh()

	Reload this object from the server.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
unignore()

	Removes the ignore status on this IOC.

Only watchlist IOCs have an ignore status.

	Raises:

	InvalidObjectError – If id is missing or this IOC is not from a Watchlist.

	
validate()

	Checks to ensure this IOC contains valid FQDN.

	Raises:

	InvalidObjectError – If the IOC contains invalid data.

	
class Report(cb, model_unique_id=None, initial_data=None, feed_id=None, from_watchlist=False)

	Bases: FeedModel

Represents reports retrieved from an Enterprise EDR feed.

	Parameters:

	
	id – The report’s unique ID

	timestamp – When this report was created

	title – A human-friendly title for this report

	description – A human-friendly description for this report

	severity – The severity of the IOCs within this report

	link – A URL for some reference for this report

	tags – A list of tags for this report

	iocs_v2 – A list of IOC_V2 dicts associated with this report

	visibility – The visibility of this report

Initialize the ReportSeverity object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (str) – The ID of the Report (only works for Reports in
Watchlists).

	initial_data (dict) – The initial data for the object.

	feed_id (str) – The ID of the feed this report is for.

	from_watchlist (bool) – If the report is in a watchlist

	
class ReportBuilder(cb, report_body)

	Bases: object

Helper class allowing Reports to be assembled.

Initialize a new ReportBuilder.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	report_body (dict) – Partial report body which should be filled in with all “required” fields.

	
add_ioc(ioc)

	Adds an IOC to the new report.

	Parameters:

	ioc (IOC_V2) – The IOC to be added to the report.

	Returns:

	This object.

	Return type:

	ReportBuilder

	
add_tag(tag)

	Adds a tag value to the new report.

	Parameters:

	tag (str) – The new tag for the object.

	Returns:

	This object.

	Return type:

	ReportBuilder

	
build()

	Builds the actual Report from the internal data of the ReportBuilder.

	Returns:

	The new Report.

	Return type:

	Report

	
set_description(description)

	Set the description for the new report.

	Parameters:

	description (str) – New description for the report.

	Returns:

	This object.

	Return type:

	ReportBuilder

	
set_link(link)

	Set the link for the new report.

	Parameters:

	link (str) – New link for the report.

	Returns:

	This object.

	Return type:

	ReportBuilder

	
set_severity(severity)

	Set the severity for the new report.

	Parameters:

	severity (int) – New severity for the report.

	Returns:

	This object.

	Return type:

	ReportBuilder

	
set_timestamp(timestamp)

	Set the timestamp for the new report.

	Parameters:

	timestamp (int) – New timestamp for the report.

	Returns:

	This object.

	Return type:

	ReportBuilder

	
set_title(title)

	Set the title for the new report.

	Parameters:

	title (str) – New title for the report.

	Returns:

	This object.

	Return type:

	ReportBuilder

	
set_visibility(visibility)

	Set the visibility for the new report.

	Parameters:

	visibility (str) – New visibility for the report.

	Returns:

	This object.

	Return type:

	ReportBuilder

	
append_iocs(iocs)

	Append a list of IOCs to this Report.

	Parameters:

	iocs (list[IOC_V2]) – List of IOCs to be added.

	
classmethod create(cb, title, description, severity, timestamp=None, tags=None)

	Begin creating a new Report by returning a ReportBuilder.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	title (str) – Title for the new report.

	description (str) – Description for the new report.

	severity (int) – Severity value for the new report.

	timestamp (int) – UNIX-epoch timestamp for the new report. If omitted, current time will be used.

	tags (list[str]) – Tags to be added to the report. If omitted, there will be none.

	Returns:

	Reference to the ReportBuilder object.

	Return type:

	ReportBuilder

	
property custom_severity

	Returns the custom severity for this report.

	Returns:

	
	The custom severity for this Report,
	if it exists.

	Return type:

	ReportSeverity (ReportSeverity)

	Raises:

	InvalidObjectError – If id ismissing or this Report is from a Watchlist.

	
delete()

	Deletes this report from the Enterprise EDR server.

	Raises:

	InvalidObjectError – If id is missing, or feed_id is missing
 and this report is a Feed Report.

Example

>>> report.delete()

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
ignore()

	Sets the ignore status on this report.

	Raises:

	InvalidObjectError – If id is missing or feed ID is missing.

	
property ignored

	Returns the ignore status for this report.

	Returns:

	True if this Report is ignored, False otherwise.

	Return type:

	(bool)

	Raises:

	InvalidObjectError – If id is missing or feed ID is missing.

Example

>>> if report.ignored:
... report.unignore()

	
property iocs_

	Returns a list of IOC_V2’s associated with this report.

	Returns:

	List of IOC_V2’s for associated with the Report.

	Return type:

	IOC_V2 ([IOC_V2])

Example

>>> for ioc in report.iocs_:
... print(ioc.values)

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
refresh()

	Reload this object from the server.

	
remove_iocs(iocs)

	Remove a list of IOCs from this Report.

	Parameters:

	iocs (list[IOC_V2]) – List of IOCs to be removed.

	
remove_iocs_by_id(ids_list)

	Remove IOCs from this report by specifying their IDs.

	Parameters:

	ids_list (list[str]) – List of IDs of the IOCs to be removed.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
save_watchlist()

	Saves this report as a watchlist report.

Note

This method cannot be used to save a feed report. To save feed reports, create them with cb.create
and use Feed.replace.

This method cannot be used to save a report that is already part of a watchlist. Use the update()
method instead.

	Raises:

	InvalidObjectError – If Report.validate() fails.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
unignore()

	Removes the ignore status on this report.

	Raises:

	InvalidObjectError – If id is missing or feed ID is missing.

	
update(**kwargs)

	Update this Report with the given arguments.

	Parameters:

	**kwargs (dict(str, str)) – The Report fields to update.

	Returns:

	The updated Report.

	Return type:

	Report (Report)

	Raises:

	InvalidObjectError – If id is missing, or feed_id is missing
 and this report is a Feed Report, or Report.validate() fails.

Note

The report’s timestamp is always updated, regardless of whether passed explicitly.

>>> report.update(title="My new report title")

	
validate()

	Checks to ensure this report contains valid data.

	Raises:

	InvalidObjectError – If the report contains invalid data.

	
class ReportQuery(doc_class, cb)

	Bases: SimpleQuery

Represents the logic for a Report query.

Example

>>> cb.select(Report).where(feed_id=id)
>>> cb.select(Report, id)
>>> cb.select(Report, id, from_watchlist=True)

Initialize the ReportQuery object.

	Parameters:

	
	doc_class (class) – The class of the model this query returns.

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(new_query)

	Add an additional “where” clause to this query.

	Parameters:

	new_query (object) – The additional “where” clause, as a string or solrq.Q object.

	Returns:

	A new query with the extra “where” clause specified.

	Return type:

	SimpleQuery

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
property results

	Return a list of Report objects

	
sort(new_sort)

	Set the sorting for this query.

	Parameters:

	new_sort (object) – The new sort criteria for this query.

	Returns:

	A new query with the sort parameter specified.

	Return type:

	SimpleQuery

	
where(**kwargs)

	Add kwargs to self._args dictionary.

	
class ReportSeverity(cb, initial_data=None)

	Bases: FeedModel

Represents severity information for a Watchlist Report.

	Parameters:

	
	report_id – The unique ID for the corresponding report

	severity – The severity level

Initialize the ReportSeverity object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	initial_data (dict) – The initial data for the object.

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
refresh()

	Reload this object from the server.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this object.

	Returns:

	True if the object is validated.

	Return type:

	bool

	Raises:

	InvalidObjectError – If the object has missing fields.

	
class Watchlist(cb, model_unique_id=None, initial_data=None)

	Bases: FeedModel

Represents an Enterprise EDR watchlist.

	Parameters:

	
	name – A human-friendly name for the watchlist

	description – A short description of the watchlist

	id – The watchlist’s unique id

	tags_enabled – Whether tags are currently enabled

	alerts_enabled – Whether alerts are currently enabled

	create_timestamp – When this watchlist was created

	last_update_timestamp – Report IDs associated with this watchlist

	report_ids – Report IDs associated with this watchlist

	classifier – A key, value pair specifying an associated feed

Initialize the Watchlist object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (str) – The unique ID of the watch list.

	initial_data (dict) – The initial data for the object.

	
class WatchlistBuilder(cb, name)

	Bases: object

Helper class allowing Watchlists to be assembled.

Creates a new WatchlistBuilder object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	name (str) – Name for the new watchlist.

	
add_report_ids(report_ids)

	Adds report IDs to the watchlist.

	Parameters:

	report_ids (list[str]) – List of report IDs to add to the watchlist.

	Returns:

	This object.

	Return type:

	WatchlistBuilder

	
add_reports(reports)

	Adds reports to the watchlist.

	Parameters:

	reports (list[Report]) – List of reports to be added to the watchlist.

	Returns:

	This object.

	Return type:

	WatchlistBuilder

	
build()

	Builds the new Watchlist using information in the builder. The new watchlist must still be saved.

	Returns:

	The new Watchlist.

	Return type:

	Watchlist

	
set_alerts_enabled(flag)

	Sets whether alerts will be enabled on the new watchlist.

	Parameters:

	flag (bool) – True to enable alerts, False to disable them. Default is False.

	Returns:

	This object.

	Return type:

	WatchlistBuilder

	
set_description(description)

	Sets the description for the new watchlist.

	Parameters:

	description (str) – New description for the watchlist.

	Returns:

	This object.

	Return type:

	WatchlistBuilder

	
set_name(name)

	Sets the name for the new watchlist.

	Parameters:

	name (str) – New name for the watchlist.

	Returns:

	This object.

	Return type:

	WatchlistBuilder

	
set_tags_enabled(flag)

	Sets whether tags will be enabled on the new watchlist.

	Parameters:

	flag (bool) – True to enable tags, False to disable them. Default is True.

	Returns:

	This object.

	Return type:

	WatchlistBuilder

	
add_report_ids(report_ids)

	Adds new report IDs to the watchlist.

	Parameters:

	report_ids (list[str]) – List of report IDs to be added to the watchlist.

	
add_reports(reports)

	Adds new reports to the watchlist.

	Parameters:

	reports (list[Report]) – List of reports to be added to the watchlist.

	
property classifier_

	Returns the classifier key and value, if any, for this watchlist.

	Returns:

	Watchlist’s classifier key and value.
None: If there is no classifier key and value.

	Return type:

	tuple(str, str)

	
classmethod create(cb, name)

	Starts creating a new Watchlist by returning a WatchlistBuilder that can be used to set attributes.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	name (str) – Name for the new watchlist.

	Returns:

	The builder for the new watchlist. Call build() to create the actual Watchlist.

	Return type:

	WatchlistBuilder

	
classmethod create_from_feed(feed, name=None, description=None, enable_alerts=False, enable_tags=True)

	Creates a new Watchlist that encapsulates a Feed.

	Parameters:

	
	feed (Feed) – The feed to be encapsulated by this Watchlist.

	name (str) – Name for the new watchlist. The default is to use the Feed name.

	description (str) – Description for the new watchlist. The default is to use the Feed summary.

	enable_alerts (bool) –

	enable_tags (bool) –

	Returns:

	A new Watchlist object, which must be saved to the server.

	Return type:

	Watchlist

	
delete()

	Deletes this watchlist from the Enterprise EDR server.

	Raises:

	InvalidObjectError – If id is missing.

	
disable_alerts()

	Disable alerts for this watchlist.

	Raises:

	InvalidObjectError – If id is missing.

	
disable_tags()

	Disable tagging for this watchlist.

	Raises:

	InvalidObjectError – if id is missing.

	
enable_alerts()

	Enable alerts for this watchlist. Alerts are not retroactive.

	Raises:

	InvalidObjectError – If id is missing.

	
enable_tags()

	Enable tagging for this watchlist.

	Raises:

	InvalidObjectError – If id is missing.

	
property feed

	Returns the Feed linked to this Watchlist, if there is one.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
refresh()

	Reload this object from the server.

	
property reports

	Returns a list of Report objects associated with this watchlist.

	Returns:

	List of Reports associated with the watchlist.

	Return type:

	Reports ([Report])

Note

If this Watchlist is a classifier (i.e. feed-linked) Watchlist,
reports will be empty. To get the reports associated with the linked
Feed, use feed like:

>>> for report in watchlist.feed.reports:
... print(report.title)

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Saves this watchlist on the Enterprise EDR server.

	Returns:

	The saved Watchlist.

	Return type:

	Watchlist (Watchlist)

	Raises:

	InvalidObjectError – If Watchlist.validate() fails.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
update(**kwargs)

	Updates this watchlist with the given arguments.

	Parameters:

	**kwargs (dict(str, str)) – The fields to update.

	Raises:

	
	InvalidObjectError – If id is missing or Watchlist.validate() fails.

	ApiError – If report_ids is given and is empty.

Example

>>> watchlist.update(name="New Name")

	
validate()

	Checks to ensure this watchlist contains valid data.

	Raises:

	InvalidObjectError – If the watchlist contains invalid data.

	
class WatchlistQuery(doc_class, cb)

	Bases: SimpleQuery

Represents the logic for a Watchlist query.

>>> cb.select(Watchlist)

Initialize the WatchlistQuery object.

	Parameters:

	
	doc_class (class) – The class of the model this query returns.

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(new_query)

	Add an additional “where” clause to this query.

	Parameters:

	new_query (object) – The additional “where” clause, as a string or solrq.Q object.

	Returns:

	A new query with the extra “where” clause specified.

	Return type:

	SimpleQuery

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
property results

	Return a list of all Watchlist objects.

	
sort(new_sort)

	Set the sorting for this query.

	Parameters:

	new_sort (object) – The new sort criteria for this query.

	Returns:

	A new query with the sort parameter specified.

	Return type:

	SimpleQuery

	
where(new_query)

	Add a “where” clause to this query.

	Parameters:

	new_query (object) – The “where” clause, as a string or solrq.Q object.

	Returns:

	A new query with the “where” clause specified.

	Return type:

	SimpleQuery

	
log = <Logger cbc_sdk.enterprise_edr.threat_intelligence (WARNING)>

	Models

UBS Module

Model Classes for Enterprise Endpoint Detection and Response

	
class Binary(cb, model_unique_id)

	Bases: UnrefreshableModel

Represents a retrievable binary.

	Parameters:

	
	sha256 – The SHA-256 hash of the file

	md5 – The MD5 hash of the file

	file_available – If true, the file is available for download

	available_file_size – The size of the file available for download

	file_size – The size of the actual file (represented by the hash)

	os_type – The OS that this file is designed for

	architecture – The set of architectures that this file was compiled for

	lang_id – The Language ID value for the Windows VERSIONINFO resource

	charset_id – The Character set ID value for the Windows VERSIONINFO resource

	internal_name – The internal name from FileVersionInformation

	product_name – The product name from FileVersionInformation

	company_name – The company name from FileVersionInformation

	trademark – The trademark from FileVersionInformation

	file_description – The file description from FileVersionInformation

	file_version – The file version from FileVersionInformation

	comments – Comments from FileVersionInformation

	original_filename – The original filename from FileVersionInformation

	product_description – The product description from FileVersionInformation

	product_version – The product version from FileVersionInformation

	private_build – The private build from FileVersionInformation

	special_build – The special build from FileVersionInformation

Initialize the Binary object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (str) – The SHA-256 of the binary being retrieved.

	
class Summary(cb, model_unique_id)

	Bases: UnrefreshableModel

Represents a summary of organization-specific information for a retrievable binary.

Initialize the Summary object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (str) – The SHA-256 of the binary being retrieved.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
download_url(expiration_seconds=3600)

	Returns a URL that can be used to download the file for this binary. Returns None if no download found.

	Parameters:

	expiration_seconds (int) – How long the download should be valid for.

	Returns:

	A pre-signed AWS download URL.
None: If no download is found.

	Return type:

	URL (str)

	Raises:

	InvalidObjectError – If the URL retrieval should be retried.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
property summary

	Returns organization-specific information about this binary.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class Downloads(cb, shas, expiration_seconds=3600)

	Bases: UnrefreshableModel

Represents download information for a list of process hashes.

Initialize the Downloads object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	shas (list) – A list of SHA hash values for binaries.

	expiration_seconds (int) – Number of seconds until this request expires.

	
class FoundItem(cb, item)

	Bases: UnrefreshableModel

Represents the download URL and process hash for a successfully located binary.

Initialize the FoundItem object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	item (dict) – The values for a successfully-retrieved item.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
property found

	Returns a list of Downloads.FoundItem, one for each binary found in the binary store.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

Platform Package

Base Module

Model and Query Classes for Platform

	
class PlatformModel(cb, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: NewBaseModel

Represents the base of all Platform API model classes.

Initialize the PlatformModel object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (Any) – The unique ID for this particular instance of the model object.

	initial_data (dict) – The data to use when initializing the model object.

	force_init (bool) – True to force object initialization.

	full_doc (bool) – True to mark the object as fully initialized.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
log = <Logger cbc_sdk.platform.base (WARNING)>

	Platform Models

Submodules

Alerts Module

The model and query classes for supporting alerts and alert workflows.

Alerts indicate suspicious behavior and known threats in the monitored environment. They should be regularly
reviewed to determine whether action must be taken or policies should be modified. The Carbon Black Cloud Python
SDK may be used to retrieve alerts, as well as manage the workflow by modifying alert status or closing alerts.

The Carbon Black Cloud Python SDK currently implements the Alerts v7 API, as documented on
the Developer Network [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alerts-api/].
It works with any Carbon Black Cloud product, although certain alert types are only generated by specific products.

Typical usage example:

assume "cb" is an instance of CBCloudAPI
query = cb.select(Alert).add_criteria("device_os", ["WINDOWS"]).set_minimum_severity(3)
query.set_time_range(range="-1d").set_rows(1000).add_exclusions("type", ["WATCHLIST"])
for alert in query:
 print(f"Alert ID {alert.id} with severity {alert.severity} at {alert.detection_timestamp}")

	
class Alert(cb, model_unique_id, initial_data=None)

	Bases: PlatformModel

Represents a basic alert within the Carbon Black Cloud.

Alert objects are typically located through a search (using AlertSearchQuery) before they can be
operated on.

The complete list of alert fields is too large to be reproduced here; please see the list of available fields
for each alert type on the Developer Network [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alert-search-fields].

Initialize the Alert object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
class Note(cb, alert, model_unique_id, threat_note=False, initial_data=None)

	Bases: PlatformModel

Represents a note placed on an alert.

	Parameters:

	
	author – User who created the note

	create_timestamp – Time the note was created

	last_update_timestamp – Time the note was created

	id – Unique ID for this note

	note – Note contents

	parent_id – ID for this note of this notes parent if is a thread

Initialize the Note object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	alert (Alert) – The alert where the note is saved.

	model_unique_id (str) – ID of the note represented.

	threat_note (bool) – True if the note is a threat note, False if the note is an alert note.``

	initial_data (dict) – Initial data used to populate the note.

	
delete()

	Deletes a note from an alert.

	Required Permissions:
	org.alerts.notes (DELETE)

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
add_threat_tags(tags)

	Adds tags to the threat.

	Required Permissions:
	org.alerts.tags (CREATE)

	Parameters:

	tags (list[str]) – List of tags to add to the threat.

	Raises:

	ApiError – If tags is not a list of strings.

	Returns:

	The list of current tags.

	Return type:

	list[str]

	
close(closure_reason=None, determination=None, note=None)

	Closes this alert.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”, “RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”, “FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.close("RESOLVED", "FALSE_POSITIVE", "Normal behavior")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
create_note(note, threat_note=False)

	Creates a new note for this alert.

	Required Permissions:
	org.alerts.notes (CREATE)

	Parameters:

	
	note (str) – Note content to add.

	threat_note (bool) – True to add this alert to the treat, False to add this note to the alert.

	Returns:

	The newly-added note.

	Return type:

	Note

	
delete_threat_tag(tag)

	Delete a threat tag.

	Required Permissions:
	org.alerts.tags (DELETE)

	Parameters:

	tag (str) – The tag to delete.

	Returns:

	The list of current tags.

	Return type:

	(list[str])

	
deobfuscate_cmdline()

	Deobfuscates the command line of the process pointed to by the alert and returns the deobfuscated result.

	Required Permissions:
	script.deobfuscation (EXECUTE)

	Returns:

	
	A dict containing information about the obfuscated command line, including the
	deobfuscated result.

	Return type:

	dict

	
dismiss_threat(remediation=None, comment=None)

	Dismisses all future alerts assigned to the threat_id.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to dismiss all past and current open alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).close(...)

	
get(item, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	item (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_history(threat=False)

	Get the actions taken on an Alert such as ``Note``s added and workflow state changes.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	threat (bool) – If True, the threat history is returned; if False, the alert history is returned.

	Returns:

	The ``dict``s of each determination, note or workflow change.

	Return type:

	list

	
get_observations(timeout=0)

	Requests observations that are associated with the Alert.

Uses Observation.bulk_get_details.

	Required Permissions:
	org.search.events (READ, CREATE)

	Returns:

	Observations associated with the Alert.

	Return type:

	list[Observation]

	
get_process(async_mode=False)

	Gets the process corresponding with the alert.

	Required Permissions:
	org.search.events (CREATE. READ)

	Parameters:

	async_mode – True to request process in an asynchronous manner.

	Returns:

	The process corresponding to the alert.

	Return type:

	Process

Note

	When using asynchronous mode, this method returns a Python Future.
You can call result() on the Future object to wait for completion and get the results.

	
get_threat_tags()

	Gets the threat’s tags.

	Required Permissions:
	org.alerts.tags (READ)

	Returns:

	The list of current tags

	Return type:

	list[str]

	
notes_(threat_note=False)

	Retrieves all notes for this alert.

	Required Permissions:
	org.alerts.notes (READ)

	Parameters:

	threat_note (bool) – True to retrieve threat notes, False to retrieve alert notes.

	Returns:

	The list of notes for the alert.

	Return type:

	list[Note]

	
refresh()

	Reload this object from the server.

	
static search_suggestions(cb, query)

	Returns suggestions for keys and field values that can be used in a search.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	query (str) – A search query to use.

	Returns:

	A list of search suggestions expressed as dict objects.

	Return type:

	list

	Raises:

	ApiError – if cb is not instance of CBCloudAPI

	
to_json(version='v7')

	Return a json object of the response.

	Parameters:

	version (str) – version of json to return. Either v6 or v7. DEFAULT v7

	Returns:

	The returned attribute value.

	Return type:

	Any

	
update(status, closure_reason=None, determination=None, note=None)

	Update the Alert with optional closure_reason, determination, note, or status.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	status (str) – The status to set for this alert, either “OPEN”, “IN_PROGRESS”, or “CLOSED”.

	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”,
“RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”,
“FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.update("IN_PROGESS", "NO_REASON", "NONE", "Starting Investigation")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
update_threat(remediation=None, comment=None)

	Updates all future alerts assigned to the threat_id to the OPEN state.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to update all past and current alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).update(...)

	
property workflow_

	Returns the workflow associated with this alert.

	Returns:

	The workflow associated with this alert.

	Return type:

	dict

	
class AlertSearchQuery(doc_class, cb)

	Bases: BaseQuery, QueryBuilderSupportMixin, IterableQueryMixin, LegacyAlertSearchQueryCriterionMixin, CriteriaBuilderSupportMixin, ExclusionBuilderSupportMixin

Query object that is used to locate Alert objects.

The AlertSearchQuery is constructed via SDK functions like the select() method on CBCloudAPI.
The user would then add a query and/or criteria to it before iterating over the results.

Initialize the AlertSearchQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
add_exclusions(key, newlist)

	Add to the exclusions on this query with a custom exclusions key.

Will overwrite any existing exclusion for the specified key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).add_exclusions("type", ["WATCHLIST"])
>>> query = api.select(Alert).add_exclusions("type", "WATCHLIST")

	
add_time_criteria(key, **kwargs)

	Restricts the alerts that this query is performed on to the specified time range for a given key.

The time may either be specified as a start and end point or as a range.

	Parameters:

	
	key (str) – The key to use for criteria one of create_time, first_event_time, last_event_time,
backend_update_timestamp, or last_update_time

	**kwargs (dict) – Used to specify:

	start= for start time

	end= for end time

	range= for range

	excludes= to set this as an exclusion rather than criteria. Defaults to False.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

Examples

>>> query = api.select(Alert).
... add_time_criteria("detection_timestamp", start="2020-10-20T20:34:07Z", end="2020-10-30T20:34:07Z")
>>> second_query = api.select(Alert).add_time_criteria("detection_timestamp", range='-3d')
>>> third_query_legacy = api.select(Alert).set_time_range("create_time", range='-3d')
>>> exclusions_query = api.add_time_criteria("detection_timestamp", range="-2h", exclude=True)

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
close(closure_reason=None, determination=None, note=None)

	Close all alerts matching the given query. The alerts will be left in a CLOSED state after this request.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”, “RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”, “FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the bulk workflow action.

	Return type:

	Job

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the Future object
to wait for completion and get the results.

Example

>>> alert_query = cb.select(Alert).add_criteria("threat_id", ["19261158DBBF00775959F8AA7F7551A1"])
>>> job = alert_query.close("RESOLVED", "FALSE_POSITIVE", "Normal behavior")
>>> completed_job = job.await_completion().result()

	
facets(fieldlist, max_rows=0)

	Return information about the facets for this alert by search, using the defined criteria.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	
	fieldlist (list) – List of facet field names.

	max_rows (int) – The maximum number of rows to return. 0 means return all rows.

	Returns:

	A list of facet information specified as dicts.
error: invalid enum

	Return type:

	list

	Raises:

	
	FunctionalityDecommissioned – If the requested attribute is no longer available.

	ApiError – If the facet field is not valid

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_alert_ids(alert_ids)

	Restricts the alerts that this query is performed on to the specified alert IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	alert_ids (list) – List of string alert IDs.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_alert_notes_present(is_present, exclude=False)

	Restricts the alerts that this query is performed on to those with or without notes.

	Parameters:

	
	is_present (bool) – If true, returns alerts that have a note attached

	exclude (bool) – If true, will set is_present in the exclusions. Otherwise adds to criteria

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_blocked_threat_categories(categories)

	The field blocked_threat_category was deprecated and not included in v7. This method has been removed.

See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

Args:
categories (list): List of threat categories to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_categories(categories)

	The field categories was deprecated and not included in v7. This method has been removed.

In Alerts v7, only records with the type THREAT are returned.
Records that in v6 had the category MONITORED (Observed) are now Observations
See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

	Parameters:

	categories (list) – List of categories to be restricted to.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_cluster_names(names)

	Restricts the alerts that this query is performed on to the specified Kubernetes cluster names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of Kubernetes cluster names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_create_time(*args, **kwargs)

	Restricts the alerts that this query is performed on to the specified creation time.

The time may either be specified as a start and end point or as a range.
In SDK 1.5.0 to align with Alerts v7 API, create_time is set as time_range outside of criteria.

	Deprecated:
	Use add_time_criteria(field_name, start, end, range) instead.

	Parameters:

	
	*args (list) – Not used.

	**kwargs (dict) – Used to specify start= for start time, end= for end time, and range= for range.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_ids(device_ids)

	Restricts the alerts that this query is performed on to the specified device IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	device_ids (list) – List of integer device IDs.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_locations(locations)

	Restricts the alerts that this query is performed on to the specified device locations.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	locations (list) – List of device locations to look for. Valid values are “ONSITE”, “OFFSITE”,
and “UNKNOWN”.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_device_names(device_names)

	Restricts the alerts that this query is performed on to the specified device names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	device_names (list) – List of string device names.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_os(device_os)

	Restricts the alerts that this query is performed on to the specified device operating systems.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	device_os (list) – List of string operating systems. Valid values are “WINDOWS”, “ANDROID”,
“MAC”, “IOS”, “LINUX”, and “OTHER.”

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_os_versions(device_os_versions)

	Restricts the alerts that this query is performed on to the specified device operating system versions.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	device_os_versions (list) – List of string operating system versions.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_username(users)

	Restricts the alerts that this query is performed on to the specified user names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	users (list) – List of string user names.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_egress_group_ids(ids)

	Restricts the alerts that this query is performed on to the specified egress group IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of egress group IDs to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_egress_group_names(names)

	Restricts the alerts that this query is performed on to the specified egress group names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of egress group names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_external_device_friendly_names(names)

	Restricts the alerts that this query is performed on to the specified external device friendly names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of external device friendly names to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_external_device_ids(ids)

	Restricts the alerts that this query is performed on to the specified external device IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of external device IDs to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_group_by(field)

	Converts the AlertSearchQuery to a GroupAlertSearchQuery grouped by the argument.

	Parameters:

	field (string) – The field to group by, defaults to “threat_id.”

	Returns:

	New query instance.

	Return type:

	GroupedAlertSearchQuery

Note

Does not preserve sort criterion

	
set_group_results(do_group)

	The field group_results was deprecated and not included in v7. This method has been removed.

It previously specified whether to group the results of the query.
Use the Grouped Alerts Operations [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alerts-api/]
#grouped-alerts-operations) instead.
See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

	Parameters:

	do_group (bool) – True to group the results, False to not do so.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_ip_reputations(reputations)

	Restricts the alerts that this query is performed on to the specified IP reputation values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	reputations (list) – List of IP reputation values to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_kill_chain_statuses(statuses)

	The field kill_chain_status was deprecated and not included in v7. This method has been removed.

See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

Args:
statuses (list): List of kill chain statuses to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_legacy_alert_ids(alert_ids)

	Restricts the alerts that this query is performed on to the specified legacy alert IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	alert_ids (list) – List of string legacy alert IDs.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_minimum_severity(severity)

	Restricts the alerts that this query is performed on to the specified minimum severity level.

	Parameters:

	severity (int) – The minimum severity level for alerts.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_namespaces(namespaces)

	Restricts the alerts that this query is performed on to the specified Kubernetes namespaces.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	namespaces (list) – List of Kubernetes namespaces to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_not_blocked_threat_categories(categories)

	The field not_blocked_threat_category was deprecated and not included in v7. This method has been removed.

See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

Args:
categories (list): List of threat categories to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_policy_applied(applied_statuses)

	Restricts the alerts that this query is performed on to the specified policy status values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	applied_statuses (list) – List of status values to look for. Valid values are “APPLIED” and “NOT_APPLIED”.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_policy_ids(policy_ids)

	Restricts the alerts that this query is performed on to the specified policy IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	policy_ids (list) – List of integer policy IDs.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_policy_names(policy_names)

	Restricts the alerts that this query is performed on to the specified policy names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	policy_names (list) – List of string policy names.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_ports(ports)

	Restricts the alerts that this query is performed on to the specified netconn_local_ports.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

Note that in SDK 1.5.0, to align with Alerts API v7, the search field was updated from
port to netconn_local_port. It is possible to search on either netconn_local_port
or netconn_remote_port using the `add_criteria(fieldname, [field values]) method.

	Parameters:

	ports (list) – List of netconn_local_ports to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_process_names(process_names)

	Restricts the alerts that this query is performed on to the specified process names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	process_names (list) – List of string process names.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_process_sha256(shas)

	Restricts the alerts that this query is performed on to the specified process SHA-256 hash values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	shas (list) – List of string process SHA-256 hash values.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_product_ids(ids)

	Restricts the alerts that this query is performed on to the specified product IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of product IDs to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_product_names(names)

	Restricts the alerts that this query is performed on to the specified product names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of product names to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_protocols(protocols)

	Restricts the alerts that this query is performed on to the specified protocols.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	protocols (list) – List of protocols to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_reason_code(reason)

	Restricts the alerts that this query is performed on to the specified reason codes (enum values).

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	reason (list) – List of string reason codes to look for.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_remote_domains(domains)

	Restricts the alerts that this query is performed on to the specified remote domains.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	domains (list) – List of remote domains to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_remote_ips(addrs)

	Restricts the alerts that this query is performed on to the specified remote IP addresses.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	addrs (list) – List of remote IP addresses to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_remote_is_private(is_private, exclude=False)

	Restricts the alerts that this query is performed on based on matching the remote_is_private field.

This field is only present on CONTAINER_RUNTIME alerts and so filtering will be ignored on other alert types.

	Parameters:

	
	is_private (boolean) – Whether the remote information is private: true or false

	exclude (bool) – If true, will set is_present in the exclusions. Otherwise adds to criteria

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_replica_ids(ids)

	Restricts the alerts that this query is performed on to the specified pod names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of pod names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_reputations(reps)

	Restricts the alerts that this query is performed on to the specified reputation values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	reps (list) – List of string reputation values. Valid values are “KNOWN_MALWARE”, “SUSPECT_MALWARE”,
“PUP”, “NOT_LISTED”, “ADAPTIVE_WHITE_LIST”, “COMMON_WHITE_LIST”, “TRUSTED_WHITE_LIST”,
and “COMPANY_BLACK_LIST”.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_rows(rows)

	Sets the ‘rows’ query body parameter, determining how many rows of results to request.

	Parameters:

	rows (int) – How many rows to request.

	
set_rule_ids(ids)

	Restricts the alerts that this query is performed on to the specified Kubernetes policy rule IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

In SDK prior to 1.5.0 this was only supported for Container Runtime Alerts so will
convert to k8s_rule_id in criteria. In SDK 1.5.0 and later, aligned to Alert v7 API, use add_criteria()
should be used for both k8s_rule_id and for other alert types, rule_id.

	Parameters:

	ids (list) – List of Kubernetes policy rule IDs to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_rule_names(names)

	Restricts the alerts that this query is performed on to the specified Kubernetes policy rule names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of Kubernetes policy rule names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_run_states(states)

	Restricts the alerts that this query is performed on to the specified run states.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	states (list) – List of run states to look for. Valid values are “DID_NOT_RUN”, “RAN”, and “UNKNOWN”.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_sensor_actions(actions)

	Restricts the alerts that this query is performed on to the specified sensor actions.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	actions (list) – List of sensor actions to look for. Valid values are “POLICY_NOT_APPLIED”, “ALLOW”,
“ALLOW_AND_LOG”, “TERMINATE”, and “DENY”.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_serial_numbers(serial_numbers)

	Restricts the alerts that this query is performed on to the specified serial numbers.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	serial_numbers (list) – List of serial numbers to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_tags(tags)

	Restricts the alerts that this query is performed on to the specified tag values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	tags (list) – List of string tag values.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_target_priorities(priorities)

	Restricts the alerts that this query is performed on to the specified target priority values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	priorities (list) – List of string target priority values. Valid values are “LOW”, “MEDIUM”,
“HIGH”, and “MISSION_CRITICAL”.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_threat_cause_vectors(vectors)

	The field threat_cause_vector was deprecated and not included in v7. This method has been removed.

See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

	Parameters:

	vectors (list) – List of threat cause vectors to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_threat_ids(threats)

	Restricts the alerts that this query is performed on to the specified threat ID values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	threats (list) – List of string threat ID values.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_threat_notes_present(is_present, exclude=False)

	Restricts the alerts that this query is performed on to those with or without threat_notes.

	Parameters:

	
	is_present (bool) – If true, returns alerts that have a note attached to the threat_id

	exclude (bool) – If true, will set is_present in the exclusions. Otherwise adds to criteria

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_time_range(*args, **kwargs)

	For v7 Alerts:

Sets the ‘time_range’ query body parameter, determining a time range based on ‘backend_timestamp’.

	Parameters:

	
	*args – not used

	**kwargs (dict) – Used to specify the period to search within

	start= either timestamp ISO 8601 strings or datetime objects

	end= either timestamp ISO 8601 strings or datetime objects

	range= the period on which to execute the result search, ending on the current time.

Range must be in the format “-<quantity><units>” where quantity is an integer, and units is one of:

	M: month(s)

	w: week(s)

	d: day(s)

	h: hour(s)

	m: minute(s)

	s: second(s)

For v6 Alerts (backwards compatibility):

Restricts the alerts that this query is performed on to the specified time range for a given key. Will set
the ‘time_range’ as in the v7 usage if key is create_time and set a criteria value for any other valid key.

	Parameters:

	
	key (str) – The key to use for criteria one of create_time, first_event_time, last_event_time
or last_update_time. i.e. legacy field names from the Alert v6 API.

	**kwargs (dict) – Used to specify the period to search within

	start= either timestamp ISO 8601 strings or datetime objects

	end= either timestamp ISO 8601 strings or datetime objects

	range= the period on which to execute the result search, ending on the current time.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

Examples

>>> query_specify_start_and_end = api.select(Alert).
... set_time_range(start="2020-10-20T20:34:07Z", end="2020-10-30T20:34:07Z")
>>> query_specify_range = api.select(Alert).set_time_range(range='-3d')
>>> query_legacy_use = api.select(Alert).set_time_range("create_time", range='-3d')

	
set_types(alerttypes)

	Restricts the alerts that this query is performed on to the specified alert type values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	alerttypes (list) – List of string alert type values. Valid values are “CB_ANALYTICS”,
“WATCHLIST”, “DEVICE_CONTROL”, and “CONTAINER_RUNTIME”. In SDK 1.5.0,
to align with Alert API v7, more alert types are available but the add_criteria
method must be used.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

Note: - When filtering by fields that take a list parameter, an empty list will be treated as a wildcard and
match everything.

	
set_vendor_ids(ids)

	Restricts the alerts that this query is performed on to the specified vendor IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of vendor IDs to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_vendor_names(names)

	Restricts the alerts that this query is performed on to the specified vendor names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of vendor names to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_watchlist_ids(ids)

	Restricts the alerts that this query is performed on to the specified watchlist ID values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of string watchlist ID values.

	Returns:

	This instance.

	Return type:

	WatchlistAlertSearchQuery

	
set_watchlist_names(names)

	Restricts the alerts that this query is performed on to the specified watchlist name values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of string watchlist name values.

	Returns:

	This instance.

	Return type:

	WatchlistAlertSearchQuery

	
set_workflows(workflow_vals)

	Restricts the alerts that this query is performed on to the specified workflow status values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	workflow_vals (list) – List of string alert type values. Valid values are “OPEN” and “DISMISSED”.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_workload_ids(ids)

	The field workload_id was deprecated and not included in v7. This method has been removed.

Use workload_name instead. See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

	Parameters:

	ids (list) – List of workload IDs to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_workload_kinds(kinds)

	Restricts the alerts that this query is performed on to the specified workload types.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	kinds (list) – List of workload types to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_workload_names(names)

	Restricts the alerts that this query is performed on to the specified workload names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of workload names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(Alert).sort_by("name")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
update(status, closure_reason=None, determination=None, note=None)

	Update all alerts matching the given query.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	status (str) – The status to set for this alert, either “OPEN”, “IN_PROGRESS”, or “CLOSED”.

	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”, “RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”, “FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the bulk workflow action.

	Return type:

	Job

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the Future object
to wait for completion and get the results.

Example

>>> alert_query = cb.select(Alert).add_criteria("threat_id", ["19261158DBBF00775959F8AA7F7551A1"])
>>> job = alert_query.update("IN_PROGESS", "NO_REASON", "NONE", "Starting Investigation")
>>> completed_job = job.await_completion().result()

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
update_exclusions(key, newlist)

	Update the exclusion on this query with a custom exclusion key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (list) – List of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).update_exclusions("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
class CBAnalyticsAlert(cb, model_unique_id, initial_data=None)

	Bases: Alert

A specialization of the base Alert class that represents a CB Analytics alert.

The complete list of alert fields is too large to be reproduced here; please see the list of available fields
for each alert type on the Developer Network [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alert-search-fields].

Initialize the Alert object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
class Note(cb, alert, model_unique_id, threat_note=False, initial_data=None)

	Bases: PlatformModel

Represents a note placed on an alert.

	Parameters:

	
	author – User who created the note

	create_timestamp – Time the note was created

	last_update_timestamp – Time the note was created

	id – Unique ID for this note

	note – Note contents

	parent_id – ID for this note of this notes parent if is a thread

Initialize the Note object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	alert (Alert) – The alert where the note is saved.

	model_unique_id (str) – ID of the note represented.

	threat_note (bool) – True if the note is a threat note, False if the note is an alert note.``

	initial_data (dict) – Initial data used to populate the note.

	
delete()

	Deletes a note from an alert.

	Required Permissions:
	org.alerts.notes (DELETE)

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
add_threat_tags(tags)

	Adds tags to the threat.

	Required Permissions:
	org.alerts.tags (CREATE)

	Parameters:

	tags (list[str]) – List of tags to add to the threat.

	Raises:

	ApiError – If tags is not a list of strings.

	Returns:

	The list of current tags.

	Return type:

	list[str]

	
close(closure_reason=None, determination=None, note=None)

	Closes this alert.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”, “RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”, “FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.close("RESOLVED", "FALSE_POSITIVE", "Normal behavior")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
create_note(note, threat_note=False)

	Creates a new note for this alert.

	Required Permissions:
	org.alerts.notes (CREATE)

	Parameters:

	
	note (str) – Note content to add.

	threat_note (bool) – True to add this alert to the treat, False to add this note to the alert.

	Returns:

	The newly-added note.

	Return type:

	Note

	
delete_threat_tag(tag)

	Delete a threat tag.

	Required Permissions:
	org.alerts.tags (DELETE)

	Parameters:

	tag (str) – The tag to delete.

	Returns:

	The list of current tags.

	Return type:

	(list[str])

	
deobfuscate_cmdline()

	Deobfuscates the command line of the process pointed to by the alert and returns the deobfuscated result.

	Required Permissions:
	script.deobfuscation (EXECUTE)

	Returns:

	
	A dict containing information about the obfuscated command line, including the
	deobfuscated result.

	Return type:

	dict

	
dismiss_threat(remediation=None, comment=None)

	Dismisses all future alerts assigned to the threat_id.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to dismiss all past and current open alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).close(...)

	
get(item, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	item (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_events(timeout=0, async_mode=False)

	Removed in CBC SDK 1.5.0 because Enriched Events are deprecated.

Previously requested enriched events detailed results. Update to use get_observations() instead.
See Developer Network Observations Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/observations-migration]
for more details.

	Parameters:

	
	timeout (int) – Event details request timeout in milliseconds.

	async_mode (bool) – True to request details in an asynchronous manner.

	Returns:

	EnrichedEvents matching the legacy_alert_id

	Return type:

	list

Note

	When using asynchronous mode, this method returns a python future.
You can call result() on the future object to wait for completion and get the results.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
get_history(threat=False)

	Get the actions taken on an Alert such as ``Note``s added and workflow state changes.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	threat (bool) – If True, the threat history is returned; if False, the alert history is returned.

	Returns:

	The ``dict``s of each determination, note or workflow change.

	Return type:

	list

	
get_observations(timeout=0)

	Requests observations that are associated with the Alert.

Uses Observation.bulk_get_details.

	Required Permissions:
	org.search.events (READ, CREATE)

	Returns:

	Observations associated with the Alert.

	Return type:

	list[Observation]

	
get_process(async_mode=False)

	Gets the process corresponding with the alert.

	Required Permissions:
	org.search.events (CREATE. READ)

	Parameters:

	async_mode – True to request process in an asynchronous manner.

	Returns:

	The process corresponding to the alert.

	Return type:

	Process

Note

	When using asynchronous mode, this method returns a Python Future.
You can call result() on the Future object to wait for completion and get the results.

	
get_threat_tags()

	Gets the threat’s tags.

	Required Permissions:
	org.alerts.tags (READ)

	Returns:

	The list of current tags

	Return type:

	list[str]

	
notes_(threat_note=False)

	Retrieves all notes for this alert.

	Required Permissions:
	org.alerts.notes (READ)

	Parameters:

	threat_note (bool) – True to retrieve threat notes, False to retrieve alert notes.

	Returns:

	The list of notes for the alert.

	Return type:

	list[Note]

	
refresh()

	Reload this object from the server.

	
static search_suggestions(cb, query)

	Returns suggestions for keys and field values that can be used in a search.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	query (str) – A search query to use.

	Returns:

	A list of search suggestions expressed as dict objects.

	Return type:

	list

	Raises:

	ApiError – if cb is not instance of CBCloudAPI

	
to_json(version='v7')

	Return a json object of the response.

	Parameters:

	version (str) – version of json to return. Either v6 or v7. DEFAULT v7

	Returns:

	The returned attribute value.

	Return type:

	Any

	
update(status, closure_reason=None, determination=None, note=None)

	Update the Alert with optional closure_reason, determination, note, or status.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	status (str) – The status to set for this alert, either “OPEN”, “IN_PROGRESS”, or “CLOSED”.

	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”,
“RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”,
“FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.update("IN_PROGESS", "NO_REASON", "NONE", "Starting Investigation")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
update_threat(remediation=None, comment=None)

	Updates all future alerts assigned to the threat_id to the OPEN state.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to update all past and current alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).update(...)

	
property workflow_

	Returns the workflow associated with this alert.

	Returns:

	The workflow associated with this alert.

	Return type:

	dict

	
class ContainerRuntimeAlert(cb, model_unique_id, initial_data=None)

	Bases: Alert

A specialization of the base Alert class that represents a Container Runtime alert.

The complete list of alert fields is too large to be reproduced here; please see the list of available fields
for each alert type on the Developer Network [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alert-search-fields].

Initialize the Alert object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
class Note(cb, alert, model_unique_id, threat_note=False, initial_data=None)

	Bases: PlatformModel

Represents a note placed on an alert.

	Parameters:

	
	author – User who created the note

	create_timestamp – Time the note was created

	last_update_timestamp – Time the note was created

	id – Unique ID for this note

	note – Note contents

	parent_id – ID for this note of this notes parent if is a thread

Initialize the Note object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	alert (Alert) – The alert where the note is saved.

	model_unique_id (str) – ID of the note represented.

	threat_note (bool) – True if the note is a threat note, False if the note is an alert note.``

	initial_data (dict) – Initial data used to populate the note.

	
delete()

	Deletes a note from an alert.

	Required Permissions:
	org.alerts.notes (DELETE)

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
add_threat_tags(tags)

	Adds tags to the threat.

	Required Permissions:
	org.alerts.tags (CREATE)

	Parameters:

	tags (list[str]) – List of tags to add to the threat.

	Raises:

	ApiError – If tags is not a list of strings.

	Returns:

	The list of current tags.

	Return type:

	list[str]

	
close(closure_reason=None, determination=None, note=None)

	Closes this alert.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”, “RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”, “FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.close("RESOLVED", "FALSE_POSITIVE", "Normal behavior")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
create_note(note, threat_note=False)

	Creates a new note for this alert.

	Required Permissions:
	org.alerts.notes (CREATE)

	Parameters:

	
	note (str) – Note content to add.

	threat_note (bool) – True to add this alert to the treat, False to add this note to the alert.

	Returns:

	The newly-added note.

	Return type:

	Note

	
delete_threat_tag(tag)

	Delete a threat tag.

	Required Permissions:
	org.alerts.tags (DELETE)

	Parameters:

	tag (str) – The tag to delete.

	Returns:

	The list of current tags.

	Return type:

	(list[str])

	
deobfuscate_cmdline()

	Deobfuscates the command line of the process pointed to by the alert and returns the deobfuscated result.

	Required Permissions:
	script.deobfuscation (EXECUTE)

	Returns:

	
	A dict containing information about the obfuscated command line, including the
	deobfuscated result.

	Return type:

	dict

	
dismiss_threat(remediation=None, comment=None)

	Dismisses all future alerts assigned to the threat_id.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to dismiss all past and current open alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).close(...)

	
get(item, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	item (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_history(threat=False)

	Get the actions taken on an Alert such as ``Note``s added and workflow state changes.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	threat (bool) – If True, the threat history is returned; if False, the alert history is returned.

	Returns:

	The ``dict``s of each determination, note or workflow change.

	Return type:

	list

	
get_observations(timeout=0)

	Requests observations that are associated with the Alert.

Uses Observation.bulk_get_details.

	Required Permissions:
	org.search.events (READ, CREATE)

	Returns:

	Observations associated with the Alert.

	Return type:

	list[Observation]

	
get_process(async_mode=False)

	Gets the process corresponding with the alert.

	Required Permissions:
	org.search.events (CREATE. READ)

	Parameters:

	async_mode – True to request process in an asynchronous manner.

	Returns:

	The process corresponding to the alert.

	Return type:

	Process

Note

	When using asynchronous mode, this method returns a Python Future.
You can call result() on the Future object to wait for completion and get the results.

	
get_threat_tags()

	Gets the threat’s tags.

	Required Permissions:
	org.alerts.tags (READ)

	Returns:

	The list of current tags

	Return type:

	list[str]

	
notes_(threat_note=False)

	Retrieves all notes for this alert.

	Required Permissions:
	org.alerts.notes (READ)

	Parameters:

	threat_note (bool) – True to retrieve threat notes, False to retrieve alert notes.

	Returns:

	The list of notes for the alert.

	Return type:

	list[Note]

	
refresh()

	Reload this object from the server.

	
static search_suggestions(cb, query)

	Returns suggestions for keys and field values that can be used in a search.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	query (str) – A search query to use.

	Returns:

	A list of search suggestions expressed as dict objects.

	Return type:

	list

	Raises:

	ApiError – if cb is not instance of CBCloudAPI

	
to_json(version='v7')

	Return a json object of the response.

	Parameters:

	version (str) – version of json to return. Either v6 or v7. DEFAULT v7

	Returns:

	The returned attribute value.

	Return type:

	Any

	
update(status, closure_reason=None, determination=None, note=None)

	Update the Alert with optional closure_reason, determination, note, or status.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	status (str) – The status to set for this alert, either “OPEN”, “IN_PROGRESS”, or “CLOSED”.

	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”,
“RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”,
“FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.update("IN_PROGESS", "NO_REASON", "NONE", "Starting Investigation")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
update_threat(remediation=None, comment=None)

	Updates all future alerts assigned to the threat_id to the OPEN state.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to update all past and current alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).update(...)

	
property workflow_

	Returns the workflow associated with this alert.

	Returns:

	The workflow associated with this alert.

	Return type:

	dict

	
class DeviceControlAlert(cb, model_unique_id, initial_data=None)

	Bases: Alert

A specialization of the base Alert class that represents a Device Control alert.

The complete list of alert fields is too large to be reproduced here; please see the list of available fields
for each alert type on the Developer Network [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alert-search-fields].

Initialize the Alert object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
class Note(cb, alert, model_unique_id, threat_note=False, initial_data=None)

	Bases: PlatformModel

Represents a note placed on an alert.

	Parameters:

	
	author – User who created the note

	create_timestamp – Time the note was created

	last_update_timestamp – Time the note was created

	id – Unique ID for this note

	note – Note contents

	parent_id – ID for this note of this notes parent if is a thread

Initialize the Note object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	alert (Alert) – The alert where the note is saved.

	model_unique_id (str) – ID of the note represented.

	threat_note (bool) – True if the note is a threat note, False if the note is an alert note.``

	initial_data (dict) – Initial data used to populate the note.

	
delete()

	Deletes a note from an alert.

	Required Permissions:
	org.alerts.notes (DELETE)

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
add_threat_tags(tags)

	Adds tags to the threat.

	Required Permissions:
	org.alerts.tags (CREATE)

	Parameters:

	tags (list[str]) – List of tags to add to the threat.

	Raises:

	ApiError – If tags is not a list of strings.

	Returns:

	The list of current tags.

	Return type:

	list[str]

	
close(closure_reason=None, determination=None, note=None)

	Closes this alert.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”, “RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”, “FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.close("RESOLVED", "FALSE_POSITIVE", "Normal behavior")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
create_note(note, threat_note=False)

	Creates a new note for this alert.

	Required Permissions:
	org.alerts.notes (CREATE)

	Parameters:

	
	note (str) – Note content to add.

	threat_note (bool) – True to add this alert to the treat, False to add this note to the alert.

	Returns:

	The newly-added note.

	Return type:

	Note

	
delete_threat_tag(tag)

	Delete a threat tag.

	Required Permissions:
	org.alerts.tags (DELETE)

	Parameters:

	tag (str) – The tag to delete.

	Returns:

	The list of current tags.

	Return type:

	(list[str])

	
deobfuscate_cmdline()

	Deobfuscates the command line of the process pointed to by the alert and returns the deobfuscated result.

	Required Permissions:
	script.deobfuscation (EXECUTE)

	Returns:

	
	A dict containing information about the obfuscated command line, including the
	deobfuscated result.

	Return type:

	dict

	
dismiss_threat(remediation=None, comment=None)

	Dismisses all future alerts assigned to the threat_id.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to dismiss all past and current open alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).close(...)

	
get(item, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	item (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_history(threat=False)

	Get the actions taken on an Alert such as ``Note``s added and workflow state changes.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	threat (bool) – If True, the threat history is returned; if False, the alert history is returned.

	Returns:

	The ``dict``s of each determination, note or workflow change.

	Return type:

	list

	
get_observations(timeout=0)

	Requests observations that are associated with the Alert.

Uses Observation.bulk_get_details.

	Required Permissions:
	org.search.events (READ, CREATE)

	Returns:

	Observations associated with the Alert.

	Return type:

	list[Observation]

	
get_process(async_mode=False)

	Gets the process corresponding with the alert.

	Required Permissions:
	org.search.events (CREATE. READ)

	Parameters:

	async_mode – True to request process in an asynchronous manner.

	Returns:

	The process corresponding to the alert.

	Return type:

	Process

Note

	When using asynchronous mode, this method returns a Python Future.
You can call result() on the Future object to wait for completion and get the results.

	
get_threat_tags()

	Gets the threat’s tags.

	Required Permissions:
	org.alerts.tags (READ)

	Returns:

	The list of current tags

	Return type:

	list[str]

	
notes_(threat_note=False)

	Retrieves all notes for this alert.

	Required Permissions:
	org.alerts.notes (READ)

	Parameters:

	threat_note (bool) – True to retrieve threat notes, False to retrieve alert notes.

	Returns:

	The list of notes for the alert.

	Return type:

	list[Note]

	
refresh()

	Reload this object from the server.

	
static search_suggestions(cb, query)

	Returns suggestions for keys and field values that can be used in a search.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	query (str) – A search query to use.

	Returns:

	A list of search suggestions expressed as dict objects.

	Return type:

	list

	Raises:

	ApiError – if cb is not instance of CBCloudAPI

	
to_json(version='v7')

	Return a json object of the response.

	Parameters:

	version (str) – version of json to return. Either v6 or v7. DEFAULT v7

	Returns:

	The returned attribute value.

	Return type:

	Any

	
update(status, closure_reason=None, determination=None, note=None)

	Update the Alert with optional closure_reason, determination, note, or status.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	status (str) – The status to set for this alert, either “OPEN”, “IN_PROGRESS”, or “CLOSED”.

	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”,
“RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”,
“FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.update("IN_PROGESS", "NO_REASON", "NONE", "Starting Investigation")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
update_threat(remediation=None, comment=None)

	Updates all future alerts assigned to the threat_id to the OPEN state.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to update all past and current alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).update(...)

	
property workflow_

	Returns the workflow associated with this alert.

	Returns:

	The workflow associated with this alert.

	Return type:

	dict

	
class GroupedAlert(cb, model_unique_id, initial_data=None)

	Bases: PlatformModel

Represents alerts that have been grouped together based on a common characteristic.

This allows viewing of similar alerts across multiple endpoints.

	Parameters:

	
	count – Count of individual alerts that are a part of the group

	determination_values – Map of determination (TRUE_POSITIVE, FALSE_POSITIVE, NONE) to the number of individual alerts in the group with that determination. Determinations with no alerts are omitted.

	ml_classification_final_verdicts – Map of ML classification (ANOMALOUS, NOT_ANOMALOUS, NO_PREDICTION) to the number of individual alerts in the group with that classification. Classifications with no alerts are omitted.

	workflow_states – Map of workflow state (OPEN, IN_PROGRESS, CLOSED) to the number of individual alerts in the group in that state. States with no alerts are omitted.

	device_count – Count of unique devices where this alert can be found

	first_alert_timestamp – Timestamp of the first (oldest) alert in the group

	highest_severity – Highest severity score of all alerts in the group

	last_alert_timestamp – Timestamp of the last (newest) alert in the group

	most_recent_alert – The most recent alert in the group. Follows the Alerts Schema and returns an Alert object. Specific fields vary between alert instances

	policy_applied – APPLIED, when any of the alerts in the group had actions blocked by the sensor due to a policy. NOT_APPLIED otherwise.

	tags – List of tags that have been applied to the threat ID

	threat_notes_present – Whether there are threat-level notes available on this threat ID

	workload_count – Count of unique Kubernetes workloads where this alert can be found

Initialize the Grouped Alert object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_alert_search_query()

	Returns the Alert Search Query needed to pull all alerts for a given Group Alert.

	Returns:

	for all alerts associated with the calling group alert.

	Return type:

	AlertSearchQuery

Note

Does not preserve sort criterion

	
get_alerts()

	Returns the all alerts for a given Group Alert.

	Returns:

	alerts associated with the calling group alert.

	Return type:

	list

	
property most_recent_alert_

	Returns the most recent alert for a given group alert.

	Returns:

	the most recent alert in the Group Alert.

	Return type:

	Alert

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class GroupedAlertSearchQuery(*args, **kwargs)

	Bases: AlertSearchQuery

Query object that is used to locate Alert objects.

This query is constructed by using the select() method on CBCloudAPI to create an AlertSearchQuery,
then using that query’s set_group_by() method to specify grouping.

Initialize the GroupAlertSearchQuery.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
add_exclusions(key, newlist)

	Add to the exclusions on this query with a custom exclusions key.

Will overwrite any existing exclusion for the specified key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).add_exclusions("type", ["WATCHLIST"])
>>> query = api.select(Alert).add_exclusions("type", "WATCHLIST")

	
add_time_criteria(key, **kwargs)

	Restricts the alerts that this query is performed on to the specified time range for a given key.

The time may either be specified as a start and end point or as a range.

	Parameters:

	
	key (str) – The key to use for criteria one of create_time, first_event_time, last_event_time,
backend_update_timestamp, or last_update_time

	**kwargs (dict) – Used to specify:

	start= for start time

	end= for end time

	range= for range

	excludes= to set this as an exclusion rather than criteria. Defaults to False.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

Examples

>>> query = api.select(Alert).
... add_time_criteria("detection_timestamp", start="2020-10-20T20:34:07Z", end="2020-10-30T20:34:07Z")
>>> second_query = api.select(Alert).add_time_criteria("detection_timestamp", range='-3d')
>>> third_query_legacy = api.select(Alert).set_time_range("create_time", range='-3d')
>>> exclusions_query = api.add_time_criteria("detection_timestamp", range="-2h", exclude=True)

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
close(closure_reason=None, determination=None, note=None)

	Closing all alerts matching a grouped alert query is not implemented.

Note

	Closing all alerts in all groups returned by a GroupedAlertSearchQuery can be done by

getting the AlertSearchQuery and using close() on it as shown in the following example.

Example

>>> alert_query = grouped_alert_query.get_alert_search_query()
>>> alert_query.close(closure_reason, determination, note)

	
facets(fieldlist, max_rows=0, filter_values=False)

	Return information about the facets for this alert by search, using the defined criteria.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	
	fieldlist (list) – List of facet field names.

	max_rows (int) – The maximum number of rows to return. 0 means return all rows.

	filter_values (boolean) – A flag to indicate whether any filters on a term should be applied to facet
calculation. When False (default), a filter on the term is ignored while calculating facets.

	Returns:

	A list of facet information specified as ``dict``s.

	Return type:

	list

	Raises:

	
	FunctionalityDecommissioned – If the requested attribute is no longer available.

	ApiError – If the facet field is not valid

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
get_alert_search_query()

	Converts the GroupedAlertSearchQuery into a nongrouped AlertSearchQuery.

	Returns:

	New query instance.

	Return type:

	AlertSearchQuery

Note

Does not preserve sort criterion.

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_alert_ids(alert_ids)

	Restricts the alerts that this query is performed on to the specified alert IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	alert_ids (list) – List of string alert IDs.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_alert_notes_present(is_present, exclude=False)

	Restricts the alerts that this query is performed on to those with or without notes.

	Parameters:

	
	is_present (bool) – If true, returns alerts that have a note attached

	exclude (bool) – If true, will set is_present in the exclusions. Otherwise adds to criteria

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_blocked_threat_categories(categories)

	The field blocked_threat_category was deprecated and not included in v7. This method has been removed.

See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

Args:
categories (list): List of threat categories to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_categories(categories)

	The field categories was deprecated and not included in v7. This method has been removed.

In Alerts v7, only records with the type THREAT are returned.
Records that in v6 had the category MONITORED (Observed) are now Observations
See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

	Parameters:

	categories (list) – List of categories to be restricted to.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_cluster_names(names)

	Restricts the alerts that this query is performed on to the specified Kubernetes cluster names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of Kubernetes cluster names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_create_time(*args, **kwargs)

	Restricts the alerts that this query is performed on to the specified creation time.

The time may either be specified as a start and end point or as a range.
In SDK 1.5.0 to align with Alerts v7 API, create_time is set as time_range outside of criteria.

	Deprecated:
	Use add_time_criteria(field_name, start, end, range) instead.

	Parameters:

	
	*args (list) – Not used.

	**kwargs (dict) – Used to specify start= for start time, end= for end time, and range= for range.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_ids(device_ids)

	Restricts the alerts that this query is performed on to the specified device IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	device_ids (list) – List of integer device IDs.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_locations(locations)

	Restricts the alerts that this query is performed on to the specified device locations.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	locations (list) – List of device locations to look for. Valid values are “ONSITE”, “OFFSITE”,
and “UNKNOWN”.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_device_names(device_names)

	Restricts the alerts that this query is performed on to the specified device names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	device_names (list) – List of string device names.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_os(device_os)

	Restricts the alerts that this query is performed on to the specified device operating systems.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	device_os (list) – List of string operating systems. Valid values are “WINDOWS”, “ANDROID”,
“MAC”, “IOS”, “LINUX”, and “OTHER.”

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_os_versions(device_os_versions)

	Restricts the alerts that this query is performed on to the specified device operating system versions.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	device_os_versions (list) – List of string operating system versions.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_username(users)

	Restricts the alerts that this query is performed on to the specified user names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	users (list) – List of string user names.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_egress_group_ids(ids)

	Restricts the alerts that this query is performed on to the specified egress group IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of egress group IDs to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_egress_group_names(names)

	Restricts the alerts that this query is performed on to the specified egress group names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of egress group names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_external_device_friendly_names(names)

	Restricts the alerts that this query is performed on to the specified external device friendly names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of external device friendly names to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_external_device_ids(ids)

	Restricts the alerts that this query is performed on to the specified external device IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of external device IDs to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_group_by(field)

	Sets the ‘group_by’ query body parameter, determining which field to group the alerts by.

	Parameters:

	field (string) – The field to group by

	
set_group_results(do_group)

	The field group_results was deprecated and not included in v7. This method has been removed.

It previously specified whether to group the results of the query.
Use the Grouped Alerts Operations [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alerts-api/]
#grouped-alerts-operations) instead.
See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

	Parameters:

	do_group (bool) – True to group the results, False to not do so.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_ip_reputations(reputations)

	Restricts the alerts that this query is performed on to the specified IP reputation values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	reputations (list) – List of IP reputation values to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_kill_chain_statuses(statuses)

	The field kill_chain_status was deprecated and not included in v7. This method has been removed.

See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

Args:
statuses (list): List of kill chain statuses to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_legacy_alert_ids(alert_ids)

	Restricts the alerts that this query is performed on to the specified legacy alert IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	alert_ids (list) – List of string legacy alert IDs.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_minimum_severity(severity)

	Restricts the alerts that this query is performed on to the specified minimum severity level.

	Parameters:

	severity (int) – The minimum severity level for alerts.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_namespaces(namespaces)

	Restricts the alerts that this query is performed on to the specified Kubernetes namespaces.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	namespaces (list) – List of Kubernetes namespaces to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_not_blocked_threat_categories(categories)

	The field not_blocked_threat_category was deprecated and not included in v7. This method has been removed.

See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

Args:
categories (list): List of threat categories to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_policy_applied(applied_statuses)

	Restricts the alerts that this query is performed on to the specified policy status values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	applied_statuses (list) – List of status values to look for. Valid values are “APPLIED” and “NOT_APPLIED”.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_policy_ids(policy_ids)

	Restricts the alerts that this query is performed on to the specified policy IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	policy_ids (list) – List of integer policy IDs.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_policy_names(policy_names)

	Restricts the alerts that this query is performed on to the specified policy names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	policy_names (list) – List of string policy names.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_ports(ports)

	Restricts the alerts that this query is performed on to the specified netconn_local_ports.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

Note that in SDK 1.5.0, to align with Alerts API v7, the search field was updated from
port to netconn_local_port. It is possible to search on either netconn_local_port
or netconn_remote_port using the `add_criteria(fieldname, [field values]) method.

	Parameters:

	ports (list) – List of netconn_local_ports to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_process_names(process_names)

	Restricts the alerts that this query is performed on to the specified process names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	process_names (list) – List of string process names.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_process_sha256(shas)

	Restricts the alerts that this query is performed on to the specified process SHA-256 hash values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	shas (list) – List of string process SHA-256 hash values.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_product_ids(ids)

	Restricts the alerts that this query is performed on to the specified product IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of product IDs to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_product_names(names)

	Restricts the alerts that this query is performed on to the specified product names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of product names to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_protocols(protocols)

	Restricts the alerts that this query is performed on to the specified protocols.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	protocols (list) – List of protocols to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_reason_code(reason)

	Restricts the alerts that this query is performed on to the specified reason codes (enum values).

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	reason (list) – List of string reason codes to look for.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_remote_domains(domains)

	Restricts the alerts that this query is performed on to the specified remote domains.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	domains (list) – List of remote domains to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_remote_ips(addrs)

	Restricts the alerts that this query is performed on to the specified remote IP addresses.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	addrs (list) – List of remote IP addresses to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_remote_is_private(is_private, exclude=False)

	Restricts the alerts that this query is performed on based on matching the remote_is_private field.

This field is only present on CONTAINER_RUNTIME alerts and so filtering will be ignored on other alert types.

	Parameters:

	
	is_private (boolean) – Whether the remote information is private: true or false

	exclude (bool) – If true, will set is_present in the exclusions. Otherwise adds to criteria

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_replica_ids(ids)

	Restricts the alerts that this query is performed on to the specified pod names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of pod names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_reputations(reps)

	Restricts the alerts that this query is performed on to the specified reputation values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	reps (list) – List of string reputation values. Valid values are “KNOWN_MALWARE”, “SUSPECT_MALWARE”,
“PUP”, “NOT_LISTED”, “ADAPTIVE_WHITE_LIST”, “COMMON_WHITE_LIST”, “TRUSTED_WHITE_LIST”,
and “COMPANY_BLACK_LIST”.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_rows(rows)

	Sets the ‘rows’ query body parameter, determining how many rows of results to request.

	Parameters:

	rows (int) – How many rows to request.

	
set_rule_ids(ids)

	Restricts the alerts that this query is performed on to the specified Kubernetes policy rule IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

In SDK prior to 1.5.0 this was only supported for Container Runtime Alerts so will
convert to k8s_rule_id in criteria. In SDK 1.5.0 and later, aligned to Alert v7 API, use add_criteria()
should be used for both k8s_rule_id and for other alert types, rule_id.

	Parameters:

	ids (list) – List of Kubernetes policy rule IDs to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_rule_names(names)

	Restricts the alerts that this query is performed on to the specified Kubernetes policy rule names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of Kubernetes policy rule names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_run_states(states)

	Restricts the alerts that this query is performed on to the specified run states.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	states (list) – List of run states to look for. Valid values are “DID_NOT_RUN”, “RAN”, and “UNKNOWN”.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_sensor_actions(actions)

	Restricts the alerts that this query is performed on to the specified sensor actions.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	actions (list) – List of sensor actions to look for. Valid values are “POLICY_NOT_APPLIED”, “ALLOW”,
“ALLOW_AND_LOG”, “TERMINATE”, and “DENY”.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_serial_numbers(serial_numbers)

	Restricts the alerts that this query is performed on to the specified serial numbers.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	serial_numbers (list) – List of serial numbers to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_tags(tags)

	Restricts the alerts that this query is performed on to the specified tag values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	tags (list) – List of string tag values.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_target_priorities(priorities)

	Restricts the alerts that this query is performed on to the specified target priority values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	priorities (list) – List of string target priority values. Valid values are “LOW”, “MEDIUM”,
“HIGH”, and “MISSION_CRITICAL”.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_threat_cause_vectors(vectors)

	The field threat_cause_vector was deprecated and not included in v7. This method has been removed.

See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

	Parameters:

	vectors (list) – List of threat cause vectors to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_threat_ids(threats)

	Restricts the alerts that this query is performed on to the specified threat ID values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	threats (list) – List of string threat ID values.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_threat_notes_present(is_present, exclude=False)

	Restricts the alerts that this query is performed on to those with or without threat_notes.

	Parameters:

	
	is_present (bool) – If true, returns alerts that have a note attached to the threat_id

	exclude (bool) – If true, will set is_present in the exclusions. Otherwise adds to criteria

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_time_range(*args, **kwargs)

	For v7 Alerts:

Sets the ‘time_range’ query body parameter, determining a time range based on ‘backend_timestamp’.

	Parameters:

	
	*args – not used

	**kwargs (dict) – Used to specify the period to search within

	start= either timestamp ISO 8601 strings or datetime objects

	end= either timestamp ISO 8601 strings or datetime objects

	range= the period on which to execute the result search, ending on the current time.

Range must be in the format “-<quantity><units>” where quantity is an integer, and units is one of:

	M: month(s)

	w: week(s)

	d: day(s)

	h: hour(s)

	m: minute(s)

	s: second(s)

For v6 Alerts (backwards compatibility):

Restricts the alerts that this query is performed on to the specified time range for a given key. Will set
the ‘time_range’ as in the v7 usage if key is create_time and set a criteria value for any other valid key.

	Parameters:

	
	key (str) – The key to use for criteria one of create_time, first_event_time, last_event_time
or last_update_time. i.e. legacy field names from the Alert v6 API.

	**kwargs (dict) – Used to specify the period to search within

	start= either timestamp ISO 8601 strings or datetime objects

	end= either timestamp ISO 8601 strings or datetime objects

	range= the period on which to execute the result search, ending on the current time.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

Examples

>>> query_specify_start_and_end = api.select(Alert).
... set_time_range(start="2020-10-20T20:34:07Z", end="2020-10-30T20:34:07Z")
>>> query_specify_range = api.select(Alert).set_time_range(range='-3d')
>>> query_legacy_use = api.select(Alert).set_time_range("create_time", range='-3d')

	
set_types(alerttypes)

	Restricts the alerts that this query is performed on to the specified alert type values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	alerttypes (list) – List of string alert type values. Valid values are “CB_ANALYTICS”,
“WATCHLIST”, “DEVICE_CONTROL”, and “CONTAINER_RUNTIME”. In SDK 1.5.0,
to align with Alert API v7, more alert types are available but the add_criteria
method must be used.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

Note: - When filtering by fields that take a list parameter, an empty list will be treated as a wildcard and
match everything.

	
set_vendor_ids(ids)

	Restricts the alerts that this query is performed on to the specified vendor IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of vendor IDs to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_vendor_names(names)

	Restricts the alerts that this query is performed on to the specified vendor names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of vendor names to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_watchlist_ids(ids)

	Restricts the alerts that this query is performed on to the specified watchlist ID values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of string watchlist ID values.

	Returns:

	This instance.

	Return type:

	WatchlistAlertSearchQuery

	
set_watchlist_names(names)

	Restricts the alerts that this query is performed on to the specified watchlist name values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of string watchlist name values.

	Returns:

	This instance.

	Return type:

	WatchlistAlertSearchQuery

	
set_workflows(workflow_vals)

	Restricts the alerts that this query is performed on to the specified workflow status values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	workflow_vals (list) – List of string alert type values. Valid values are “OPEN” and “DISMISSED”.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_workload_ids(ids)

	The field workload_id was deprecated and not included in v7. This method has been removed.

Use workload_name instead. See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

	Parameters:

	ids (list) – List of workload IDs to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_workload_kinds(kinds)

	Restricts the alerts that this query is performed on to the specified workload types.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	kinds (list) – List of workload types to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_workload_names(names)

	Restricts the alerts that this query is performed on to the specified workload names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of workload names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(Alert).sort_by("name")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
update(status, closure_reason=None, determination=None, note=None)

	Updating all alerts matching a grouped alert query is not implemented.

Note

	Updating all alerts in all groups returned by a GroupedAlertSearchQuery can be done by

getting the AlertSearchQuery and using update() on it as shown in the following example.

Example

>>> alert_query = grouped_alert_query.get_alert_search_query()
>>> job = alert_query.update("IN_PROGESS", "NO_REASON", "NONE", "Starting Investigation")
>>> completed_job = job.await_completion().result()

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
update_exclusions(key, newlist)

	Update the exclusion on this query with a custom exclusion key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (list) – List of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).update_exclusions("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
class HostBasedFirewallAlert(cb, model_unique_id, initial_data=None)

	Bases: Alert

A specialization of the base Alert class that represents a host-based firewall alert.

The complete list of alert fields is too large to be reproduced here; please see the list of available fields
for each alert type on the Developer Network [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alert-search-fields].

Initialize the Alert object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
class Note(cb, alert, model_unique_id, threat_note=False, initial_data=None)

	Bases: PlatformModel

Represents a note placed on an alert.

	Parameters:

	
	author – User who created the note

	create_timestamp – Time the note was created

	last_update_timestamp – Time the note was created

	id – Unique ID for this note

	note – Note contents

	parent_id – ID for this note of this notes parent if is a thread

Initialize the Note object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	alert (Alert) – The alert where the note is saved.

	model_unique_id (str) – ID of the note represented.

	threat_note (bool) – True if the note is a threat note, False if the note is an alert note.``

	initial_data (dict) – Initial data used to populate the note.

	
delete()

	Deletes a note from an alert.

	Required Permissions:
	org.alerts.notes (DELETE)

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
add_threat_tags(tags)

	Adds tags to the threat.

	Required Permissions:
	org.alerts.tags (CREATE)

	Parameters:

	tags (list[str]) – List of tags to add to the threat.

	Raises:

	ApiError – If tags is not a list of strings.

	Returns:

	The list of current tags.

	Return type:

	list[str]

	
close(closure_reason=None, determination=None, note=None)

	Closes this alert.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”, “RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”, “FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.close("RESOLVED", "FALSE_POSITIVE", "Normal behavior")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
create_note(note, threat_note=False)

	Creates a new note for this alert.

	Required Permissions:
	org.alerts.notes (CREATE)

	Parameters:

	
	note (str) – Note content to add.

	threat_note (bool) – True to add this alert to the treat, False to add this note to the alert.

	Returns:

	The newly-added note.

	Return type:

	Note

	
delete_threat_tag(tag)

	Delete a threat tag.

	Required Permissions:
	org.alerts.tags (DELETE)

	Parameters:

	tag (str) – The tag to delete.

	Returns:

	The list of current tags.

	Return type:

	(list[str])

	
deobfuscate_cmdline()

	Deobfuscates the command line of the process pointed to by the alert and returns the deobfuscated result.

	Required Permissions:
	script.deobfuscation (EXECUTE)

	Returns:

	
	A dict containing information about the obfuscated command line, including the
	deobfuscated result.

	Return type:

	dict

	
dismiss_threat(remediation=None, comment=None)

	Dismisses all future alerts assigned to the threat_id.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to dismiss all past and current open alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).close(...)

	
get(item, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	item (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_history(threat=False)

	Get the actions taken on an Alert such as ``Note``s added and workflow state changes.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	threat (bool) – If True, the threat history is returned; if False, the alert history is returned.

	Returns:

	The ``dict``s of each determination, note or workflow change.

	Return type:

	list

	
get_observations(timeout=0)

	Requests observations that are associated with the Alert.

Uses Observation.bulk_get_details.

	Required Permissions:
	org.search.events (READ, CREATE)

	Returns:

	Observations associated with the Alert.

	Return type:

	list[Observation]

	
get_process(async_mode=False)

	Gets the process corresponding with the alert.

	Required Permissions:
	org.search.events (CREATE. READ)

	Parameters:

	async_mode – True to request process in an asynchronous manner.

	Returns:

	The process corresponding to the alert.

	Return type:

	Process

Note

	When using asynchronous mode, this method returns a Python Future.
You can call result() on the Future object to wait for completion and get the results.

	
get_threat_tags()

	Gets the threat’s tags.

	Required Permissions:
	org.alerts.tags (READ)

	Returns:

	The list of current tags

	Return type:

	list[str]

	
notes_(threat_note=False)

	Retrieves all notes for this alert.

	Required Permissions:
	org.alerts.notes (READ)

	Parameters:

	threat_note (bool) – True to retrieve threat notes, False to retrieve alert notes.

	Returns:

	The list of notes for the alert.

	Return type:

	list[Note]

	
refresh()

	Reload this object from the server.

	
static search_suggestions(cb, query)

	Returns suggestions for keys and field values that can be used in a search.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	query (str) – A search query to use.

	Returns:

	A list of search suggestions expressed as dict objects.

	Return type:

	list

	Raises:

	ApiError – if cb is not instance of CBCloudAPI

	
to_json(version='v7')

	Return a json object of the response.

	Parameters:

	version (str) – version of json to return. Either v6 or v7. DEFAULT v7

	Returns:

	The returned attribute value.

	Return type:

	Any

	
update(status, closure_reason=None, determination=None, note=None)

	Update the Alert with optional closure_reason, determination, note, or status.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	status (str) – The status to set for this alert, either “OPEN”, “IN_PROGRESS”, or “CLOSED”.

	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”,
“RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”,
“FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.update("IN_PROGESS", "NO_REASON", "NONE", "Starting Investigation")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
update_threat(remediation=None, comment=None)

	Updates all future alerts assigned to the threat_id to the OPEN state.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to update all past and current alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).update(...)

	
property workflow_

	Returns the workflow associated with this alert.

	Returns:

	The workflow associated with this alert.

	Return type:

	dict

	
class IntrusionDetectionSystemAlert(cb, model_unique_id, initial_data=None)

	Bases: Alert

A specialization of the base Alert class that represents an intrusion detection system alert.

The complete list of alert fields is too large to be reproduced here; please see the list of available fields
for each alert type on the Developer Network [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alert-search-fields].

Initialize the Alert object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
class Note(cb, alert, model_unique_id, threat_note=False, initial_data=None)

	Bases: PlatformModel

Represents a note placed on an alert.

	Parameters:

	
	author – User who created the note

	create_timestamp – Time the note was created

	last_update_timestamp – Time the note was created

	id – Unique ID for this note

	note – Note contents

	parent_id – ID for this note of this notes parent if is a thread

Initialize the Note object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	alert (Alert) – The alert where the note is saved.

	model_unique_id (str) – ID of the note represented.

	threat_note (bool) – True if the note is a threat note, False if the note is an alert note.``

	initial_data (dict) – Initial data used to populate the note.

	
delete()

	Deletes a note from an alert.

	Required Permissions:
	org.alerts.notes (DELETE)

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
add_threat_tags(tags)

	Adds tags to the threat.

	Required Permissions:
	org.alerts.tags (CREATE)

	Parameters:

	tags (list[str]) – List of tags to add to the threat.

	Raises:

	ApiError – If tags is not a list of strings.

	Returns:

	The list of current tags.

	Return type:

	list[str]

	
close(closure_reason=None, determination=None, note=None)

	Closes this alert.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”, “RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”, “FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.close("RESOLVED", "FALSE_POSITIVE", "Normal behavior")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
create_note(note, threat_note=False)

	Creates a new note for this alert.

	Required Permissions:
	org.alerts.notes (CREATE)

	Parameters:

	
	note (str) – Note content to add.

	threat_note (bool) – True to add this alert to the treat, False to add this note to the alert.

	Returns:

	The newly-added note.

	Return type:

	Note

	
delete_threat_tag(tag)

	Delete a threat tag.

	Required Permissions:
	org.alerts.tags (DELETE)

	Parameters:

	tag (str) – The tag to delete.

	Returns:

	The list of current tags.

	Return type:

	(list[str])

	
deobfuscate_cmdline()

	Deobfuscates the command line of the process pointed to by the alert and returns the deobfuscated result.

	Required Permissions:
	script.deobfuscation (EXECUTE)

	Returns:

	
	A dict containing information about the obfuscated command line, including the
	deobfuscated result.

	Return type:

	dict

	
dismiss_threat(remediation=None, comment=None)

	Dismisses all future alerts assigned to the threat_id.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to dismiss all past and current open alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).close(...)

	
get(item, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	item (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_history(threat=False)

	Get the actions taken on an Alert such as ``Note``s added and workflow state changes.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	threat (bool) – If True, the threat history is returned; if False, the alert history is returned.

	Returns:

	The ``dict``s of each determination, note or workflow change.

	Return type:

	list

	
get_network_threat_metadata()

	Retrun the NetworkThreatMetadata associated with this IDS alert if it exists.

Example

>>> alert_threat_metadata = ids_alert.get_network_threat_metadata()

	Returns:

	The NetworkThreatMetadata associated with this IDS alert.

	Return type:

	NetworkThreatMetadata

	
get_observations(timeout=0)

	Requests observations that are associated with the Alert.

Uses Observation.bulk_get_details.

	Required Permissions:
	org.search.events (READ, CREATE)

	Returns:

	Observations associated with the Alert.

	Return type:

	list[Observation]

	
get_process(async_mode=False)

	Gets the process corresponding with the alert.

	Required Permissions:
	org.search.events (CREATE. READ)

	Parameters:

	async_mode – True to request process in an asynchronous manner.

	Returns:

	The process corresponding to the alert.

	Return type:

	Process

Note

	When using asynchronous mode, this method returns a Python Future.
You can call result() on the Future object to wait for completion and get the results.

	
get_threat_tags()

	Gets the threat’s tags.

	Required Permissions:
	org.alerts.tags (READ)

	Returns:

	The list of current tags

	Return type:

	list[str]

	
notes_(threat_note=False)

	Retrieves all notes for this alert.

	Required Permissions:
	org.alerts.notes (READ)

	Parameters:

	threat_note (bool) – True to retrieve threat notes, False to retrieve alert notes.

	Returns:

	The list of notes for the alert.

	Return type:

	list[Note]

	
refresh()

	Reload this object from the server.

	
static search_suggestions(cb, query)

	Returns suggestions for keys and field values that can be used in a search.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	query (str) – A search query to use.

	Returns:

	A list of search suggestions expressed as dict objects.

	Return type:

	list

	Raises:

	ApiError – if cb is not instance of CBCloudAPI

	
to_json(version='v7')

	Return a json object of the response.

	Parameters:

	version (str) – version of json to return. Either v6 or v7. DEFAULT v7

	Returns:

	The returned attribute value.

	Return type:

	Any

	
update(status, closure_reason=None, determination=None, note=None)

	Update the Alert with optional closure_reason, determination, note, or status.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	status (str) – The status to set for this alert, either “OPEN”, “IN_PROGRESS”, or “CLOSED”.

	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”,
“RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”,
“FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.update("IN_PROGESS", "NO_REASON", "NONE", "Starting Investigation")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
update_threat(remediation=None, comment=None)

	Updates all future alerts assigned to the threat_id to the OPEN state.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to update all past and current alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).update(...)

	
property workflow_

	Returns the workflow associated with this alert.

	Returns:

	The workflow associated with this alert.

	Return type:

	dict

	
class WatchlistAlert(cb, model_unique_id, initial_data=None)

	Bases: Alert

A specialization of the base Alert class that represents a watchlist alert.

The complete list of alert fields is too large to be reproduced here; please see the list of available fields
for each alert type on the Developer Network [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alert-search-fields].

Initialize the Alert object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
class Note(cb, alert, model_unique_id, threat_note=False, initial_data=None)

	Bases: PlatformModel

Represents a note placed on an alert.

	Parameters:

	
	author – User who created the note

	create_timestamp – Time the note was created

	last_update_timestamp – Time the note was created

	id – Unique ID for this note

	note – Note contents

	parent_id – ID for this note of this notes parent if is a thread

Initialize the Note object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	alert (Alert) – The alert where the note is saved.

	model_unique_id (str) – ID of the note represented.

	threat_note (bool) – True if the note is a threat note, False if the note is an alert note.``

	initial_data (dict) – Initial data used to populate the note.

	
delete()

	Deletes a note from an alert.

	Required Permissions:
	org.alerts.notes (DELETE)

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
add_threat_tags(tags)

	Adds tags to the threat.

	Required Permissions:
	org.alerts.tags (CREATE)

	Parameters:

	tags (list[str]) – List of tags to add to the threat.

	Raises:

	ApiError – If tags is not a list of strings.

	Returns:

	The list of current tags.

	Return type:

	list[str]

	
close(closure_reason=None, determination=None, note=None)

	Closes this alert.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”, “RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”, “FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.close("RESOLVED", "FALSE_POSITIVE", "Normal behavior")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
create_note(note, threat_note=False)

	Creates a new note for this alert.

	Required Permissions:
	org.alerts.notes (CREATE)

	Parameters:

	
	note (str) – Note content to add.

	threat_note (bool) – True to add this alert to the treat, False to add this note to the alert.

	Returns:

	The newly-added note.

	Return type:

	Note

	
delete_threat_tag(tag)

	Delete a threat tag.

	Required Permissions:
	org.alerts.tags (DELETE)

	Parameters:

	tag (str) – The tag to delete.

	Returns:

	The list of current tags.

	Return type:

	(list[str])

	
deobfuscate_cmdline()

	Deobfuscates the command line of the process pointed to by the alert and returns the deobfuscated result.

	Required Permissions:
	script.deobfuscation (EXECUTE)

	Returns:

	
	A dict containing information about the obfuscated command line, including the
	deobfuscated result.

	Return type:

	dict

	
dismiss_threat(remediation=None, comment=None)

	Dismisses all future alerts assigned to the threat_id.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to dismiss all past and current open alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).close(...)

	
get(item, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	item (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_history(threat=False)

	Get the actions taken on an Alert such as ``Note``s added and workflow state changes.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	threat (bool) – If True, the threat history is returned; if False, the alert history is returned.

	Returns:

	The ``dict``s of each determination, note or workflow change.

	Return type:

	list

	
get_observations(timeout=0)

	Requests observations that are associated with the Alert.

Uses Observation.bulk_get_details.

	Required Permissions:
	org.search.events (READ, CREATE)

	Returns:

	Observations associated with the Alert.

	Return type:

	list[Observation]

	
get_process(async_mode=False)

	Gets the process corresponding with the alert.

	Required Permissions:
	org.search.events (CREATE. READ)

	Parameters:

	async_mode – True to request process in an asynchronous manner.

	Returns:

	The process corresponding to the alert.

	Return type:

	Process

Note

	When using asynchronous mode, this method returns a Python Future.
You can call result() on the Future object to wait for completion and get the results.

	
get_threat_tags()

	Gets the threat’s tags.

	Required Permissions:
	org.alerts.tags (READ)

	Returns:

	The list of current tags

	Return type:

	list[str]

	
get_watchlist_objects()

	Returns the list of associated watchlist objects for the associated watchlist alert.

Example

>>> watchlist_alert = cb.select(Alert, "f643d11f-59ab-478f-92c3-4198ca9b8230")
>>> watchlist_objects = watchlist_alert.get_watchlist_objects()

	Returns:

	A list of Watchlist objects.

	Return type:

	list[Watchlist]

	
notes_(threat_note=False)

	Retrieves all notes for this alert.

	Required Permissions:
	org.alerts.notes (READ)

	Parameters:

	threat_note (bool) – True to retrieve threat notes, False to retrieve alert notes.

	Returns:

	The list of notes for the alert.

	Return type:

	list[Note]

	
refresh()

	Reload this object from the server.

	
static search_suggestions(cb, query)

	Returns suggestions for keys and field values that can be used in a search.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	query (str) – A search query to use.

	Returns:

	A list of search suggestions expressed as dict objects.

	Return type:

	list

	Raises:

	ApiError – if cb is not instance of CBCloudAPI

	
to_json(version='v7')

	Return a json object of the response.

	Parameters:

	version (str) – version of json to return. Either v6 or v7. DEFAULT v7

	Returns:

	The returned attribute value.

	Return type:

	Any

	
update(status, closure_reason=None, determination=None, note=None)

	Update the Alert with optional closure_reason, determination, note, or status.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	status (str) – The status to set for this alert, either “OPEN”, “IN_PROGRESS”, or “CLOSED”.

	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”,
“RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”,
“FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.update("IN_PROGESS", "NO_REASON", "NONE", "Starting Investigation")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
update_threat(remediation=None, comment=None)

	Updates all future alerts assigned to the threat_id to the OPEN state.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to update all past and current alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).update(...)

	
property workflow_

	Returns the workflow associated with this alert.

	Returns:

	The workflow associated with this alert.

	Return type:

	dict

Asset Groups Module

The model and query classes for referencing asset groups.

An asset group represents a group of devices (endpoints, VM workloads, and/or VDIs) that can have a single policy
applied to it so the protections of all similar assets are synchronized with one another. Policies carry a “position”
value as one of their attributes, so that, between the policy attached directly to the device, and the policies
attached to any asset groups the device is a member of, the one with the highest “position” is the one that applies to
that device. Devices may be added to an asset group either explicitly, or implicitly by specifying a query on the
asset group, such that all devices matching that search criteria are considered part of the asset group.

Typical usage example:

assume "cb" is an instance of CBCloudAPI
query = cb.select(AssetGroup).where('name:"HQ Devices"')
group = query.first()

	
class AssetGroup(cb, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: MutableBaseModel

Represents an asset group within the current organization in the Carbon Black Cloud.

	AssetGroup objects are typically located via a search (using AssetGroupQuery) before they can be operated
	on. They may also be created on the Carbon Black Cloud by using the create_group() class method.

	Parameters:

	
	id – The asset group identifier.

	name – The asset group name.

	description – The asset group description.

	org_key – The organization key of the owning organization.

	status – Status of the group.

	member_type – The type of objects this asset group contains.

	discovered – Whether this group has been discovered.

	create_time – Date and time the group was created.

	update_time – Date and time the group was last updated.

	member_count – Number of members in this group.

	policy_id – ID of the policy associated with this group.

	policy_name – Name of the policy associated with this group.

	query – Search query used to determine which assets are included in the group membership.

Initialize the AssetGroup object.

	Required Permissions:
	group-management(READ)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (int) – ID of the policy.

	initial_data (dict) – Initial data used to populate the policy.

	force_init (bool) – If True, forces the object to be refreshed after constructing. Default False.

	full_doc (bool) – If True, object is considered “fully” initialized. Default False.

	
add_members(members)

	Adds additional members to this asset group.

	Required Permissions:
	group-management(CREATE)

	Parameters:

	members (int, Device, or list) – The members to be added to the group. This may be an integer device ID,
a Device object, or a list of either integers or Device objects.

	
classmethod create_group(cb, name, description=None, policy_id=None, query=None)

	Create a new asset group.

	Required Permissions:
	group-management(CREATE)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	name (str) – Name for the new asset group.

	description (str) – Description for the new asset group. Default is None.

	policy_id (int) – ID of the policy to be associated with this asset group. Default is None.

	query (str) – Query string to be used to dynamically populate this group. Default is None,
which means devices _must_ be manually assigned to the group.

	Returns:

	The new asset group.

	Return type:

	AssetGroup

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
classmethod get_all_groups(cb)

	Retrieve all asset groups in the organization.

	Required Permissions:
	group-management(READ)

	Parameters:

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	Returns:

	List of AssetGroup objects corresponding to the asset groups in the organization.

	Return type:

	list[AssetGroup]

	
get_statistics()

	For this group, return statistics about its group membership.

The statistics include how many of the group’s members belong to other groups, and how many members
belong to groups without policy association.

See
this page [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/asset-groups-api/#get-asset-group-stats]
for more details on the structure of the return value from this method.

	Required Permissions:
	group-management(READ)

	Returns:

	
	A dict with two elements. The “intersections” element contains elements detailing which groups share
	members with this group, and which members they are. The “unassigned_properties” element contains
elements showing which members belong to groups without policy association.

	Return type:

	dict

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
list_member_ids(rows=20, start=0)

	Gets a list of all member IDs in the group, optionally constrained by membership type.

	Required Permissions:
	group-management(READ)

	Parameters:

	
	rows (int) – Maximum number of rows to retrieve from the server. The function may return fewer member IDs
if filtering is applied to the output. Default is 20.

	start (int) – Starting row to retrieve from the server; used to implement pagination. Default is 0.

	Returns:

	
	List of dictionaries that contain the integer element external_member_id for the device ID,
	the boolean element dynamic which is True if the group member is there due to the
group’s dynamic query, and the boolean element manual which is True if the group member
was manually added. (It is possible for both dynamic and manual to be True.)

	Return type:

	list[dict]

	
list_members(rows=20, start=0, membership='ALL')

	Gets a list of all member devices in the group, optionally constrained by membership type.

	Required Permissions:
	group-management(READ), devices(READ)

	Parameters:

	
	rows (int) – Maximum number of rows to retrieve from the server. The function may return fewer member IDs
if filtering is applied to the output. Default is 20.

	start (int) – Starting row to retrieve from the server; used to implement pagination. Default is 0.

	membership (str) – Can restrict the types of members that are returned by this method. Values are “ALL”
to return all members, “DYNAMIC” to return only members that were added via the asset
group query, or “MANUAL” to return only manually-added members. Default is “ALL”.

	Returns:

	List of Device objects comprising the membership of the group.``

	Return type:

	list[Device]

	
preview_add_members(devices)

	Previews changes to the effective policies for devices which result from adding them to this asset group.

	Required Permissions:
	org.policies (READ)

	Parameters:

	devices (list) – The devices which will be added to this asset group. Each entry in this list is either
an integer device ID or a Device object.

	Returns:

	
	A list of DevicePolicyChangePreview objects representing the assets
	that change which policy is effective as the result of this operation.

	Return type:

	list[DevicePolicyChangePreview]

	
classmethod preview_add_members_to_groups(cb, members, groups)

	Previews changes to the effective policies for devices which result from adding them to asset groups.

	Required Permissions:
	org.policies (READ)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	members (list) – The devices which will be added to new asset groups. Each entry in this list is either
an integer device ID or a Device object.

	groups (list) – The asset groups to which the devices will be added. Each entry in this list is either
a string asset group ID or an AssetGroup object.

	Returns:

	
	A list of DevicePolicyChangePreview objects representing the assets
	that change which policy is effective as the result of this operation.

	Return type:

	list[DevicePolicyChangePreview]

	
classmethod preview_create_asset_group(cb, policy_id, query)

	Previews changes to the effective policies for devices which result from creating a new asset group.

	Required Permissions:
	org.policies (READ)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	policy_id (int) – The ID of the policy to be added to the new asset group.

	query (str) – The query string to be used for the new asset group.

	Returns:

	
	A list of DevicePolicyChangePreview objects representing the assets
	that change which policy is effective as the result of this operation.

	Return type:

	list[DevicePolicyChangePreview]

	
preview_delete()

	Previews changes to the effective policies for devices which result from this asset group being deleted.

	Required Permissions:
	org.policies (READ)

	Returns:

	
	A list of DevicePolicyChangePreview objects representing the assets
	that change which policy is effective as the result of this operation.

	Return type:

	list[DevicePolicyChangePreview]

	
classmethod preview_delete_asset_groups(cb, groups)

	Previews changes to the effective policies for devices which result from deleting asset groups.

	Required Permissions:
	org.policies (READ)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	groups (list) – The asset groups which will be deleted. Each entry in this list is either
a string asset group ID or an AssetGroup object.

	Returns:

	
	A list of DevicePolicyChangePreview objects representing the assets
	that change which policy is effective as the result of this operation.

	Return type:

	list[DevicePolicyChangePreview]

	
preview_remove_members(devices)

	Previews changes to the effective policies for devices which result from removing them from this asset group.

	Required Permissions:
	org.policies (READ)

	Parameters:

	devices (list) – The devices which will be removed from this asset group. Each entry in this list is either
an integer device ID or a Device object.

	Returns:

	
	A list of DevicePolicyChangePreview objects representing the assets
	that change which policy is effective as the result of this operation.

	Return type:

	list[DevicePolicyChangePreview]

	
classmethod preview_remove_members_from_groups(cb, members, groups)

	Previews changes to the effective policies for devices which result from removing them from asset groups.

	Required Permissions:
	org.policies (READ)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	members (list) – The devices which will be removed from asset groups. Each entry in this list is either
an integer device ID or a Device object.

	groups (list) – The asset groups from which the devices will be removed. Each entry in this list is either
a string asset group ID or an AssetGroup object.

	Returns:

	
	A list of DevicePolicyChangePreview objects representing the assets
	that change which policy is effective as the result of this operation.

	Return type:

	list[DevicePolicyChangePreview]

	
preview_save()

	Previews changes to the effective policies for devices which result from unsaved changes to this asset group.

	Required Permissions:
	org.policies (READ)

	Returns:

	
	A list of DevicePolicyChangePreview objects representing the assets
	that change which policy is effective as the result of this operation.

	Return type:

	list[DevicePolicyChangePreview]

	
classmethod preview_update_asset_groups(cb, groups, policy_id=None, query=None, remove_policy_id=False, remove_query=False)

	Previews changes to the effective policies for devices which result from changes to asset groups.

	Required Permissions:
	org.policies (READ)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	groups (list) – The asset groups which will be updated. Each entry in this list is either
a string asset group ID or an AssetGroup object.

	policy_id (int) – If this is not None and remove_policy_id is False, contains the ID of the
policy to be assigned to the specified groups. Default is None.

	query (str) – If this is not None and remove_query is False, contains the new query string
to be assigned to the specified groups. Default is None.

	remove_policy_id (bool) – If this is True, indicates that the specified groups will have their policy
ID removed entirely. Default is False.

	remove_query (bool) – If this is True, indicates that the specified groups will have their query
strings removed entirely. Default is False.

	Returns:

	
	A list of DevicePolicyChangePreview objects representing the assets
	that change which policy is effective as the result of this operation.

	Return type:

	list[DevicePolicyChangePreview]

	
refresh()

	Reload this object from the server.

	
remove_members(members)

	Removes members from this asset group.

	Required Permissions:
	group-management(DELETE)

	Parameters:

	members (int, Device, or list) – The members to be removed from the group. This may be an integer device ID,
a Device object, or a list of either integers or Device objects.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
swagger_meta_file

	The valid values for the ‘filter’ parameter to list_members().

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this object.

	Returns:

	True if the object is validated.

	Return type:

	bool

	Raises:

	InvalidObjectError – If the object has missing fields.

	
class AssetGroupQuery(doc_class, cb)

	Bases: BaseQuery, QueryBuilderSupportMixin, IterableQueryMixin, CriteriaBuilderSupportMixin, AsyncQueryMixin

Query object that is used to locate AssetGroup objects.

The AssetGroupQuery is constructed via SDK functions like the select() method on CBCloudAPI.
The user would then add a query and/or criteria to it before iterating over the results.

The following criteria are supported on AssetGroupQuery via the standard add_criteria() method:

	discovered: bool - Whether the asset group has been discovered or not.

	name: str - The asset group name to be matched.

	policy_id: int - The policy ID to be matched, expressed as an integer.

	group_id: str - The asset group ID to be matched, expressed as a GUID.

Initialize the AssetGroupQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_rows(rows)

	Sets the number of query rows to fetch in each batch from the server.

	Parameters:

	rows (int) – The number of rows to be fetched fromt hes erver at a time. Default is 100.

	Returns:

	This instance.

	Return type:

	AssetGroupQuery

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(AssetGroup).sort_by("name")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	This instance.

	Return type:

	AssetGroupQuery

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

Audit Module

Model and query classes for platform audit logs.

AuditLog can be used to monitor your Carbon Black Cloud organization for actions performed by Carbon Black Cloud
console users and API keys. Audit logs are recorded for most CREATE, UPDATE and DELETE actions as well as a few READ
actions. Audit logs will include a description of the action and indicate the actor who performed the action along
with their IP to help determine if the User/API key are from an expected source.

	
class AuditLog(cb, initial_data=None)

	Bases: UnrefreshableModel

The model class which represents individual audit log entries.

Each entry includes the actor performing the action, the IP address of the actor, a description, and a request URL
where available.

	Parameters:

	
	actor_ip – IP address of the entity that caused the creation of this audit log

	actor – Name of the entity that caused the creation of this audit log

	create_time – Timestamp when this audit log was created in ISO-8601 string format

	description – Text description of this audit log

	flagged – Whether the audit has been flagged

	org_key – Organization key

	request_url – URL of the request that caused the creation of this audit log

	verbose – Whether the audit has been marked verbose

Creates a new AuditLog object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data to fill in the audit log record details.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
static get_auditlogs(cb)

	Retrieve queued audit logs from the Carbon Black Cloud server.

	Deprecated:
	This method uses an outdated API. Use get_queued_auditlogs() instead.

	Required Permissions:
	org.audits (READ)

	Parameters:

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	Returns:

	List of dictionary objects representing the audit logs, or an empty list if none available.

	Return type:

	list[dict]

	
static get_queued_auditlogs(cb)

	Retrieve queued audit logs from the Carbon Black Cloud server.

	Required Permissions:
	org.audits (READ)

	Parameters:

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	Returns:

	List of objects representing the audit logs, or an empty list if none available.

	Return type:

	list[AuditLog]

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class AuditLogQuery(doc_class, cb)

	Bases: BaseQuery, QueryBuilderSupportMixin, CriteriaBuilderSupportMixin, ExclusionBuilderSupportMixin, IterableQueryMixin, AsyncQueryMixin

Query object that is used to locate AuditLog objects.

The AuditLogQuery is constructed via SDK functions like the select() method on CBCloudAPI.
The user would then add a query and/or criteria to it before iterating over the results.

The following criteria may be added to the query via the standard add_criteria() method, or added to query
exclusions via the standard add_exclusions() method:

	actor_ip - IP address of the entity that caused the creation of this audit log.

	actor - Name of the entity that caused the creation of this audit log.

	request_url - URL of the request that caused the creation of this audit log.

	description - Text description of this audit log.

Initialize the AuditLogQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_boolean_criteria(criteria_name, value, exclude=False)

	Adds a Boolean value to either the criteria or exclusions.

	Parameters:

	
	criteria_name (str) – The criteria name to set. May be either “flagged” (to set whether or not the audit
record has been flagged) or “verbose” (so set whether or not the audit record has been marked verbose).

	value (bool) – The value of the criteria to be set.

	exclude (bool) – True if this value is to be applied to exclusions, False if this value is to be
applied to search criteria. Default False.

	Returns:

	This instance.

	Return type:

	AuditLogQuery

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
add_exclusions(key, newlist)

	Add to the exclusions on this query with a custom exclusions key.

Will overwrite any existing exclusion for the specified key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).add_exclusions("type", ["WATCHLIST"])
>>> query = api.select(Alert).add_exclusions("type", "WATCHLIST")

	
add_time_criteria(**kwargs)

	Adds a create_time value to either criteria or exclusions.

Examples

>>> query_specify_start_and_end = api.select(AuditLog).
... add_time_criteria(start="2023-10-20T20:34:07Z", end="2023-10-30T20:34:07Z")
>>> query_specify_exclude_range = api.select(AuditLog).add_time_criteria(range='-3d', exclude=True)

	Parameters:

	kwargs (dict) – Keyword arguments to this method.

	Keyword Arguments:

	
	start (str/datetime) – Starting time for the time interval to include in the criteria. Must be either a
datetime object or a string in ISO 8601 format. Both start and end must be specified
if they are to be used.

	end (str/datetime) – Ending time for the time interval to include in the criteria. Must be either a
datetime object or a string in ISO 8601 format. Both start and end must be specified
if they are to be used.

	range (str) – Range for the time interval, to be measured backwards from the current time. Cannot
be specified if start or end are specified. Must be in the format “-NX”, where N is an
integer value, and X is a single character specifying the time unit: “y” for years, “w” for weeks,
“d” for days, “h” for hours, “m” for minutes, or “s” for seconds.

	exclude (bool) – True if this value is to be applied to exclusions, False if this value is to be
applied to search criteria. Default False.

	Returns:

	This instance.

	Return type:

	AuditLogQuery

	Raises:

	ApiError – If the argument format is incorrect.

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
export(format='csv')

	Export audit logs using the Job service.

The actual results are retrieved by waiting for the resulting job to complete, then calling one of the methods
on Job to retrieve the results.

Example

>>> audit_log_query = cb.select(AuditLog).add_time_criteria(range="-1d")
>>> audit_log_export_job = audit_log_query.export(format="csv")
>>> results = audit_log_export_job.await_completion().result()

	Parameters:

	format (str) – Format in which to return results, either “csv” or “json”. Default is “csv”.

	Returns:

	The object representing the export job.

	Return type:

	Job

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(AuditLog).sort_by("name")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	This instance.

	Return type:

	AuditLogQuery

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
update_exclusions(key, newlist)

	Update the exclusion on this query with a custom exclusion key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (list) – List of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).update_exclusions("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

Devices Module

The model and query classes for referencing platform devices.

A platform device represents an endpoint registered with the Carbon Black Cloud that runs a sensor, which
communicates with Carbon Black analytics and the console. Using these classes, you can search for devices using a
wide variety of filterable fields, such as policy ID, status, or operating system. You can also perform actions on
individual devices such as quarantining/unquarantining them, enabling or disabling bypass, or upgrading them to a
new sensor version.

Typical usage example:

assume "cb" is an instance of CBCloudAPI
query = cb.select(Device).where(os="WINDOWS").set_policy_ids([142857])
for device in query:
 device.quarantine(True)

	
class Device(cb, model_unique_id, initial_data=None)

	Bases: PlatformModel

Represents a device (endpoint) within the Carbon Black Cloud.

Device objects are generally located through a search (using DeviceSearchQuery) before they can be
operated on.

	Parameters:

	
	activation_code – Device activation code

	activation_code_expiry_time – When the expiration code expires and cannot be used to register a device

	ad_group_id – Device’s AD group

	asset_group – The asset groups that this device is a member of.

	av_ave_version – AVE version (part of AV Version)

	av_engine – Current AV version

	av_last_scan_time – Last AV scan time

	av_master – Whether the device is an AV Master (?)

	av_pack_version – Pack version (part of AV Version)

	av_product_version – AV Product version (part of AV Version)

	av_status – AV Statuses

	av_update_servers – Device’s AV servers

	av_vdf_version – VDF version (part of AV Version)

	current_sensor_policy_name – Current MSM policy name

	deregistered_time – When the device was deregistered with the PSC backend

	device_id – ID of the device

	device_meta_data_item_list – MSM Device metadata

	device_owner_id – ID of the user who owns the device

	email – Email of the user who owns the device

	encoded_activation_code – Encoded device activation code

	first_name – First name of the user who owns the device

	id – ID of the device

	last_contact_time – Time the device last checked into the PSC backend

	last_device_policy_changed_time – Last time the device’s policy was changed

	last_device_policy_requested_time – Last time the device requested policy updates

	last_external_ip_address – Device’s external IP

	last_internal_ip_address – Device’s internal IP

	last_location – Location of the device (on-/off-premises)

	last_name – Last name of the user who owns the device

	last_policy_updated_time – Last time the device was MSM processed

	last_reported_time – Time when device last reported an event to PSC backend

	last_reset_time – When the sensor was last reset

	last_shutdown_time – When the device last shut down

	linux_kernel_version – Linux kernel version

	login_user_name – Last acive logged in username

	mac_address – Device’s hardware MAC address

	middle_name – Middle name of the user who owns the device

	name – Device Hostname

	organization_id – Org ID to which the device belongs

	organization_name – Name of the org that owns this device

	os – Device type

	os_version – Version of the OS

	passive_mode – Whether the device is in passive mode (bypass?)

	policy_id – ID of the policy this device is using

	policy_name – Name of the policy this device is using

	policy_override – Manually assigned policy (overrides mass sensor management)

	quarantined – Whether the device is quarantined

	registered_time – When the device was registered with the PSC backend

	scan_last_action_time – Not used. Intended for when the background scan was last active

	scan_last_complete_time – Not Used. Intended for when the background scan was last completed

	scan_status – Not Used. Intended for Background scan status

	sensor_out_of_date – Whether the device is out of date

	sensor_states – Active sensor states

	sensor_version – Version of the PSC sensor

	status – Device status

	target_priority_type – Priority of the device

	uninstall_code – Code to enter to uninstall this device

	vdi_base_device – VDI Base device

	virtual_machine – Whether this device is a Virtual Machine (VMware AppDefense integration

	virtualization_provider – VM Virtualization Provider

	windows_platform – Type of windows platform (client/server, x86/x64)

	deployment_type – Classification determined by the device lifecycle management policy

Initialize the Device object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the device represented.

	initial_data (dict) – Initial data used to populate the device.

	
add_to_groups(groups)

	Given a list of asset groups, adds this device to each one as a member.

	Parameters:

	groups (list[AssetGroup]) – The list of groups to add this device to.

	
add_to_groups_by_id(group_ids)

	Given a list of asset group IDs, adds this device to each one as a member.

	Parameters:

	group_ids (list[str]) – The list of group IDs to add this device to.

	
background_scan(flag)

	Set the background scan option for this device.

	Required Permissions:
	device.bg-scan(EXECUTE)

	Parameters:

	flag (bool) – True to turn background scan on, False to turn it off.

	Returns:

	The JSON output from the request.

	Return type:

	str

	
bypass(flag)

	Set the bypass option for this device.

	Required Permissions:
	device.bypass(EXECUTE)

	Parameters:

	flag (bool) – True to enable bypass, False to disable it.

	Returns:

	The JSON output from the request.

	Return type:

	str

	
delete_sensor()

	Delete this sensor device.

	Required Permissions:
	device.deregistered(DELETE)

	Returns:

	The JSON output from the request.

	Return type:

	str

	
property deviceId

	Warn user that Platform Devices use ‘id’, not ‘device_id’.

Platform Device APIs return ‘id’ in API responses, where Endpoint Standard APIs return ‘deviceId’.

	Raises:

	AttributeError – In all cases.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_asset_group_ids(membership='ALL')

	Finds the list of asset group IDs that this device is a member of.

	Parameters:

	membership (str) – Can restrict the types of group membership returned by this method. Values are “ALL”
to return all groups, “DYNAMIC” to return only groups that each member belongs to via the
asset group query, or “MANUAL” to return only groups that the members were manually
added to. Default is “ALL”.

	Returns:

	A list of asset group IDs this device belongs to.

	Return type:

	list[str]

	
get_asset_groups(membership='ALL')

	Finds the list of asset groups that this device is a member of.

	Required Permissions:
	group-management(READ)

	Parameters:

	membership (str) – Can restrict the types of group membership returned by this method. Values are “ALL”
to return all groups, “DYNAMIC” to return only groups that each member belongs to via the
asset group query, or “MANUAL” to return only groups that the members were manually
added to. Default is “ALL”.

	Returns:

	A list of asset groups this device belongs to.

	Return type:

	list[AssetGroup]

	
classmethod get_asset_groups_for_devices(cb, devices, membership='ALL')

	Given a list of devices, returns lists of asset groups that they are members of.

	Required Permissions:
	group-management(READ)

	Parameters:

	
	cls (class) – Class associated with the Device object.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	devices (int, Device, or list) – The devices to find the group membership of. This may be an integer
device ID, a Device object, or a list of either integers or
Device objects.

	membership (str) – Can restrict the types of group membership returned by this method. Values are “ALL”
to return all groups, “DYNAMIC” to return only groups that each member belongs to via the
asset group query, or “MANUAL” to return only groups that the members were manually
added to. Default is “ALL”.

	Returns:

	A dict containing member IDs as keys, and lists of group IDs as values.

	Return type:

	dict

	
get_vulnerability_summary(category=None)

	Get the vulnerabilities associated with this device.

	Required Permissions:
	vulnerabilityAssessment.data(READ)

	Parameters:

	category (string) – (optional) Vulnerabilty category (OS, APP).

	Returns:

	Summary of the vulnerabilities for this device.

	Return type:

	dict

	
get_vulnerabilties()

	Return a query to get an operating system or application vulnerability list for this device.

	Returns:

	Query for searching for vulnerabilities on this device.

	Return type:

	VulnerabilityQuery

	
lr_session(async_mode=False)

	Retrieve a Live Response session object for this Device.

	Required Permissions:
	org.liveresponse.session(CREATE)

	Returns:

	Live Response session for the Device.

	Return type:

	LiveResponseSession

	Raises:

	ApiError – If there is an error establishing a Live Response session for this Device.

	
property nsx_available

	Returns whether NSX actions are available on this device.

	Returns:

	True if NSX actions are available, False if not.

	Return type:

	bool

	
nsx_remediation(tag, set_tag=True)

	Start an NSX Remediation job on this device to change the tag.

	Required Permissions:
	appliances.nsx.remediation(EXECUTE)

	Parameters:

	
	tag (str) – The NSX tag to apply to this device. Valid values are “CB-NSX-Quarantine”,
“CB-NSX-Isolate”, and “CB-NSX-Custom”.

	set_tag (bool) – True to toggle the specified tag on, False to toggle it off. Default True.

	Returns:

	The object representing all running jobs. None if the operation is a no-op.

	Return type:

	NSXRemediationJob

	
classmethod preview_add_policy_override_for_devices(cb, policy_id, devices)

	Previews changes to the effective policies for devices which result from setting a policy override on them.

	Required Permissions:
	org.policies (READ)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	policy_id (int) – The ID of the policy to be added to the devices as an override.

	devices (list) – The devices which will have their policies overridden. Each entry in this list is either
an integer device ID or a Device object.

	Returns:

	
	A list of DevicePolicyChangePreview objects representing the assets
	that change which policy is effective as the result of this operation.

	Return type:

	list[DevicePolicyChangePreview]

	
preview_remove_policy_override()

	Previews changes to this device’s effective policy which result from removing its policy override.

	Required Permissions:
	org.policies (READ)

	Returns:

	
	A list of DevicePolicyChangePreview objects representing the assets
	that change which policy is effective as the result of this operation.

	Return type:

	list[DevicePolicyChangePreview]

	
classmethod preview_remove_policy_override_for_devices(cb, devices)

	Previews changes to the effective policies for devices which result from removing their policy override.

	Required Permissions:
	org.policies (READ)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	devices (list) – The devices which will have their policy overrides removed. Each entry in this list
is either an integer device ID or a Device object.

	Returns:

	
	A list of DevicePolicyChangePreview objects representing the assets
	that change which policy is effective as the result of this operation.

	Return type:

	list[DevicePolicyChangePreview]

	
quarantine(flag)

	Set the quarantine option for this device.

	Required Permissions:
	device.quarantine(EXECUTE)

	Parameters:

	flag (bool) – True to enable quarantine, False to disable it.

	Returns:

	The JSON output from the request.

	Return type:

	str

	
refresh()

	Reload this object from the server.

	
remove_from_groups(groups)

	Given a list of asset groups, removes this device from each one as a member.

	Parameters:

	groups (list[AssetGroup]) – The list of groups to remove this device from.

	
remove_from_groups_by_id(group_ids)

	Given a list of asset group IDs, removes this device from each one as a member.

	Parameters:

	group_ids (list[str]) – The list of group IDs to remove this device from.

	
swagger_meta_file

	The valid values for the ‘filter’ parameter to get_asset_groups_for_devices().

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
uninstall_sensor()

	Uninstall this sensor device.

	Required Permissions:
	device.uninstall(EXECUTE)

	Returns:

	The JSON output from the request.

	Return type:

	str

	
update_policy(policy_id)

	Set the current policy for this device.

	Required Permissions:
	device.policy(UPDATE)

	Parameters:

	policy_id (int) – ID of the policy to set for the device.

	Returns:

	The JSON output from the request.

	Return type:

	str

	
update_sensor_version(sensor_version)

	Update the sensor version for this device.

	Required Permissions:
	org.kits(EXECUTE)

	Parameters:

	sensor_version (dict) – New version properties for the sensor.

	Returns:

	The JSON output from the request.

	Return type:

	str

	
vulnerability_refresh()

	Refresh vulnerability information for the device.

	Required Permissions:
	vulnerabilityAssessment.data(EXECUTE)

	
class DeviceFacet(cb, model_unique_id, initial_data=None)

	Bases: UnrefreshableModel

Represents a device field in a facet search.

Faceting is a search technique that categorizes search results according to common attributes. This allows
users to explore and discover information within a dataset, in this case, the set of devices.

	Example:
	>>> facets = api.select(Device).facets(['policy_id'])
>>> for value in facets[0].values_:
... print(f"Policy ID {value.id}: {value.total} device(s)")

	Parameters:

	
	field – Name of the field being faceted

	values – The values of the faceted field.

Initialize the DeviceFacet object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – Not used.

	initial_data (dict) – Initial data used to populate the facet.

	
class DeviceFacetValue(cb, outer, model_unique_id, initial_data)

	Bases: UnrefreshableModel

Represents a value of a particular faceted field.

Faceting is a search technique that categorizes search results according to common attributes. This allows
users to explore and discover information within a dataset, in this case, the set of devices.

Initialize the DeviceFacetValue object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	outer (DeviceFacet) – Reference to outer facet object.

	model_unique_id (str) – Value ID.

	initial_data (dict) – Initial data used to populate the facet value.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
query_devices()

	Set up a device query to find all devices that match this facet value.

Example

>>> facets = api.select(Device).facets(['policy_id'])
>>> for value in facets[0].values_:
... print(f"Policy ID = {value.id}:")
... for dev in value.query_devices():
... print(f" {dev.name} ({dev.last_external_ip_address})")

	Returns:

	
	A new DeviceQuery set with the criteria, which may have additional criteria added
	to it.

	Return type:

	DeviceQuery

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
property values_

	Returns the list of facet values for this facet.

	
class DeviceSearchQuery(doc_class, cb)

	Bases: BaseQuery, QueryBuilderSupportMixin, CriteriaBuilderSupportMixin, IterableQueryMixin, AsyncQueryMixin

Query object that is used to locate Device objects.

The DeviceSearchQuery is constructed via SDK functions like the select() method on CBCloudAPI.
The user would then add a query and/or criteria to it before iterating over the results.

Initialize the DeviceSearchQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
background_scan(scan)

	Set the background scan option for the specified devices.

	Required Permissions:
	device.bg-scan(EXECUTE)

	Parameters:

	scan (bool) – True to turn background scan on, False to turn it off.

	Returns:

	The JSON output from the request.

	Return type:

	str

	
bypass(enable)

	Set the bypass option for the specified devices.

	Required Permissions:
	device.bypass(EXECUTE)

	Parameters:

	enable (bool) – True to enable bypass, False to disable it.

	Returns:

	The JSON output from the request.

	Return type:

	str

	
delete_sensor()

	Delete the specified sensor devices.

	Required Permissions:
	device.deregistered(DELETE)

	Returns:

	The JSON output from the request.

	Return type:

	str

	
download()

	Uses the query parameters that have been set to download all device listings in CSV format.

	Deprecated:
	Use DeviceSearchQuery.export for increased export capabilities and limits

Example

>>> cb.select(Device).set_status(["ALL"]).download()

	Required Permissions:
	device(READ)

	Returns:

	The CSV raw data as returned from the server.

	Return type:

	str

	Raises:

	ApiError – If status values have not been set before calling this function.

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
export()

	Starts the process of exporting Devices from the organization in CSV format.

Example

>>> cb.select(Device).set_status(["ACTIVE"]).export()

	Required Permissions:
	device(READ)

	Returns:

	The asynchronous job that will provide the export output when the server has prepared it.

	Return type:

	Job

	
facets(fieldlist, max_rows=0)

	Return information about the facets for all matching devices, using the defined criteria.

Example

>>> query = api.select(Device).where('')
>>> facets = query.facets(['policy_id', 'status', 'os', 'ad_group_id'])
>>> for f in facets:
... print(f"Field {f.field} - {len(f.values_)} distinct values")

	Required Permissions:
	device(READ)

	Parameters:

	
	fieldlist (list[str]) – List of facet field names. Valid names are “policy_id”, “status”, “os”,
“ad_group_id”, “cloud_provider_account_id”, “auto_scaling_group_name”,
and “virtual_private_cloud_id”.

	max_rows (int) – The maximum number of rows to return. 0 means return all rows.

	Returns:

	A list of facet information.

	Return type:

	list[DeviceFacet]

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
quarantine(enable)

	Set the quarantine option for the specified devices.

	Required Permissions:
	device.quarantine(EXECUTE)

	Parameters:

	enable (bool) – True to enable quarantine, False to disable it.

	Returns:

	The JSON output from the request.

	Return type:

	str

	
scroll(rows=10000)

	Iteratively paginate all Devices beyond the 10k max search limits.

To fetch the next set of Devices repeatively call the scroll function until
DeviceSearchQuery.num_remaining == 0 or no results are returned.

Example

>>> cb.select(Device).set_status(["ACTIVE"]).scroll(100)

	Required Permissions:
	device(READ)

	Parameters:

	rows (int) – The number of rows to fetch

	Returns:

	The list of results

	Return type:

	list[Device]

	
set_ad_group_ids(ad_group_ids)

	Restricts the devices that this query is performed on to the specified AD group IDs.

	Parameters:

	ad_group_ids (list) – List of AD group IDs to restrict the search to.

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
set_auto_scaling_group_name(group_names)

	Restricts the devices that this query is performed on to the specified auto scaling group names.

	Parameters:

	group_names (list) – List of group names to restrict search to.

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
set_cloud_provider_account_id(account_ids)

	Restricts the devices that this query is performed on to the specified cloud provider account IDs.

	Parameters:

	account_ids (list) – List of account IDs to restrict search to.

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
set_deployment_type(deployment_type)

	Restricts the devices that this query is performed on to the specified deployment types.

	Parameters:

	deployment_type (list) – List of deployment types to restrict search to.

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
set_device_ids(device_ids)

	Restricts the devices that this query is performed on to the specified device IDs.

	Parameters:

	device_ids (list) – List of device IDs to restrict the search to.

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
set_exclude_sensor_versions(sensor_versions)

	Restricts the devices that this query is performed on to exclude specified sensor versions.

	Parameters:

	sensor_versions (list) – List of sensor versions to be excluded.

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
set_last_contact_time(*args, **kwargs)

	Restricts the devices that this query is performed on to the specified last contact time.

	Parameters:

	
	*args (list) – Not used, retained for compatibility.

	**kwargs (dict) – Keyword arguments to this function. The critical ones are “start” (the start time),
“end” (the end time), and “range” (the range value).

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
set_max_rows(max_rows)

	Sets the max number of devices to fetch in a singular query

	Parameters:

	max_rows (integer) – Max number of devices. Must be in the range (0, 10000).

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
set_os(operating_systems)

	Restricts the devices that this query is performed on to the specified operating systems.

	Parameters:

	operating_systems (list) – List of operating systems to restrict search to. Valid values in this list are
“WINDOWS”, “ANDROID”, “MAC”, “IOS”, “LINUX”, and “OTHER”.

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
set_policy_ids(policy_ids)

	Restricts the devices that this query is performed on to the specified policy IDs.

	Parameters:

	policy_ids (list) – List of policy IDs to restrict the search to.

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
set_status(statuses)

	Restricts the devices that this query is performed on to the specified status values.

	Parameters:

	statuses (list) – List of statuses to restrict search to. Valid values in this list are “PENDING”,
“REGISTERED”, “UNINSTALLED”, “DEREGISTERED”, “ACTIVE”, “INACTIVE”, “ERROR”, “ALL”,
“BYPASS_ON”, “BYPASS”, “QUARANTINE”, “SENSOR_OUTOFDATE”, “DELETED”, and “LIVE”.

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
set_target_priorities(target_priorities)

	Restricts the devices that this query is performed on to the specified target priority values.

	Parameters:

	target_priorities (list) – List of priorities to restrict search to. Valid values in this list are “LOW”,
“MEDIUM”, “HIGH”, and “MISSION_CRITICAL”.

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
set_virtual_private_cloud_id(cloud_ids)

	Restricts the devices that this query is performed on to the specified virtual private cloud IDs.

	Parameters:

	cloud_ids (list) – List of cloud IDs to restrict search to.

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(Device).sort_by("status")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
uninstall_sensor()

	Uninstall the specified sensor devices.

	Required Permissions:
	device.uninstall(EXECUTE)

	Returns:

	The JSON output from the request.

	Return type:

	str

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
update_policy(policy_id)

	Set the current policy for the specified devices.

	Required Permissions:
	device.policy(UPDATE)

	Parameters:

	policy_id (int) – ID of the policy to set for the devices.

	Returns:

	The JSON output from the request.

	Return type:

	str

	
update_sensor_version(sensor_version)

	Update the sensor version for the specified devices.

	Required Permissions:
	org.kits(EXECUTE)

	Parameters:

	sensor_version (dict) – New version properties for the sensor.

	Returns:

	The JSON output from the request.

	Return type:

	str

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
log = <Logger cbc_sdk.platform.devices (WARNING)>

	“Device Models

Events Module

Model and Query Classes for Events

	
class Event(cb, model_unique_id=None, initial_data=None, force_init=False, full_doc=True)

	Bases: UnrefreshableModel

Events can be queried for via CBCloudAPI.select or an already selected process with Process.events().

Examples

>>> events_query = (api.select(Event).where(process_guid=
 "WNEXFKQ7-00050603-0000066c-00000000-1d6c9acb43e29bb"))
retrieve results synchronously
>>> events = [event for event in events_query]
retrieve results asynchronously
>>> future = events_query.execute_async()
>>> events = future.result()
use an already selected process
>>> process = api.select(Process, "WNEXFKQ7-00050603-0000066c-00000000-1d6c9acb43e29bb")
>>> events_query = process.events()
>>> events = [event for event in events_query]

Initialize the Event object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (str) – The unique ID for this particular instance of the model object.

	initial_data (dict) – The data to use when initializing the model object.

	force_init (bool) – True to force object initialization.

	full_doc (bool) – True to mark the object as fully initialized.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class EventFacet(cb, model_unique_id, initial_data)

	Bases: UnrefreshableModel

Represents the results of an EventFacetQuery.

EventFacet objects contain both Terms and Ranges. Each of those contain facet
fields and values.

Access all of the Terms facet data with EventFacet.Terms.facets() or see just
the field names with EventFacet.Terms.fields().

Access all of the Ranges facet data with EventFacet.Ranges.facets() or see just
the field names with EventFacet.Ranges.fields().

Event Facets can be queried for via CBCloudAPI.select(EventFacet). Specify
a Process GUID with `.where(process_guid=”example_guid”), and facet field(s)
with .add_facet_field(“my_facet_field”).

Examples

>>> event_facet_query = (api.select(EventFacet).where(process_guid=
"WNEXFKQ7-00050603-0000066c-00000000-1d6c9acb43e29bb"))
>>> event_facet_query.add_facet_field("event_type")
retrieve results synchronously
>>> facet = event_facet_query.results
retrieve results asynchronously
>>> future = event_facet_query.execute_async()
>>> result = future.result()
result is a list with one item, so access the first item
>>> facet = result[0]

Initialize an EventFacet object with initial_data.

	
class Ranges(cb, initial_data)

	Bases: UnrefreshableModel

Represents the range (bucketed) facet fields and values associated with an Event Facet query.

Initialize a ProcessFacet Ranges object with initial_data.

	
property facets

	Returns the reified EventFacet.Terms._facets for this result.

	
property fields

	Returns the ranges fields for this result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class Terms(cb, initial_data)

	Bases: UnrefreshableModel

Represents the facet fields and values associated with an Event Facet query.

Initialize a ProcessFacet Terms object with initial_data.

	
property facets

	Returns the terms’ facets for this result.

	
property fields

	Returns the terms facets’ fields for this result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
property ranges_

	Returns the reified EventFacet.Ranges for this result.

	
refresh()

	Reload this object from the server.

	
property terms_

	Returns the reified EventFacet.Terms for this result.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class EventFacetQuery(cls, cb, query=None)

	Bases: FacetQuery

Represents the logic for an Event Facet query.

Initialize the FacetQuery object.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
add_exclusions(key, newlist)

	Add to the exclusions on this query with a custom exclusions key.

Will overwrite any existing exclusion for the specified key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).add_exclusions("type", ["WATCHLIST"])
>>> query = api.select(Alert).add_exclusions("type", "WATCHLIST")

	
add_facet_field(field)

	Sets the facet fields to be received by this query.

	Parameters:

	field (str or [str]) – Field(s) to be received.

	Returns:

	The Query object that will receive the specified field(s).

	Return type:

	Query (AsyncQuery)

Example

>>> cb.select(ProcessFacet).add_facet_field(["process_name", "process_username"])

	
add_range(range)

	Sets the facet ranges to be received by this query.

	Parameters:

	range (dict or [dict]) – Range(s) to be received.

	Returns:

	The Query object that will receive the specified range(s).

	Return type:

	Query (AsyncQuery)

Note

The range parameter must be in this dictionary format:

{

“bucket_size”: “<object>”,

“start”: “<object>”,

“end”: “<object>”,

“field”: “<string>”

},

where “bucket_size”, “start”, and “end” can be numbers or ISO 8601 timestamps.

Examples

>>> cb.select(ProcessFacet).add_range({"bucket_size": 5, "start": 0, "end": 10, "field": "netconn_count"})
>>> cb.select(ProcessFacet).add_range({"bucket_size": "+1DAY", "start": "2020-11-01T00:00:00Z",
... "end": "2020-11-12T00:00:00Z", "field": "backend_timestamp"})

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
limit(limit)

	Sets the maximum number of facets per category (i.e. any Process Search Fields in self._fields).

The default limit for Process Facet searches in the Carbon Black Cloud backend is 100.

	Parameters:

	limit (int) – Maximum number of facets per category.

	Returns:

	The Query object with new limit parameter.

	Return type:

	Query (AsyncQuery)

Example

>>> cb.select(ProcessFacet).where(process_name="foo.exe").limit(50)

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
property results

	Save query results to self._results with self._search() method.

	
set_rows(rows)

	Sets the number of facet results to return with the query.

	Parameters:

	rows (int) – Number of rows to return.

	Returns:

	The Query object with the new rows parameter.

	Return type:

	Query (AsyncQuery)

Example

>>> cb.select(ProcessFacet).set_rows(50)

	
set_time_range(start=None, end=None, window=None)

	Sets the ‘time_range’ query body parameter, determining a time window based on ‘device_timestamp’.

	Parameters:

	
	start (str in ISO 8601 timestamp) – When to start the result search.

	end (str in ISO 8601 timestamp) – When to end the result search.

	window (str) – Time window to execute the result search, ending on the current time.

	"-2w" (Should be in the form) –

	y=year (where) –

	w=week –

	d=day –

	h=hour –

	m=minute –

	s=second. –

Note

	window will take precendent over start and end if provided.

Examples

>>> query = api.select(Process).set_time_range(start="2020-10-20T20:34:07Z").where("query is required")
>>> second_query = api.select(Process).
... set_time_range(start="2020-10-20T20:34:07Z", end="2020-10-30T20:34:07Z").where("query is required")
>>> third_query = api.select(Process).set_time_range(window='-3d').where("query is required")

	
timeout(msecs)

	Sets the timeout on an AsyncQuery.

	Parameters:

	msecs (int) – Timeout duration, in milliseconds. This value can never be greater than the configured
default timeout. If this is 0, the configured default timeout value is used.

	Returns:

	The Query object with new milliseconds parameter.

	Return type:

	Query (AsyncQuery)

Example

>>> cb.select(ProcessFacet).where(process_name="foo.exe").timeout(5000)

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
update_exclusions(key, newlist)

	Update the exclusion on this query with a custom exclusion key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (list) – List of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).update_exclusions("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
class EventQuery(doc_class, cb)

	Bases: Query

Represents the logic for an Event query.

Initialize the Query object.

	Parameters:

	
	doc_class (class) – The class of the model this query returns.

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
add_exclusions(key, newlist)

	Add to the exclusions on this query with a custom exclusions key.

Will overwrite any existing exclusion for the specified key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).add_exclusions("type", ["WATCHLIST"])
>>> query = api.select(Alert).add_exclusions("type", "WATCHLIST")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
batch_size(new_batch_size)

	Set the batch size of the paginated query.

	Parameters:

	new_batch_size (int) – The new batch size.

	Returns:

	A new query with the updated batch size.

	Return type:

	PaginatedQuery

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_fields(fields)

	Sets the fields to be returned with the response.

	Parameters:

	fields (str or list[str]) – Field or list of fields to be returned.

	
set_rows(rows)

	Sets the ‘rows’ query body parameter, determining how many rows of results to request.

	Parameters:

	rows (int) – How many rows to request.

	
set_start(start)

	Sets the ‘start’ query body parameter, determining where to begin retrieving results from.

	Parameters:

	start (int) – Where to start results from.

	
set_time_range(start=None, end=None, window=None)

	Sets the ‘time_range’ query body parameter, determining a time window based on ‘device_timestamp’.

	Parameters:

	
	start (str in ISO 8601 timestamp) – When to start the result search.

	end (str in ISO 8601 timestamp) – When to end the result search.

	window (str) – Time window to execute the result search, ending on the current time.
Should be in the form “-2w”, where y=year, w=week, d=day, h=hour, m=minute, s=second.

Note

	window will take precendent over start and end if provided.

Examples

>>> query = api.select(Process).set_time_range(start="2020-10-20T20:34:07Z").where("query is required")
>>> second_query = api.select(Process).
... set_time_range(start="2020-10-20T20:34:07Z", end="2020-10-30T20:34:07Z").where("query is required")
>>> third_query = api.select(Process).set_time_range(window='-3d').where("query is required")

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	The query with sorting parameters.

	Return type:

	Query

Example

>>> cb.select(Process).where(process_name="cmd.exe").sort_by("device_timestamp")

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
update_exclusions(key, newlist)

	Update the exclusion on this query with a custom exclusion key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (list) – List of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).update_exclusions("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

Grants Module

Model and Query Classes for Administrative Grants and Profiles

	
class Grant(cb, model_unique_id, initial_data=None)

	Bases: MutableBaseModel

Represents a grant of access to the Carbon Black Cloud.

	Parameters:

	
	principal – URN of principal

	expires – Date and time the grant expires

	roles – URNs of roles assigned to grant (obsolete)

	profiles – Profiles assigned to this grant

	org_ref – URN of org that this grant references

	principal_name – Name of principal

	created_by – URN of user that created this grant

	updated_by – URN of user that last updated this grant

	create_time – Date and time the grant was created

	update_time – Date and time the grant was last updated

	can_manage – True if can manage (TBD)

Initialize the Grant object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – URN of the principal associated with this grant.

	initial_data (dict) – Initial data used to populate the grant.

	
class GrantBuilder(cb, principal)

	Bases: object

Auxiliary object used to construct a new grant.

Creates the empty GrantBuilder object.

	Parameters:

	
	cb (CBCloudAPI) – The reference to the API object that accesses the server.

	principal (str) – The URN for the principal.

	
add_role(role)

	Adds a role to be associated with the new grant.

	Parameters:

	role (str) – URN of the role to be added.

	Returns:

	This object.

	Return type:

	GrantBuilder

	
build()

	Builds the new Grant object from the entered data.

	Returns:

	The new Grant object.

	Return type:

	Grant

	
create_profile(template=None)

	Returns either a new Profile, or a ProfileBuilder to begin the process of adding profile to the new grant.

	Parameters:

	template (dict) – Optional template to use for creating the profile object.

	Returns:

	If a template was specified, return the new Profile object.

ProfileBuilder: If template was None, returns a ProfileBuilder object. Call methods on it to set
up the new profile, and then call build() to create the new profile.

	Return type:

	Profile

	
set_org(org)

	Sets the organization reference to be associated with the new grant.

	Parameters:

	org (str) – Organization key or URN of the organization.

	Returns:

	This object.

	Return type:

	GrantBuilder

	
set_principal_name(name)

	Sets the principal name to be associated with the new object.

	Parameters:

	name (str) – Principal name to be used.

	Returns:

	This object.

	Return type:

	GrantBuilder

	
set_roles(roles)

	Sets the roles to be associated with the new grant.

	Parameters:

	roles (list) – List of role URNs.

	Returns:

	This object.

	Return type:

	GrantBuilder

	
class Profile(cb, grant, model_unique_id, initial_data=None)

	Bases: MutableBaseModel

Represents an access profile assigned to a grant.

	Parameters:

	
	profile_uuid – UUID identifying this profile

	orgs – Organization references for this profile

	org_groups – Organization groups added to this grant (TBD)

	roles – URNs of roles assigned to profile

	conditions – Access conditions to be imposed on this profile

	can_manage – True if can manage (TBD)

Initialize the Profile object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	grant (Grant) – Reference to the Grant containing this Profile.

	model_unique_id (str) – UUID of this profile.

	initial_data (dict) – Initial data used to populate the profile.

	
property allowed_orgs

	Returns the list of organization URNs allowed by this profile.

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
matches_template(template)

	Returns whether or not the profile matches the given template.

	Parameters:

	template (dict) – The profile template to match against.

	Returns:

	True if this profile matches the template, False if not.

	Return type:

	bool

	
refresh()

	Reload this object from the server.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
set_disabled(flag)

	Sets the “disabled” flag on a profile.

	Parameters:

	flag (bool) – True to disable the profile, False to enable it.

	
set_expiration(expiration)

	Sets the expiration time on a profile.

	Parameters:

	expiration (str) – Expiration time to set on the profile (ISO 8601 format).

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this object.

	Returns:

	True if the object is validated.

	Return type:

	bool

	Raises:

	InvalidObjectError – If the object has missing fields.

	
class ProfileBuilder(grant)

	Bases: object

Auxiliary object used to construct a new profile on a grant.

Create the empty ProfileBuilder object.

	Parameters:

	grant (Grant/GrantBuilder) – The grant or GrantBuilder the new profile will be attached to.

	
add_org(org)

	Adds the specified organization to the list of organizations for which the new profile is allowed.

	Parameters:

	org (str) – Organization key or URN of the organization to be added.

	Returns:

	This object.

	Return type:

	ProfileBuilder

	
add_role(role)

	Adds a role identifier to the list of roles associated with the new profile.

	Parameters:

	role (str) – URN of the role to add.

	Returns:

	This object.

	Return type:

	ProfileBuilder

	
build()

	Builds the new Profile object from the entered data.

	Returns:

	The new Profile object.

	Return type:

	Profile

	
set_conditions(conditions_structure)

	Sets the access conditions associated with the new profile.

	Parameters:

	conditions_structure (dict) – The conditions associated with the new profile, with ‘cidr’, ‘expiration’,
and ‘disabled’ members.

	Returns:

	This object.

	Return type:

	ProfileBuilder

	
set_disabled(flag)

	Sets whether or not the new profile is disabled.

	Parameters:

	flag (bool) – True if this profile is disabled, False if noe.

	Returns:

	This object.

	Return type:

	ProfileBuilder

	
set_expiration(expiration)

	Sets the expiration time on the new profile.

	Parameters:

	expiration (str) – The expiration time, specified as ISO 8601.

	Returns:

	This object.

	Return type:

	ProfileBuilder

	
set_orgs(orgs_list)

	Set the list of organizations to which the new profile is allowed access.

	Parameters:

	orgs_list (list) – List of organization keys or URNs.

	Returns:

	This object.

	Return type:

	ProfileBuilder

	
set_roles(roles_list)

	Sets the list of roles associated with the new profile.

	Parameters:

	roles_list (list) – A list of role URNs.

	Returns:

	This object.

	Return type:

	ProfileBuilder

	
classmethod create(cb, template=None, **kwargs)

	Returns either a new Grant, or a GrantBuilder to begin the process of creating a new grant.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	template (dict) – Optional template to use for creating the grant object.

	kwargs (dict) – Additional arguments to be used to specify the principal, if template is None.

	ID. (The arguments to be used are 'org_key' and 'userid' for the two parts of the) –

	Returns:

	The new grant object, if the template is specified.

GrantBuilder: If template was None, returns a GrantBuilder object. Call methods on it to set
up the new grant, and then call build() to create the new grant.

	Return type:

	Grant

	Raises:

	ApiError – If the principal is inadequately specified (whether for the Grant or GrantBuilder).

	
create_profile(template=None)

	Returns either a new Profile, or a ProfileBuilder to begin the process of adding a new profile to this grant.

	Parameters:

	template (dict) – Optional template to use for creating the profile object.

	Returns:

	If a template was specified, return the new Profile object.

ProfileBuilder: If template was None, returns a ProfileBuilder object. Call methods on it to set
up the new profile, and then call build() to create the new profile.

	Return type:

	Profile

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
classmethod get_permitted_role_urns(cb)

	Returns a list of the URNs of all permitted roles that we can assign to a user.

	Parameters:

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	Returns:

	A list of string role URNs that we are permitted to manage (assign to users).

	Return type:

	list

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
property profiles_

	Return the profiles associated with this grant.

	Returns:

	The profiles associated with this grant, each represented as a Profile object.

	Return type:

	list

	
refresh()

	Reload this object from the server.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this object.

	Returns:

	True if the object is validated.

	Return type:

	bool

	Raises:

	InvalidObjectError – If the object has missing fields.

	
class GrantQuery(doc_class, cb)

	Bases: BaseQuery, IterableQueryMixin, AsyncQueryMixin

Query for retrieving grants in bulk.

Initialize the Query object.

	Parameters:

	
	doc_class (class) – The class of the model this query returns.

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	
add_principal(principal_urn, org_urn)

	Add a new principal to the query.

	Parameters:

	
	principal_urn (str) – URN of the principal to search for grants on.

	org_urn (str) – URN of the organization to which the principal belongs.

	Returns:

	This object.

	Return type:

	GrantQuery

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
log = <Logger cbc_sdk.platform.grants (WARNING)>

	Grant and Profile Models

	
normalize_org(org)

	Internal function to normalize an org reference to a URN.

Jobs Module

Model and Query Classes for Jobs API

	
class Job(cb, model_unique_id, initial_data=None)

	Bases: NewBaseModel

Represents a job currently executing in the background.

	Parameters:

	
	connector_id – Connector ID for the job

	create_time – Time this job was created

	errors – Errors for the job

	id – ID of the job

	job_parameters – Parameters that were used for this job

	last_update_time – Last time this job was updated

	org_key – Organization key of the org this job is being run against

	owner_id – ID of the job owner

	status – Current job status

	type – Type of job this is

Initialize the Job object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (int) – ID of the job.

	initial_data (dict) – Initial data used to populate the job.

	
await_completion(timeout=0)

	Create a Python Future to check for job completion and return results when available.

Returns a Future object which can be used to await results that are ready to fetch. This function call
does not block.

	Required Permissions:
	jobs.status (READ)

	Parameters:

	timeout (int) – The timeout for this wait in milliseconds. If this is 0, the default value will be used.

	Returns:

	
	A Future which can be used to wait for this job’s completion. When complete, the result of the
	Future will be this object.

	Return type:

	Future

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_output_as_file(filename)

	Export the results from the job, writing the results to the given file.

	Required Permissions:
	jobs.status (READ)

	Parameters:

	filename (str) – Name of the file to write the results to.

	
get_output_as_lines()

	Export the results from the job, returning the data as iterated lines of text.

This is only intended for output that can reasonably be represented as lines of text, such as plain text or
CSV. If a job outputs structured text like JSON or XML, this method should not be used.

	Required Permissions:
	jobs.status (READ)

	Returns:

	An iterable that can be used to get each line of text in turn as a string.

	Return type:

	iterable

	
get_output_as_stream(output)

	Export the results from the job, writing the results to the given stream.

	Required Permissions:
	jobs.status (READ)

	Parameters:

	output (RawIOBase) – Stream to write the CSV data from the request to.

	
get_output_as_string()

	Export the results from the job, returning the results as a string.

	Required Permissions:
	jobs.status (READ)

	Returns:

	The results from the job.

	Return type:

	str

	
get_progress()

	Get and return the current progress information for the job.

	Required Permissions:
	jobs.status (READ)

	Returns:

	Total number of items to be operated on by this job.
int: Total number of items for which operation has been completed.
str: Current status message for the job.

	Return type:

	int

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class JobQuery(doc_class, cb)

	Bases: BaseQuery, IterableQueryMixin, AsyncQueryMixin

Query for retrieving current jobs.

Initialize the Query object.

	Parameters:

	
	doc_class (class) – The class of the model this query returns.

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

Legacy Alerts Module

Model and Query Classes for Legacy Alerts and Workflows used Alert API v6 and SDK 1.4.3 or earlier

	
class LegacyAlertSearchQueryCriterionMixin

	Bases: CriteriaBuilderSupportMixin

Represents a legacy alert, based on Alert API v6 or SDK 1.4.3 or earlier.

	
set_alert_ids(alert_ids)

	Restricts the alerts that this query is performed on to the specified alert IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	alert_ids (list) – List of string alert IDs.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_blocked_threat_categories(categories)

	The field blocked_threat_category was deprecated and not included in v7. This method has been removed.

See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

Args:
categories (list): List of threat categories to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_categories(categories)

	The field categories was deprecated and not included in v7. This method has been removed.

In Alerts v7, only records with the type THREAT are returned.
Records that in v6 had the category MONITORED (Observed) are now Observations
See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

	Parameters:

	categories (list) – List of categories to be restricted to.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_cluster_names(names)

	Restricts the alerts that this query is performed on to the specified Kubernetes cluster names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of Kubernetes cluster names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_create_time(*args, **kwargs)

	Restricts the alerts that this query is performed on to the specified creation time.

The time may either be specified as a start and end point or as a range.
In SDK 1.5.0 to align with Alerts v7 API, create_time is set as time_range outside of criteria.

	Deprecated:
	Use add_time_criteria(field_name, start, end, range) instead.

	Parameters:

	
	*args (list) – Not used.

	**kwargs (dict) – Used to specify start= for start time, end= for end time, and range= for range.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_ids(device_ids)

	Restricts the alerts that this query is performed on to the specified device IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	device_ids (list) – List of integer device IDs.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_locations(locations)

	Restricts the alerts that this query is performed on to the specified device locations.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	locations (list) – List of device locations to look for. Valid values are “ONSITE”, “OFFSITE”,
and “UNKNOWN”.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_device_names(device_names)

	Restricts the alerts that this query is performed on to the specified device names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	device_names (list) – List of string device names.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_os(device_os)

	Restricts the alerts that this query is performed on to the specified device operating systems.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	device_os (list) – List of string operating systems. Valid values are “WINDOWS”, “ANDROID”,
“MAC”, “IOS”, “LINUX”, and “OTHER.”

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_os_versions(device_os_versions)

	Restricts the alerts that this query is performed on to the specified device operating system versions.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	device_os_versions (list) – List of string operating system versions.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_username(users)

	Restricts the alerts that this query is performed on to the specified user names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	users (list) – List of string user names.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_egress_group_ids(ids)

	Restricts the alerts that this query is performed on to the specified egress group IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of egress group IDs to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_egress_group_names(names)

	Restricts the alerts that this query is performed on to the specified egress group names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of egress group names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_external_device_friendly_names(names)

	Restricts the alerts that this query is performed on to the specified external device friendly names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of external device friendly names to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_external_device_ids(ids)

	Restricts the alerts that this query is performed on to the specified external device IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of external device IDs to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_group_results(do_group)

	The field group_results was deprecated and not included in v7. This method has been removed.

It previously specified whether to group the results of the query.
Use the Grouped Alerts Operations [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alerts-api/]
#grouped-alerts-operations) instead.
See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

	Parameters:

	do_group (bool) – True to group the results, False to not do so.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_ip_reputations(reputations)

	Restricts the alerts that this query is performed on to the specified IP reputation values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	reputations (list) – List of IP reputation values to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_kill_chain_statuses(statuses)

	The field kill_chain_status was deprecated and not included in v7. This method has been removed.

See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

Args:
statuses (list): List of kill chain statuses to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_legacy_alert_ids(alert_ids)

	Restricts the alerts that this query is performed on to the specified legacy alert IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	alert_ids (list) – List of string legacy alert IDs.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_namespaces(namespaces)

	Restricts the alerts that this query is performed on to the specified Kubernetes namespaces.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	namespaces (list) – List of Kubernetes namespaces to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_not_blocked_threat_categories(categories)

	The field not_blocked_threat_category was deprecated and not included in v7. This method has been removed.

See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

Args:
categories (list): List of threat categories to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_policy_applied(applied_statuses)

	Restricts the alerts that this query is performed on to the specified policy status values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	applied_statuses (list) – List of status values to look for. Valid values are “APPLIED” and “NOT_APPLIED”.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_policy_ids(policy_ids)

	Restricts the alerts that this query is performed on to the specified policy IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	policy_ids (list) – List of integer policy IDs.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_policy_names(policy_names)

	Restricts the alerts that this query is performed on to the specified policy names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	policy_names (list) – List of string policy names.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_ports(ports)

	Restricts the alerts that this query is performed on to the specified netconn_local_ports.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

Note that in SDK 1.5.0, to align with Alerts API v7, the search field was updated from
port to netconn_local_port. It is possible to search on either netconn_local_port
or netconn_remote_port using the `add_criteria(fieldname, [field values]) method.

	Parameters:

	ports (list) – List of netconn_local_ports to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_process_names(process_names)

	Restricts the alerts that this query is performed on to the specified process names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	process_names (list) – List of string process names.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_process_sha256(shas)

	Restricts the alerts that this query is performed on to the specified process SHA-256 hash values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	shas (list) – List of string process SHA-256 hash values.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_product_ids(ids)

	Restricts the alerts that this query is performed on to the specified product IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of product IDs to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_product_names(names)

	Restricts the alerts that this query is performed on to the specified product names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of product names to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_protocols(protocols)

	Restricts the alerts that this query is performed on to the specified protocols.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	protocols (list) – List of protocols to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_reason_code(reason)

	Restricts the alerts that this query is performed on to the specified reason codes (enum values).

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	reason (list) – List of string reason codes to look for.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_remote_domains(domains)

	Restricts the alerts that this query is performed on to the specified remote domains.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	domains (list) – List of remote domains to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_remote_ips(addrs)

	Restricts the alerts that this query is performed on to the specified remote IP addresses.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	addrs (list) – List of remote IP addresses to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_replica_ids(ids)

	Restricts the alerts that this query is performed on to the specified pod names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of pod names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_reputations(reps)

	Restricts the alerts that this query is performed on to the specified reputation values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	reps (list) – List of string reputation values. Valid values are “KNOWN_MALWARE”, “SUSPECT_MALWARE”,
“PUP”, “NOT_LISTED”, “ADAPTIVE_WHITE_LIST”, “COMMON_WHITE_LIST”, “TRUSTED_WHITE_LIST”,
and “COMPANY_BLACK_LIST”.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_rule_ids(ids)

	Restricts the alerts that this query is performed on to the specified Kubernetes policy rule IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

In SDK prior to 1.5.0 this was only supported for Container Runtime Alerts so will
convert to k8s_rule_id in criteria. In SDK 1.5.0 and later, aligned to Alert v7 API, use add_criteria()
should be used for both k8s_rule_id and for other alert types, rule_id.

	Parameters:

	ids (list) – List of Kubernetes policy rule IDs to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_rule_names(names)

	Restricts the alerts that this query is performed on to the specified Kubernetes policy rule names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of Kubernetes policy rule names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_run_states(states)

	Restricts the alerts that this query is performed on to the specified run states.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	states (list) – List of run states to look for. Valid values are “DID_NOT_RUN”, “RAN”, and “UNKNOWN”.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_sensor_actions(actions)

	Restricts the alerts that this query is performed on to the specified sensor actions.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	actions (list) – List of sensor actions to look for. Valid values are “POLICY_NOT_APPLIED”, “ALLOW”,
“ALLOW_AND_LOG”, “TERMINATE”, and “DENY”.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_serial_numbers(serial_numbers)

	Restricts the alerts that this query is performed on to the specified serial numbers.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	serial_numbers (list) – List of serial numbers to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_tags(tags)

	Restricts the alerts that this query is performed on to the specified tag values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	tags (list) – List of string tag values.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_target_priorities(priorities)

	Restricts the alerts that this query is performed on to the specified target priority values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	priorities (list) – List of string target priority values. Valid values are “LOW”, “MEDIUM”,
“HIGH”, and “MISSION_CRITICAL”.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_threat_cause_vectors(vectors)

	The field threat_cause_vector was deprecated and not included in v7. This method has been removed.

See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

	Parameters:

	vectors (list) – List of threat cause vectors to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_threat_ids(threats)

	Restricts the alerts that this query is performed on to the specified threat ID values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	threats (list) – List of string threat ID values.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_types(alerttypes)

	Restricts the alerts that this query is performed on to the specified alert type values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	alerttypes (list) – List of string alert type values. Valid values are “CB_ANALYTICS”,
“WATCHLIST”, “DEVICE_CONTROL”, and “CONTAINER_RUNTIME”. In SDK 1.5.0,
to align with Alert API v7, more alert types are available but the add_criteria
method must be used.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

Note: - When filtering by fields that take a list parameter, an empty list will be treated as a wildcard and
match everything.

	
set_vendor_ids(ids)

	Restricts the alerts that this query is performed on to the specified vendor IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of vendor IDs to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_vendor_names(names)

	Restricts the alerts that this query is performed on to the specified vendor names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of vendor names to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_watchlist_ids(ids)

	Restricts the alerts that this query is performed on to the specified watchlist ID values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of string watchlist ID values.

	Returns:

	This instance.

	Return type:

	WatchlistAlertSearchQuery

	
set_watchlist_names(names)

	Restricts the alerts that this query is performed on to the specified watchlist name values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of string watchlist name values.

	Returns:

	This instance.

	Return type:

	WatchlistAlertSearchQuery

	
set_workflows(workflow_vals)

	Restricts the alerts that this query is performed on to the specified workflow status values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	workflow_vals (list) – List of string alert type values. Valid values are “OPEN” and “DISMISSED”.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_workload_ids(ids)

	The field workload_id was deprecated and not included in v7. This method has been removed.

Use workload_name instead. See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

	Parameters:

	ids (list) – List of workload IDs to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_workload_kinds(kinds)

	Restricts the alerts that this query is performed on to the specified workload types.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	kinds (list) – List of workload types to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_workload_names(names)

	Restricts the alerts that this query is performed on to the specified workload names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of workload names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

Network Threat Metadata Module

Model Class for NetworkThreatMetadata

	
class NetworkThreatMetadata(cb, model_unique_id=None, initial_data=None, force_init=False, full_doc=True)

	Bases: NewBaseModel

Represents a NetworkThreatMetadata

	Parameters:

	
	detector_abstract – Abstract or description of the detector

	detector_goal – Description of what the detector is achieving

	false_negatives – Highlights why detector could not have been triggered

	false_positives – Highlights why detector could have been triggered

	threat_public_comment – Public comment of the threat

Initialize the NetworkThreatMetadata object.

	Required Permissions:
	org.xdr.metadata (READ)

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (Any) – The unique ID for this particular instance of the model object.

	initial_data (dict) – Not used, retained for compatibility.

	force_init (bool) – False to not force object initialization.

	full_doc (bool) – True to mark the object as fully initialized.

	Raises:

	ApiError – if model_unique_id is not provided

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

Observations Module

Model and Query Classes for Observations

	
class Observation(cb, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: NewBaseModel

Represents an Observation

Initialize the Observation object.

	Required Permissions:
	org.search.events (READ)

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (Any) – The unique ID for this particular instance of the model object.

	initial_data (dict) – The data to use when initializing the model object.

	force_init (bool) – True to force object initialization.

	full_doc (bool) – False to mark the object as not fully initialized.

	
static bulk_get_details(cb, alert_id=None, observation_ids=None, timeout=0)

	Bulk get details

	Required Permissions:
	org.search.events (READ, CREATE)

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	alert_id (str) – An alert id to fetch associated observations

	observation_ids (list) – A list of observation ids to fetch

	timeout (int) – Observations details request timeout in milliseconds. This may never be greater than
the configured default timeout. If this value is 0, the configured default timeout is used.

	Returns:

	list of Observations

	Return type:

	list

	Raises:

	ApiError – if cb is not instance of CBCloudAPI

	
deobfuscate_cmdline()

	Deobfuscates the command line of the process pointed to by the observation and returns the deobfuscated result.

	Required Permissions:
	script.deobfuscation(EXECUTE)

	Returns:

	A dict containing information about the obfuscated command line, including the deobfuscated result.

	Return type:

	dict

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_details(timeout=0, async_mode=False)

	Requests detailed results.

	Parameters:

	
	timeout (int) – Observations details request timeout in milliseconds. This may never be greater than the
configured default timeout. If this value is 0, the configured default timeout is used.

	async_mode (bool) – True to request details in an asynchronous manner.

	Returns:

	Observation object enriched with the details fields

	Return type:

	Observation

Note

	When using asynchronous mode, this method returns a python future.
You can call result() on the future object to wait for completion and get the results.

Examples

>>> observation = api.select(Observation, observation_id)
>>> observation.get_details()

>>> observations = api.select(Observation).where(process_pid=2000)
>>> observations[0].get_details()

	
get_network_threat_metadata()

	Requests Network Threat Metadata.

	Returns:

	Get the metadata for a given detector (rule).

	Return type:

	NetworkThreatMetadata

	Raises:

	ApiError – when rule_id is not returned for the Observation

Examples

>>> observation = api.select(Observation, observation_id)
>>> threat_metadata = observation.get_network_threat_metadata()

	
refresh()

	Reload this object from the server.

	
static search_suggestions(cb, query, count=None)

	Returns suggestions for keys and field values that can be used in a search.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	query (str) – A search query to use.

	count (int) – (optional) Number of suggestions to be returned

	Returns:

	A list of search suggestions expressed as dict objects.

	Return type:

	list

	Raises:

	ApiError – if cb is not instance of CBCloudAPI

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class ObservationFacet(cb, model_unique_id, initial_data)

	Bases: UnrefreshableModel

Represents an observation facet retrieved.

	Parameters:

	
	terms – Contains the Observations Facet search results

	ranges – Groupings for search result properties that are ISO 8601 timestamps or numbers

	contacted – The number of searchers contacted for this query

	completed – The number of searchers that have reported their results

Initialize the Terms object with initial data.

	
class Ranges(cb, initial_data)

	Bases: UnrefreshableModel

Represents the range (bucketed) facet fields and values associated with an Observation Facet query.

Initialize an ObservationFacet Ranges object with initial_data.

	
property facets

	Returns the reified ObservationFacet.Terms._facets for this result.

	
property fields

	Returns the ranges fields for this result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class Terms(cb, initial_data)

	Bases: UnrefreshableModel

Represents the facet fields and values associated with an Observation Facet query.

Initialize an ObservationFacet Terms object with initial_data.

	
property facets

	Returns the terms’ facets for this result.

	
property fields

	Returns the terms facets’ fields for this result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
property ranges_

	Returns the reified ObservationFacet.Ranges for this result.

	
refresh()

	Reload this object from the server.

	
property terms_

	Returns the reified ObservationFacet.Terms for this result.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class ObservationGroup(cb, initial_data=None)

	Bases: object

Represents ObservationGroup

Initialize ObservationGroup object

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	initial_data (dict) – The data to use when initializing the model object.

Notes

The constructed object will have the following data:
- group_start_timestamp
- group_end_timestamp
- group_key
- group_value

	
class ObservationQuery(doc_class, cb)

	Bases: Query

Represents the query logic for an Observation query.

This class specializes Query to handle the particulars of observations querying.

Initialize the ObservationQuery object.

	Parameters:

	
	doc_class (class) – The class of the model this query returns.

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
add_exclusions(key, newlist)

	Add to the exclusions on this query with a custom exclusions key.

Will overwrite any existing exclusion for the specified key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).add_exclusions("type", ["WATCHLIST"])
>>> query = api.select(Alert).add_exclusions("type", "WATCHLIST")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
batch_size(new_batch_size)

	Set the batch size of the paginated query.

	Parameters:

	new_batch_size (int) – The new batch size.

	Returns:

	A new query with the updated batch size.

	Return type:

	PaginatedQuery

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
get_group_results(fields, max_events_per_group=None, rows=500, start=None, range_duration=None, range_field=None, range_method=None)

	Get group results grouped by provided fields.

	Parameters:

	
	fields (str / list) – field or fields by which to perform the grouping

	max_events_per_group (int) – Maximum number of events in a group, if not provided, all events will be returned

	rows (int) – Number of rows to request, can be paginated

	start (int) – First row to use for pagination

	ranges (dict) – dict with information about duration, field, method

	Returns:

	grouped results

	Return type:

	dict

Examples

>>> for group in api.select(Observation).where(process_pid=2000).get_group_results("device_name"):
>>> ...

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(**kwargs)

	or_() criteria are explicitly provided to Observation queries.

This method overrides the base class in order to provide or_() functionality rather than raising an exception.

	
set_fields(fields)

	Sets the fields to be returned with the response.

	Parameters:

	fields (str or list[str]) – Field or list of fields to be returned.

	
set_rows(rows)

	Sets the ‘rows’ query body parameter to the ‘start search’ API call, determining how many rows to request.

	Parameters:

	rows (int) – How many rows to request.

	Returns:

	ObservationQuery object

	Return type:

	Query

Example

>>> cb.select(Observation).where(process_name="foo.exe").set_rows(50)

	
set_start(start)

	Sets the ‘start’ query body parameter, determining where to begin retrieving results from.

	Parameters:

	start (int) – Where to start results from.

	
set_time_range(start=None, end=None, window=None)

	Sets the ‘time_range’ query body parameter, determining a time window based on ‘device_timestamp’.

	Parameters:

	
	start (str in ISO 8601 timestamp) – When to start the result search.

	end (str in ISO 8601 timestamp) – When to end the result search.

	window (str) – Time window to execute the result search, ending on the current time.
Should be in the form “-2w”, where y=year, w=week, d=day, h=hour, m=minute, s=second.

Note

	window will take precendent over start and end if provided.

Examples

>>> query = api.select(Process).set_time_range(start="2020-10-20T20:34:07Z").where("query is required")
>>> second_query = api.select(Process).
... set_time_range(start="2020-10-20T20:34:07Z", end="2020-10-30T20:34:07Z").where("query is required")
>>> third_query = api.select(Process).set_time_range(window='-3d').where("query is required")

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	The query with sorting parameters.

	Return type:

	Query

Example

>>> cb.select(Process).where(process_name="cmd.exe").sort_by("device_timestamp")

	
timeout(msecs)

	Sets the timeout on a observation query.

	Parameters:

	msecs (int) – Timeout duration, in milliseconds. This may never be greater than the configured default
timeout. If this value is 0, the configured default timeout is used.

	Returns:

	The Query object with new milliseconds parameter.

	Return type:

	Query (ObservationQuery)

Example

>>> cb.select(Observation).where(process_name="foo.exe").timeout(5000)

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
update_exclusions(key, newlist)

	Update the exclusion on this query with a custom exclusion key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (list) – List of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).update_exclusions("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

Policies Module

Policy implementation as part of Platform API

	
class Policy(cb, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: MutableBaseModel

Represents a policy within the organization.

Create one of these objects (either directly or with the CBCloudAPI.create() method) and set its properties,
then call its save() method to create the policy on the server. This requires the org.policies(CREATE) permission.

Alternatively, you may call Policy.create() to get a PolicyBuilder, use its methods to set the properties of the
new policy, call its build() method to build the populated Policy, then call the policy save() method.

To update a Policy, change the values of its property fields, then call the policy’s save() method. This requires
the org.policies(UPDATE) permission.

To delete an existing Policy, call its delete() method. This requires the org.policies(DELETE) permission.

For information on values for policy settings including enumeration values, see the Policy Service API page:
https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/policy-service/#fields

	Parameters:

	
	id – The policy identifier

	name – Defined name for the policy

	org_key – The organization key associated with the console instance

	priority_level – The priority level designated for policy

	position – Relative priority of this policy within the organization. Lower values indicate higher priority.

	is_system – Indicates that the policy was created by VMware

	description – The description of the policy

	auto_deregister_inactive_vdi_interval_ms – The time in milliseconds to wait after a VDI is inactive before setting the VDI to a DEREGISTERED state

	auto_delete_known_bad_hashes_delay – Enables the Carbon Black Cloud to automatically delete known malware after a specified time in milliseconds

	av_settings – Anti-Virus settings for endpoints and workloads assigned to the policy

	rules – Permission or prevention rules

	directory_action_rules – Rules to deny or allow the deployed sensors to send uploads from specific paths

	sensor_settings – Settings to configure sensor behavior and capabilities

	managed_detection_response_permissions – Permissions for Managed Detection and Response analysts to perform remediations on endpoints and workloads assigned to the policy

	version – Version of the policy

Initialize the Policy object.

	Required Permissions:
	org.policies (READ)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (int) – ID of the policy.

	initial_data (dict) – Initial data used to populate the policy.

	force_init (bool) – If True, forces the object to be refreshed after constructing. Default False.

	full_doc (bool) – If True, object is considered “fully” initialized. Default False.

	
class PolicyBuilder(cb)

	Bases: object

Builder object to simplify the creation of new Policy objects.

To use, call Policy.create() to get a PolicyBuilder, use its methods to set the properties of the
new policy, call its build() method to build the populated Policy, then call the policy save() method.
The org.policy(CREATE) permission is required.

Examples

>>> builder = Policy.create(api)
>>> builder.set_name("New Policy").set_priority("MEDIUM").set_description("New policy description")
>>> # more calls here to set up rules, sensor settings, etc.
>>> policy = builder.build()
>>> policy.save()

Initialize the PolicyBuilder object.

	Parameters:

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_directory_action_rule(path, file_upload, protection)

	Add a directory action rule to the new policy.

	Parameters:

	
	path (str) – Path to the file or directory.

	file_upload (bool) – True to allow the deployed sensor to upload from that path.

	protection (bool) – True to deny the deployed sensor to upload from that path.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	
add_rule(app_type, app_value, operation, action, required=True)

	Add a new rule as discrete data elements to the new policy.

	Parameters:

	
	app_type (str) – Specifies “NAME_PATH”, “SIGNED_BY”, or “REPUTATION”.

	app_value (str) – Value of the attribute specified by app_type to be matched.

	operation (str) – The type of behavior the application is performing.

	action (str) – The action the sensor will take when the application performs the specified action.

	required (bool) – True if this rule is required, False if not.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	Raises:

	InvalidObjectError – If the rule data passed in is not valid.

	
add_rule_config(config_id, name, category, **kwargs)

	Add a new rule configuration as discrete data elements to the new policy.

	Parameters:

	
	config_id (str) – ID of the rule configuration object (a GUID).

	name (str) – Name of the rule configuration object.

	category (str) – Category of the rule configuration object.

	**kwargs (dict) – Parameter values for the rule configuration object.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	Raises:

	InvalidObjectError – If the rule configuration data passed in is not valid.

	
add_rule_config_copy(rule_config)

	Adds a copy of an existing rule configuration to this new policy.

	Parameters:

	rule_config (PolicyRuleConfig) – The rule configuration to copy and add to this object.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	Raises:

	InvalidObjectError – If the rule configuration data passed in is not valid.

	
add_rule_copy(rule)

	Adds a copy of an existing rule to this new policy.

	Parameters:

	rule (PolicyRule) – The rule to copy and add to this object.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	Raises:

	InvalidObjectError – If the rule data passed in is not valid.

	
add_sensor_setting(name, value)

	Add a sensor setting to the policy.

	Parameters:

	
	name (str) – Sensor setting name.

	value (str) – Sensor setting value.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	Raises:

	ApiError – If the sensor setting name is not a valid one.

	
build()

	Build a new Policy object using the contents of this builder.

The new policy must have save() called on it to be saved to the server.

	Returns:

	The new Policy object.

	Return type:

	Policy

	
set_auto_delete_bad_hash_delay(delay)

	Set the delay in milliseconds after which known malware will be deleted.

	Parameters:

	delay (int) – The desired delay interval in milliseconds.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	
set_auto_deregister_interval(interval)

	Set the time in milliseconds after a VDI goes inactive to deregister it.

	Parameters:

	interval (int) – The desired interval in milliseconds.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	
set_avira_protection_cloud(enabled, max_exe_delay=None, max_file_size=None, risk_level=None)

	Set the settings for third-party unknown binary reputation analysis.

	Parameters:

	
	enabled (bool) – True to enable unknown binary reputation analysis.

	max_exe_delay (int) – Time before sending unknown binary for analysis, in seconds.

	max_file_size (int) – Maximum size of file to send for analysis, in megabytes.

	risk_level (int) – Risk level to send for analysis (0-7).

	Returns:

	This object.

	Return type:

	PolicyBuilder

	
set_description(descr)

	Set the new policy description.

	Parameters:

	descr (str) – The new policy description.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	
set_managed_detection_response_permissions(policy_mod, quarantine)

	Set the permissions for managed detection and response.

	Parameters:

	
	policy_mod (bool) – True to allow MDR team to modify the policy.

	quarantine (bool) – True to allow MDR team to quarantine endpoints/workloads associated with the policy.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	
set_name(name)

	Set the new policy name.

	Parameters:

	name (str) – The new policy name.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	
set_on_access_scan(enabled, mode='NORMAL')

	Sets the local scan settings.

	Parameters:

	
	enabled (bool) – True to enable local scan.

	mode (str) – The mode to operate in, either “NORMAL” or “AGGRESSIVE”.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	Raises:

	ApiError – If an invalid value is passed for the “mode” parameter.

	
set_on_demand_scan(enabled, profile='NORMAL', scan_usb='AUTOSCAN', scan_cd_dvd='AUTOSCAN')

	Sets the background scan settings.

	Parameters:

	
	enabled (bool) – True to enable background scan.

	profile (str) – The background scan mode, either “NORMAL” or “AGGRESSIVE”.

	scan_usb (str) – Either “AUTOSCAN” to scan USB devices, or “DISABLED” to not do so.

	scan_cd_dvd (str) – Either “AUTOSCAN” to scan CDs and DVDs, or “DISABLED” to not do so.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	Raises:

	ApiError – If an invalid value is passed for any parameter.

	
set_on_demand_scan_schedule(days, start_hour, range_hours, recover_if_missed=True)

	Sets the schedule for when background scans will be performed.

	Parameters:

	
	days (list[str]) – The days on which to perform background scans.

	start_hour (int) – The hour of the day at which to perform the scans.

	range_hours (int) – The range of hours over which to perform the scans.

	recover_if_missed (bool) – True if the background scan should be performed ASAP if it’s been missed.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	Raises:

	ApiError – If an invalid value is passed for a day of the week.

	
set_priority(priority)

	Set the new policy’s priority. Default is MEDIUM.

	Parameters:

	priority (str) – The priority, either “LOW”, “MEDIUM”, “HIGH”, or “MISSION_CRITICAL”.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	Raises:

	ApiError – If an invalid priority value is passed in.

	
set_signature_update(enabled)

	Set the enable status for signature updates.

	Parameters:

	enabled (bool) – True to enable signature updates.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	
set_signature_update_schedule(full_interval_hours, initial_random_delay_hours, interval_hours)

	Set the signature update schedule.

	Parameters:

	
	full_interval_hours (int) – The interval in hours between signature updates.

	initial_random_delay_hours (int) – The initial delay in hours before the first signature update.

	interval_hours (int) – The interval in hours between signature updates.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	
set_update_servers_offsite(names)

	Sets the list of update servers for offsite devices.

	Parameters:

	names (list[str]) – The list of update servers, as URIs.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	
set_update_servers_onsite(names, preferred_servers=None)

	Sets the list of update servers for internal devices.

	Parameters:

	
	names (list[str]) – The list of available update servers, as URIs.

	preferred_servers (list[str]) – The list of update servers to be considered “preferred,” as URIs.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	
set_update_servers_override(names)

	Sets the list of update servers to override offsite/onsite settings.

	Parameters:

	names (list[str]) – The server names to use, as a list of URIs.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	
add_rule(new_rule)

	Adds a rule to this Policy.

	Parameters:

	new_rule (dict(str,str)) – The new rule to add to this Policy.

Notes

	The new rule must conform to this dictionary format:

{“action”: “ACTION”,
“application”: {“type”: “TYPE”, “value”: “VALUE”},
“operation”: “OPERATION”,
“required”: “REQUIRED”}

	The dictionary keys have these possible values:

“action”: [“IGNORE”, “ALLOW”, “DENY”, “TERMINATE_PROCESS”,
“TERMINATE_THREAD”, “TERMINATE”]

“type”: [“NAME_PATH”, “SIGNED_BY”, “REPUTATION”]

“value”: Any string value to match on

“operation”: [“BYPASS_ALL”, “INVOKE_SCRIPT”, “INVOKE_SYSAPP”,
“POL_INVOKE_NOT_TRUSTED”, “INVOKE_CMD_INTERPRETER”,
“RANSOM”, “NETWORK”, “PROCESS_ISOLATION”, “CODE_INJECTION”,
“MEMORY_SCRAPE”, “RUN_INMEMORY_CODE”, “ESCALATE”, “RUN”]

“required”: [True, False]

	
property bypass_rule_configs

	Returns a dictionary of bypass rule configuration IDs and objects for this Policy.

	Returns:

	
	A dictionary with bypass rule configuration IDs as keys and BypassRuleConfig objects
	as values.

	Return type:

	dict

	
property bypass_rule_configs_list

	Returns a list of bypass rule configuration objects for this Policy.

	Returns:

	A list of BypassRuleConfig objects.

	Return type:

	list

	
property core_prevention_rule_configs

	Returns a dictionary of core prevention rule configuration IDs and objects for this Policy.

	Returns:

	
	A dictionary with core prevention rule configuration IDs as keys and CorePreventionRuleConfig objects
	as values.

	Return type:

	dict

	
property core_prevention_rule_configs_list

	Returns a list of core prevention rule configuration objects for this Policy.

	Returns:

	A list of CorePreventionRuleConfig objects.

	Return type:

	list

	
classmethod create(cb)

	Begins creating a policy by returning a PolicyBuilder.

	Parameters:

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	Returns:

	The new policy builder object.

	Return type:

	PolicyBuilder

	
property data_collection_rule_configs

	Returns a dictionary of data collection rule configuration IDs and objects for this Policy.

	Returns:

	
	A dictionary with data collection rule configuration IDs as keys and DataCollectionRuleConfig objects
	as values.

	Return type:

	dict

	
property data_collection_rule_configs_list

	Returns a list of data collection rule configuration objects for this Policy.

	Returns:

	A list of DataCollectionRuleConfig objects.

	Return type:

	list

	
delete()

	Delete this object.

	
delete_rule(rule_id)

	Deletes a rule from this Policy.

	Parameters:

	rule_id (int) – The ID of the rule to be deleted.

	Raises:

	ApiError – If the rule ID does not exist in this policy.

	
delete_rule_config(rule_config_id)

	Deletes a rule configuration from this Policy.

	Parameters:

	rule_config_id (str) – The ID of the rule configuration to be deleted.

	Raises:

	ApiError – If the rule configuration ID does not exist in this policy.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_ruleconfig_parameter_schema(ruleconfig_id)

	Returns the parameter schema for a specified rule configuration.

Uses cached rule configuration presentation data if present.

	Parameters:

	ruleconfig_id (str) – The rule configuration ID (UUID).

	Returns:

	The parameter schema for this particular rule configuration (a JSON schema).

	Return type:

	dict

	Raises:

	InvalidObjectError – If the rule configuration ID is not valid.

	
property host_based_firewall_rule_config

	Returns the host-based firewall rule configuration for this policy.

	Returns:

	The host-based firewall rule configuration, or None.

	Return type:

	HostBasedFirewallRuleConfig

	Raises:

	InvalidObjectError – If there’s more than one host-based firewall rule configuration (should not happen).

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
property latestRevision

	Returns the latest revision of this policy (compatibility method).

	
property object_rule_configs

	Returns a dictionary of rule configuration IDs and objects for this Policy.

	Returns:

	A dictionary with rule configuration IDs as keys and PolicyRuleConfig objects as values.

	Return type:

	dict

	
property object_rule_configs_list

	Returns a list of rule configuration objects for this Policy.

	Returns:

	A list of PolicyRuleConfig objects.

	Return type:

	list

	
property object_rules

	Returns a dictionary of rule objects and rule IDs for this Policy.

	Returns:

	A dictionary with rule IDs as keys and PolicyRule objects as values.

	Return type:

	dict

	
property policy

	Returns the contents of this policy [compatibility method].

	
preview_add_policy_override(devices)

	Previews changes to the effective policies for devices which result from setting this policy override on them.

	Required Permissions:
	org.policies (READ)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	devices (list) – The devices which will have their policies overridden. Each entry in this list is either
an integer device ID or a Device object.

	Returns:

	
	A list of DevicePolicyChangePreview objects representing the assets
	that change which policy is effective as the result of this operation.

	Return type:

	list[DevicePolicyChangePreview]

	
classmethod preview_policy_rank_changes(cb, changes_list)

	Previews changes in the ranking of policies, and determines how this will affect asset groups.

Example:

>>> cb = CBCloudAPI(profile='sample')
>>> changes = Policy.preview_policy_rank_changes(cb, [(667251, 1)])
>>> # also: changes = Policy.preview_policy_rank_changes(cb, [{"id": 667251, "position": 1}])
>>> len(changes)
2
>>> changes[0].current_policy_id
660578
>>> changes[0].new_policy_id
667251

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	changes_list (list) – The list of proposed changes in the ranking of policies. Each change may be in
the form of a dict, in which case the “id” and “position” members are used to designate the policy ID
and the new position, or in the form of a list or tuple, in which case the first element specifies
the policy ID, and the second element specifies the new position. In all cases, “position” values are
limited to values in the range [1.._N_], where _N_ is the total number of policies in the organization.

	Returns:

	A list of objects containing data previewing the policy changes.

	Return type:

	list[DevicePolicyChangePreview]

	
preview_rank_change(new_rank)

	Previews a change in the ranking of this policy, and determines how this will affect asset groups.

	Parameters:

	new_rank (int) – The new rank to give this policy. Ranks are limited to values in the range [1.._N_],
where _N_ is the total number of policies in the organization.

	Returns:

	A list of objects containing data previewing the policy changes.

	Return type:

	list[DevicePolicyChangePreview]

	
property priorityLevel

	Returns the priority level of this policy (compatibility method).

	
refresh()

	Reload this object from the server.

	
replace_rule(rule_id, new_rule)

	Replaces a rule in this policy.

	Parameters:

	
	rule_id (int) – The ID of the rule to be replaced.

	new_rule (dict) – The data for the new rule.

	Raises:

	ApiError – If the rule ID does not exist in this policy.

	
replace_rule_config(rule_config_id, new_rule_config)

	Replaces a rule configuration in this policy.

	Parameters:

	
	rule_config_id (str) – The ID of the rule configuration to be replaced.

	new_rule_config (dict) – The data for the new rule configuration.

	Raises:

	ApiError – If the rule configuration ID does not exist in this policy.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
set_auth_event_collection(flag)

	Sets auth event collection to be enabled or disabled on this policy.

	Parameters:

	flag (bool) – True to enable auth event data collection, False to disable it.

	Raises:

	ApiError – If the parameter setting operation failed.

	
set_data_collection(parameter, value)

	Sets a data collection parameter value on any data collection rule configurations in the policy that have it.

As a safety check, this method also validates that the type of the existing value of that parameter is the
same as the type of the new value we want to set for that parameter.

	Parameters:

	
	parameter (str) – The name of the parameter to set.

	value (Any) – The value of the parameter to set.

	Raises:

	ApiError – If the parameter setting operation failed.

	
set_xdr_collection(flag)

	Sets XDR collection to be enabled or disabled on this policy.

	Parameters:

	flag (bool) – True to enable XDR data collection, False to disable it.

	Raises:

	ApiError – If the parameter setting operation failed.

	
property systemPolicy

	Returns whether or not this is a systsem policy (compatibility method).

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
valid_rule_configs()

	Returns a dictionary identifying all valid rule configurations for this policy.

	Returns:

	
	A dictionary mapping string ID values (UUIDs) to dicts containing entries for name, description,
	and category.

	Return type:

	dict

	
validate()

	Validates this object.

	Returns:

	True if the object is validated.

	Return type:

	bool

	Raises:

	InvalidObjectError – If the object has missing fields.

	
class PolicyQuery(doc_class, cb)

	Bases: BaseQuery, IterableQueryMixin, AsyncQueryMixin

Query for retrieving policies (summary info only).

Initialize the Query object.

	Parameters:

	
	doc_class (class) – The class of the model this query returns.

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	
add_descriptions(descrs)

	Add policy description(s) to the list to search for.

	Parameters:

	descrs (str/list) – Either a single policy description or a list of descriptions.

	Returns:

	This object instance.

	Return type:

	PolicyQuery

	Raises:

	ApiError – If not supplied with a string or a list of strings.

	
add_names(names)

	Add policy name(s) to the list to search for.

	Parameters:

	names (str/list) – Either a single policy name or a list of names.

	Returns:

	This object instance.

	Return type:

	PolicyQuery

	Raises:

	ApiError – If not supplied with a string or a list of strings.

	
add_policy_ids(ids)

	Add policy ID(s) to the list to search for.

	Parameters:

	ids (int/list) – Either a single policy ID or a list of IDs.

	Returns:

	This object instance.

	Return type:

	PolicyQuery

	Raises:

	ApiError – If not supplied with an int or a list of ints.

	
add_priorities(priorities)

	Add policy priority/priorities to the list to search for.

	Parameters:

	priorities (str/list) – Either a single policy priority value or a list of priority values.

	Returns:

	This object instance.

	Return type:

	PolicyQuery

	Raises:

	ApiError – If not supplied with a string priority value or a list of string priority values.

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
set_system(system)

	Set to look for either system or non-system policies.

	Parameters:

	system (bool) – True to look for system policies, False to look for non-system policies.

	Returns:

	This object instance.

	Return type:

	PolicyQuery

	Raises:

	ApiError – If not supplied with a Boolean.

	
class PolicyRule(cb, parent, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: MutableBaseModel

Represents a rule in the policy.

Create one of these objects, associating it with a Policy, and set its properties, then call its save() method to
add the rule to the policy. This requires the org.policies(UPDATE) permission.

To update a PolicyRule, change the values of its property fields, then call the rule’s save() method. This
requires the org.policies(UPDATE) permission.

To delete an existing PolicyRule, call its delete() method. This requires the org.policies(UPDATE) permission.

	Parameters:

	
	id – The identifier of the rule

	action – The action the sensor will take when an application attempts to perform the selected operation

	application – The path, signature or reputation of the application

	operation – The type of behavior an application is performing

Initialize the PolicyRule object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	parent (Policy) – The “parent” policy of this rule.

	model_unique_id (int) – ID of the rule.

	initial_data (dict) – Initial data used to populate the rule.

	force_init (bool) – If True, forces the object to be refreshed after constructing. Default False.

	full_doc (bool) – If True, object is considered “fully” initialized. Default False.

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
property is_deleted

	Returns True if this rule object has been deleted.

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
refresh()

	Reload this object from the server.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this rule against its constraints.

	Raises:

	InvalidObjectError – If the rule object is not valid.

RuleConfigs Module

Policy rule configuration implementation as part of Platform API

	
class BypassRuleConfig(cb, parent, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: PolicyRuleConfig

Represents a bypass rule configuration in the policy.

Create one of these objects, associating it with a Policy, and set its properties, then call its save() method to
add the rule configuration to the policy. This requires the org.policies(UPDATE) permission.

To update a BypassRuleConfig, change the values of its property fields, then call its save() method. This
requires the org.policies(UPDATE) permission.

To delete an existing BypassRuleConfig, call its delete() method. This requires the org.policies(DELETE)
permission.

	Parameters:

	
	id – The ID of this rule config

	name – The name of this rule config

	description – The description of this rule config

	inherited_from – Indicates where the rule config was inherited from

	category – The category for this rule config

	parameters – The parameters associated with this rule config

	exclusions – The exclusions associated with this rule config

Initialize the BypassRuleConfig object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	parent (Policy) – The “parent” policy of this rule configuration.

	model_unique_id (str) – ID of the rule configuration.

	initial_data (dict) – Initial data used to populate the rule configuration.

	force_init (bool) – If True, forces the object to be refreshed after constructing. Default False.

	full_doc (bool) – If True, object is considered “fully” initialized. Default False.

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_parameter(name, default_value=None)

	Not Supported

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
property parameter_names

	Not Supported

	
refresh()

	Reload this object from the server.

	
replace_exclusions(exclusions)

	Replaces all the exclusions for a bypasss rule configuration

	Parameters:

	exclusions (dict) – The entire exclusion set to be replaced

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
set_parameter(name, value)

	Not Supported

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this rule configuration against its constraints.

	Raises:

	InvalidObjectError – If the rule object is not valid.

	
class CorePreventionRuleConfig(cb, parent, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: PolicyRuleConfig

Represents a core prevention rule configuration in the policy.

Create one of these objects, associating it with a Policy, and set its properties, then call its save() method to
add the rule configuration to the policy. This requires the org.policies(UPDATE) permission.

To update a CorePreventionRuleConfig, change the values of its property fields, then call its save() method. This
requires the org.policies(UPDATE) permission.

To delete an existing CorePreventionRuleConfig, call its delete() method. This requires the org.policies(DELETE)
permission.

	Parameters:

	
	id – The ID of this rule config

	name – The name of this rule config

	description – The description of this rule config

	inherited_from – Indicates where the rule config was inherited from

	category – The category for this rule config

	parameters – The parameters associated with this rule config

	exclusions – The exclusions associated with this rule config

Initialize the CorePreventionRuleConfig object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	parent (Policy) – The “parent” policy of this rule configuration.

	model_unique_id (str) – ID of the rule configuration.

	initial_data (dict) – Initial data used to populate the rule configuration.

	force_init (bool) – If True, forces the object to be refreshed after constructing. Default False.

	full_doc (bool) – If True, object is considered “fully” initialized. Default False.

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_assignment_mode()

	Returns the assignment mode of this core prevention rule configuration.

	Returns:

	The assignment mode, either “REPORT” or “BLOCK”.

	Return type:

	str

	
get_parameter(name, default_value=None)

	Returns a parameter value from the rule configuration.

	Parameters:

	
	name (str) – The parameter name.

	default_value (Any) – The default value to return if there’s no parameter by that name. Default is None.

	Returns:

	The parameter value, or None if there is no value.

	Return type:

	Any

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
property parameter_names

	Returns a list of parameter names in this rule configuration.

	Returns:

	A list of parameter names in this rule configuration.

	Return type:

	list[str]

	
refresh()

	Reload this object from the server.

	
replace_exclusions(exclusions)

	Replaces all the exclusions for a bypasss rule configuration

	Parameters:

	exclusions (dict) – The entire exclusion set to be replaced

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
set_assignment_mode(mode)

	Sets the assignment mode of this core prevention rule configuration.

	Parameters:

	mode (str) – The new mode to set, either “REPORT” or “BLOCK”. The default is “BLOCK”.

	
set_parameter(name, value)

	Sets a parameter value into the rule configuration.

	Parameters:

	
	name (str) – The parameter name.

	value (Any) – The new value to be set.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this rule configuration against its constraints.

	Raises:

	InvalidObjectError – If the rule object is not valid.

	
class DataCollectionRuleConfig(cb, parent, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: PolicyRuleConfig

Represents a data collection rule configuration in the policy.

Create one of these objects, associating it with a Policy, and set its properties, then call its save() method to
add the rule configuration to the policy. This requires the org.policies(UPDATE) permission.

To update a DataCollectionRuleConfig, change the values of its property fields, then call its save() method. This
requires the org.policies(UPDATE) permission.

To delete an existing DataCollectionRuleConfig, call its delete() method. This requires the org.policies(DELETE)
permission.

	Parameters:

	
	id – The ID of this rule config

	name – The name of this rule config

	description – The description of this rule config

	inherited_from – Indicates where the rule config was inherited from

	category – The category for this rule config

	parameters – The parameters associated with this rule config

	exclusions – The exclusions associated with this rule config

Initialize the DataCollectionRuleConfig object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	parent (Policy) – The “parent” policy of this rule configuration.

	model_unique_id (str) – ID of the rule configuration.

	initial_data (dict) – Initial data used to populate the rule configuration.

	force_init (bool) – If True, forces the object to be refreshed after constructing. Default False.

	full_doc (bool) – If True, object is considered “fully” initialized. Default False.

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_parameter(name, default_value=None)

	Returns a parameter value from the rule configuration.

	Parameters:

	
	name (str) – The parameter name.

	default_value (Any) – The default value to return if there’s no parameter by that name. Default is None.

	Returns:

	The parameter value, or None if there is no value.

	Return type:

	Any

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
property parameter_names

	Returns a list of parameter names in this rule configuration.

	Returns:

	A list of parameter names in this rule configuration.

	Return type:

	list[str]

	
refresh()

	Reload this object from the server.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
set_parameter(name, value)

	Sets a parameter value into the rule configuration.

	Parameters:

	
	name (str) – The parameter name.

	value (Any) – The new value to be set.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this rule configuration against its constraints.

	Raises:

	InvalidObjectError – If the rule object is not valid.

	
class HostBasedFirewallRuleConfig(cb, parent, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: PolicyRuleConfig

Represents a host-based firewall rule configuration in the policy.

	Parameters:

	
	id – The ID of this rule config

	name – The name of this rule config

	description – The description of this rule config

	inherited_from – Indicates where the rule config was inherited from

	category – The category for this rule config

	parameters – The parameters associated with this rule config

	exclusions – The exclusions associated with this rule config

Initialize the HostBasedFirewallRuleConfig object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	parent (Policy) – The “parent” policy of this rule configuration.

	model_unique_id (str) – ID of the rule configuration.

	initial_data (dict) – Initial data used to populate the rule configuration.

	force_init (bool) – If True, forces the object to be refreshed after constructing. Default False.

	full_doc (bool) – If True, object is considered “fully” initialized. Default False.

	
class FirewallRule(cb, parent, initial_data)

	Bases: MutableBaseModel

Represents a single firewall rule.

	Parameters:

	
	action – The action to take when rule is hit

	application_path – The application path to limit the rule

	direction – The direction the network request is being made from

	enabled – Whether the rule is enabled

	protocol – The type of network request

	local_ip_address – IPv4 address of the local side of the network connection (stored as dotted decimal)

	local_port_ranges – TCP or UDP port used by the local side of the network connection

	remote_ip_address – IPv4 address of the remote side of the network connection (stored as dotted decimal)

	remote_port_ranges – TCP or UDP port used by the remote side of the network connection

	test_mode – Enables host-based firewall hits without blocking network traffic or generating alerts

Initialize the FirewallRule object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the firewall rule.

	parent (HostBasedFirewallRuleConfig) – The parent rule configuration.

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
refresh()

	Reload this object from the server.

	
remove()

	Removes this rule from the rule group that contains it.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this object.

	Returns:

	True if the object is validated.

	Return type:

	bool

	Raises:

	InvalidObjectError – If the object has missing fields.

	
class FirewallRuleGroup(cb, parent, initial_data)

	Bases: MutableBaseModel

Represents a group of related firewall rules.

	Parameters:

	
	name – Name of the rule group

	description – Description of the rule group

	rules – List of rules in the rule group

Initialize the FirewallRuleGroup object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the firewall rule group.

	parent (HostBasedFirewallRuleConfig) – The parent rule configuration.

	
append_rule(name, action, direction, protocol, remote_ip, **kwargs)

	Creates a new FirewallRule object and appends it to this rule group.

	Parameters:

	
	name (str) – The name for the new rule.

	action (str) – The action to be taken by this rule. Valid values are “ALLOW,” “BLOCK,” and “BLOCK_ALERT.”

	direction (str) – The traffic direction this rule matches. Valid values are “IN,” “OUT,” and “BOTH.”

	protocol (str) – The network protocol this rule matches. Valid values are “TCP” and “UDP.”

	remote_ip (str) – The remote IP address this rule matches.

	kwargs (dict) – Additional parameters which may be added to the new rule.

	Returns:

	The new rule object.

	Return type:

	FirewallRule

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
refresh()

	Reload this object from the server.

	
remove()

	Removes this rule group from the rule configuration.

	
reset()

	Undo any changes made to this object’s fields.

	
property rules_

	Returns a list of the firewall rules within this rule group.

	Returns:

	List of contained firewall rules.

	Return type:

	list(HostBasedFirewallRuleConfig.FirewallRule)

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this object.

	Returns:

	True if the object is validated.

	Return type:

	bool

	Raises:

	InvalidObjectError – If the object has missing fields.

	
append_rule_group(name, description)

	Creates a new FirewallRuleGroup object and appends it to the list of rule groups in the rule configuration.

	Parameters:

	
	name (str) – The name of the new rule group.

	description (str) – The description of the new rule group.

	Returns:

	The newly added rule group.

	Return type:

	FirewallRuleGroup

	
copy_rules(*args)

	Copies the parameters for host-based firewall rule configurations to another policy or policies.

	Required Permissions:
	org.firewall.rules(UPDATE)

	Parameters:

	args (list[Any]) – References to policies to copy to. May be Policy objects, integers, or
string representations of integers.

	Returns:

	Result structure from copy operation.

	Return type:

	dict

	Raises:

	ApiError – If the parameters could not be converted to policy IDs.

	
property default_action

	Returns the default action of this rule configuration.

	Returns:

	The default action of this rule configuration, either “ALLOW” or “BLOCK.”

	Return type:

	str

	
delete()

	Delete this object.

	
property enabled

	Returns whether or not the host-based firewall is enabled.

	Returns:

	True if the host-based firewall is enabled, False if not.

	Return type:

	bool

	
export_rules(format='json')

	Exports the rules from this host-based firewall rule configuration.

	Required Permissions:
	org.firewall.rules(READ)

	Parameters:

	format (str) – The format to return the rule data in. Valid values are “csv” and “json” (the default).

	Returns:

	The exported rule configuration data.

	Return type:

	str

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_parameter(name, default_value=None)

	Returns a parameter value from the rule configuration.

	Parameters:

	
	name (str) – The parameter name.

	default_value (Any) – The default value to return if there’s no parameter by that name. Default is None.

	Returns:

	The parameter value, or None if there is no value.

	Return type:

	Any

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
property parameter_names

	Returns a list of parameter names in this rule configuration.

	Returns:

	A list of parameter names in this rule configuration.

	Return type:

	list[str]

	
refresh()

	Reload this object from the server.

	
reset()

	Undo any changes made to this object’s fields.

	
property rule_groups

	Returns the list of rule groups in this rule configuration.

	Returns:

	The list of rule groups.

	Return type:

	list[FirewallRuleGroup]

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
set_default_action(action)

	Sets the default action of this rule configuration.

	Parameters:

	action (str) – The new default action of this rule configuration. Valid values are “ALLOW” and “BLOCK.”

	
set_enabled(flag)

	Sets whether or not the host-based firewall is enabled.

	Parameters:

	flag (bool) – True if the host-based firewall should be enabled, False if not.

	
set_parameter(name, value)

	Sets a parameter value into the rule configuration.

	Parameters:

	
	name (str) – The parameter name.

	value (Any) – The new value to be set.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this rule configuration against its constraints.

	Raises:

	InvalidObjectError – If the rule object is not valid.

	
class PolicyRuleConfig(cb, parent, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: MutableBaseModel

Represents a rule configuration in the policy.

Create one of these objects, associating it with a Policy, and set its properties, then call its save() method to
add the rule configuration to the policy. This requires the org.policies(UPDATE) permission.

To update a PolicyRuleConfig, change the values of its property fields, then call its save() method. This
requires the org.policies(UPDATE) permission.

To delete an existing PolicyRuleConfig, call its delete() method. This requires the org.policies(DELETE) permission.

	Parameters:

	
	id – The ID of this rule config

	name – The name of this rule config

	description – The description of this rule config

	inherited_from – Indicates where the rule config was inherited from

	category – The category for this rule config

	parameters – The parameters associated with this rule config

	exclusions – The exclusions associated with this rule config

Initialize the PolicyRuleConfig object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	parent (Policy) – The “parent” policy of this rule configuration.

	model_unique_id (str) – ID of the rule configuration.

	initial_data (dict) – Initial data used to populate the rule configuration.

	force_init (bool) – If True, forces the object to be refreshed after constructing. Default False.

	full_doc (bool) – If True, object is considered “fully” initialized. Default False.

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_parameter(name, default_value=None)

	Returns a parameter value from the rule configuration.

	Parameters:

	
	name (str) – The parameter name.

	default_value (Any) – The default value to return if there’s no parameter by that name. Default is None.

	Returns:

	The parameter value, or None if there is no value.

	Return type:

	Any

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
property parameter_names

	Returns a list of parameter names in this rule configuration.

	Returns:

	A list of parameter names in this rule configuration.

	Return type:

	list[str]

	
refresh()

	Reload this object from the server.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
set_parameter(name, value)

	Sets a parameter value into the rule configuration.

	Parameters:

	
	name (str) – The parameter name.

	value (Any) – The new value to be set.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this rule configuration against its constraints.

	Raises:

	InvalidObjectError – If the rule object is not valid.

Previewer Module

This module contains the DevicePolicyChangePreview object.

When methods on Device, Policy, or AssetGroup are called to “preview” changes in device policy,
a list of these objects is returned. Each object represents a change in “effective” policy on one or more
devices.

	
class DevicePolicyChangePreview(cb, preview_data)

	Bases: object

Contains data previewing a change in device policies.

Changes to policies may happen via asset group memberships, policy rank changes, device policy overrides,
or other causes.

Each one of these objects shows, for a given group of assets, the current policy that is the “effective policy”
for those assets, the new policy that will be the “effective policy” for those assets, the number of assets
affected, and which assets they are.

Creates a new instance of AssetGroupChangePreview.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	preview_data (dict) – Contains the preview data returned by the server API.

	
property asset_count

	The number of assets to be affected by the change in their effective policy.

	
property asset_query

	A Device query which looks up the assets that are to be affected by the change in their effective policy.

Once the query is created, it can be modified with additional criteria or options before it is executed.

	
property assets

	The list of assets, i.e. Device objects, to be affected by the change in their effective policy.

	Required Permissions:
	device (READ)

	
property current_policy

	The Policy object that is the current “effective” policy for a group of assets.

	
property current_policy_id

	The ID of the policy that is the current “effective” policy for a group of assets.

	
property current_policy_position

	The position, or rank, of the policy that is the current “effective” policy for a group of assets.

	
property new_policy

	The Policy object that will become the new “effective” policy for a group of assets.

	
property new_policy_id

	The ID of the policy that will become the new “effective” policy for a group of assets.

	
property new_policy_position

	The position, or rank, of the policy that will become the new “effective” policy for a group of assets.

Processes Module

Model and query that allow location and manipulation of process data reported by an organization’s sensors.

This data can be used to identify applications that are acting abnormally and over time, cull the outliers from the
total observed process activity, and retroactively identify the origination point for attacks that previously escaped
notice. Use cases include:

	Finding the process that was identified in an alert with a process search.

	Finding processes that match targeted behavioral characteristics identified in Carbon Black or third-party threat
intelligence reports.

	Finding additional details about processes that were potentially involved in malicious activity identified elsewhere.

	Using faceting to get filtering terms or prevalent values in a set of processes.

Locating processes generally requires the Endpoint Standard or Enterprise EDR products.

Typical usage example:

>>> query = api.select(Process).where("process_name:chrome.exe")
>>> for process in query:
... print(f"Chrome PID = {process.process_guid}")

	
class AsyncProcessQuery(doc_class, cb)

	Bases: Query

A query object used to search for Process objects asynchronously.

Create one of these objects by calling select(Process) on a CBCloudAPI object.

Initialize the AsyncProcessQuery object.

	Parameters:

	
	doc_class (class) – The class of the model this query returns.

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
add_exclusions(key, newlist)

	Add to the exclusions on this query with a custom exclusions key.

Will overwrite any existing exclusion for the specified key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).add_exclusions("type", ["WATCHLIST"])
>>> query = api.select(Alert).add_exclusions("type", "WATCHLIST")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
batch_size(new_batch_size)

	Set the batch size of the paginated query.

	Parameters:

	new_batch_size (int) – The new batch size.

	Returns:

	A new query with the updated batch size.

	Return type:

	PaginatedQuery

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_collapse_field(field)

	Sets the ‘collapse_field’ query parameter, which queries the file name depending on field.

	Parameters:

	field (list) – query parameters to get file details.

	
set_fields(fields)

	Sets the fields to be returned with the response.

	Parameters:

	fields (str or list[str]) – Field or list of fields to be returned.

	
set_rows(rows)

	Sets the number of rows to request per batch.

This will not limit the total results to the specified number of rows; instead, the query will use
this to determine how many rows to request at a time from the server.

	Parameters:

	rows (int) – How many rows to request.

	
set_start(start)

	Sets the ‘start’ query body parameter, determining where to begin retrieving results from.

	Parameters:

	start (int) – Where to start results from.

	
set_time_range(start=None, end=None, window=None)

	Sets the ‘time_range’ query body parameter, determining a time window based on ‘device_timestamp’.

	Parameters:

	
	start (str in ISO 8601 timestamp) – When to start the result search.

	end (str in ISO 8601 timestamp) – When to end the result search.

	window (str) – Time window to execute the result search, ending on the current time.
Should be in the form “-2w”, where y=year, w=week, d=day, h=hour, m=minute, s=second.

Note

	window will take precendent over start and end if provided.

Examples

>>> query = api.select(Process).set_time_range(start="2020-10-20T20:34:07Z").where("query is required")
>>> second_query = api.select(Process).
... set_time_range(start="2020-10-20T20:34:07Z", end="2020-10-30T20:34:07Z").where("query is required")
>>> third_query = api.select(Process).set_time_range(window='-3d').where("query is required")

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	The query with sorting parameters.

	Return type:

	Query

Example

>>> cb.select(Process).where(process_name="cmd.exe").sort_by("device_timestamp")

	
timeout(msecs)

	Sets the timeout on a process query.

	Parameters:

	msecs (int) – Timeout duration, in milliseconds. This can never be greater than the configured default
timeout. If this is 0, the configured default timeout is used.

	Returns:

	The modified query object.

	Return type:

	AsyncProcessQuery

Example

>>> cb.select(Process).where(process_name="foo.exe").timeout(5000)

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
update_exclusions(key, newlist)

	Update the exclusion on this query with a custom exclusion key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (list) – List of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).update_exclusions("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
class Process(cb, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: UnrefreshableModel

Information about a process running on one of the endpoints connected to the Carbon Black Cloud.

Objects of this type are retrieved through queries to the Carbon Black Cloud server, such as via
AsyncProcessQuery.

Processes have many fields, too many to list here; for a complete list of available fields, visit
the Search Fields page [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/platform-search-fields/]
on the Carbon Black Developer Network, and filter on the PROCESS route.

Examples

>>> # use the Process GUID directly
>>> process = api.select(Process, "WNEXFKQ7-00050603-0000066c-00000000-1d6c9acb43e29bb")

>>> # use the Process GUID in a where() clause
>>> process_query = api.select(Process).where(process_guid=
... "WNEXFKQ7-00050603-0000066c-00000000-1d6c9acb43e29bb")
>>> process_query_results = list(process_query)
>>> process_2 = process_query_results[0]

Initialize the Process object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (str) – The unique ID (GUID) for this process.

	initial_data (dict) – The data to use when initializing the model object.

	force_init (bool) – True to force object initialization.

	full_doc (bool) – True to mark the object as fully initialized.

	
class Summary(cb, model_unique_id=None, initial_data=None, force_init=False, full_doc=True)

	Bases: UnrefreshableModel

A summary of organization-specific information for a process.

The preferred interface for interacting with Summary models is Process.summary.

Example

>>> process = api.select(Process, "WNEXFKQ7-00050603-0000066c-00000000-1d6c9acb43e29bb")
>>> summary = process.summary

Initialize the Summary object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (str) – The unique ID for this particular instance of the model object.

	initial_data (dict) – The data to use when initializing the model object.

	force_init (bool) – True to force object initialization.

	full_doc (bool) – True to mark the object as fully initialized.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class Tree(cb, model_unique_id=None, initial_data=None, force_init=False, full_doc=True)

	Bases: UnrefreshableModel

Summary of organization-specific information for a process.

The preferred interface for interacting with Tree models is Process.tree.

Example

>>> process = api.select(Process, "WNEXFKQ7-00050603-0000066c-00000000-1d6c9acb43e29bb")
>>> tree = process.tree

Initialize the Tree object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (str) – The unique ID for this particular instance of the model object.

	initial_data (dict) – The data to use when initializing the model object.

	force_init (bool) – True to force object initialization.

	full_doc (bool) – True to mark the object as fully initialized.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
approve_process_sha256(description='')

	Approves the application by adding the process_sha256 to the WHITE_LIST.

	Parameters:

	description (str) – The justification for why the application was added to the WHITE_LIST.

	Returns:

	ReputationOverride object created in the Carbon Black Cloud.

	Return type:

	cbc_sdk.platform.ReputationOverride

	
ban_process_sha256(description='')

	Bans the application by adding the process_sha256 to the BLACK_LIST.

	Parameters:

	description (str) – The justification for why the application was added to the BLACK_LIST.

	Returns:

	cbc_sdk.platform.ReputationOverride) ReputationOverride object created in the Carbon Black Cloud.

	
property children

	Returns a list of child processes for this process.

	
deobfuscate_cmdline()

	Deobfuscates the command line of the process and returns the deobfuscated result.

	Required Permissions:
	script.deobfuscation(EXECUTE)

	Returns:

	A dict containing information about the obfuscated command line, including the deobfuscated result.

	Return type:

	dict

	
events(**kwargs)

	Returns a query for events associated with this process’s process GUID.

	Parameters:

	kwargs – Arguments to filter the event query with.

Example

>>> [print(event) for event in process.events()]
>>> [print(event) for event in process.events(event_type="modload")]

	
facets()

	Returns a FacetQuery for a Process.

This represents the search for a summary of result groupings (facets). The returned AsyncFacetQuery
object must have facet fields or ranges specified before it can be submitted, using the add_facet_field()
or add_range() methods.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_details(timeout=0, async_mode=False)

	Requests detailed information about this process from the Carbon Black Cloud server.

	Required Permissions:
	org.search.events(CREATE, READ)

	Parameters:

	
	timeout (int) – Event details request timeout in milliseconds. This value can never be greater than the
configured default timeout. If this value is 0, the configured default timeout is used.

	async_mode (bool) – True to request details in an asynchronous manner.

	Returns:

	
	If async_mode is True. Call result() on this Future to wait for completion and
	retrieve the results.

dict: If async_mode is False.

	Return type:

	Future

	
property parents

	Returns the parent process associated with this process, or None if there is no recorded parent.

	
property process_md5

	Returns a string representation of the MD5 hash for this process.

	
property process_pids

	Returns a list of integer PIDs associated with this process, or None if there are none.

	
property process_sha256

	Returns a string representation of the SHA256 hash for this process.

	
refresh()

	Reload this object from the server.

	
property siblings

	Returns a list of sibling processes for this process.

	
property summary

	Returns organization-specific information about this process.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
property tree

	Returns a process tree associated with this process.

Example

>>> tree = process.tree

	
class ProcessFacet(cb, model_unique_id, initial_data)

	Bases: UnrefreshableModel

Represents the results of a process facet query.

ProcessFacet objects contain both Terms and Ranges. Each of those contain facet fields and values.

Access all of the Terms facet data with ProcessFacet.Terms.facets() or see just the field names with
ProcessFacet.Terms.fields().

Access all of the Ranges facet data with ProcessFacet.Ranges.facets() or see just the field names
with ProcessFacet.Ranges.fields().

Process facets can be queried for via CBCloudAPI.select(ProcessFacet). Specify facet field(s) with
.add_facet_field("my_facet_field").

Optionally, you can limit the facet query to a single process with the following two options. Using the solrq
builder, specify process GUID with .where(process_guid="example_guid") and modify the query with
.or_(parent_effective_reputation="KNOWN_MALWARE") and .and_(parent_effective_reputation="KNOWN_MALWARE").

If you want full control over the query string, specify the process GUID in the query string
.where("process_guid: example_guid OR parent_effective_reputation: KNOWN_MALWARE")

	Examples:
	>>> process_facet_query = api.select(ProcessFacet).where(process_guid=
... "WNEXFKQ7-00050603-0000066c-00000000-1d6c9acb43e29bb")
>>> process_facet_query.add_facet_field("device_name")

retrieve results synchronously
>>> facet = process_facet_query.results

retrieve results asynchronously
>>> future = process_facet_query.execute_async()
>>> result = future.result()

result is a list with one item, so access the first item
>>> facet = result[0]

	Parameters:

	
	job_id – The Job ID assigned to this query

	terms – Contains the Process Facet search results

	ranges – Groupings for search result properties that are ISO 8601 timestamps or numbers

	contacted – The number of searchers contacted for this query

	completed – The number of searchers that have reported their results

Initialize a ProcessFacet object with initial_data.

	
class Ranges(cb, initial_data)

	Bases: UnrefreshableModel

The range (bucketed) facet fields and values associated with a process facet query.

Initialize a ProcessFacet.Ranges object with initial_data.

	
property facets

	Returns the reified facets for this result.

	
property fields

	Returns the ranges fields for this result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class Terms(cb, initial_data)

	Bases: UnrefreshableModel

The facet fields and values associated with a process facet query.

Initialize a ProcessFacet.Terms object with initial_data.

	
property facets

	Returns the terms’ facets for this result.

	
property fields

	Returns the terms facets’ fields for this result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
property ranges_

	Returns the reified ProcessFacet.Ranges for this result.

	
refresh()

	Reload this object from the server.

	
property terms_

	Returns the reified ProcessFacet.Terms for this result.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class SummaryQuery(doc_class, cb)

	Bases: BaseQuery, AsyncQueryMixin, QueryBuilderSupportMixin

A query used to search for Process.Summary or Process.Tree objects.

Create one of these queries with a select() on either Process.Summary or Process.Tree.
These queries are also created by accessing the summary or tree properties on Process.

Initialize the SummaryQuery object.

	Parameters:

	
	doc_class (class) – The class of the model this query returns.

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
property results

	Return the results of this query. If the query has not yet been run, it is run to determine the results.

	Required Permissions:
	org.search.events(CREATE, READ)

	
set_time_range(start=None, end=None, window=None)

	Sets the time_range query body parameter, determining a time window based on device_timestamp.

	Parameters:

	
	start (str in ISO 8601 timestamp) – When to start the result search.

	end (str in ISO 8601 timestamp) – When to end the result search.

	window (str) – Time window to execute the result search, ending on the current time.
Should be in the form “-nx”, where n is an integer and x is y=year, w=week, d=day, h=hour,
m=minute, s=second.

Note

window will take precendent over start and end if provided.

Example

>>> query = api.select(Event).set_time_range(start="2020-10-20T20:34:07Z")
>>> second_query = api.select(Event).set_time_range
... (start="2020-10-20T20:34:07Z", end="2020-10-30T20:34:07Z")
>>> third_query = api.select(Event).set_time_range(window='-3d')

	
timeout(msecs)

	Sets the timeout on a process query.

	Parameters:

	msecs (int) – Timeout duration, in milliseconds. This can never be greater than the configured default
timeout. If this value is 0, the configured default timeout is used.

	Returns:

	The modified query object.

	Return type:

	SummaryQuery

Example

>>> cb.select(Process).where(process_name="foo.exe").timeout(5000)

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

Reputation Module

Model and Query Classes for Reputation

	
class ReputationOverride(cb, model_unique_id, initial_data=None)

	Bases: PlatformModel

Represents a reputation override.

	Parameters:

	
	id – An identifier for a reputation override

	created_by – Creator of the override

	create_time – Time the override was created

	description – Justification for override

	override_list – The override list to add a new reputation (BLACK_LIST only valid for SHA256)

	override_type – Process property match when applying override

	sha256_hash – A hexadecimal string of length 64 characters representing the SHA-256 hash of the application

	filename – An application name for the hash

	signed_by – Name of the signer for the application

	certificate_authority – Certificate authority that authorizes the validity of the certificate

	path – The absolute path to file or directory where tool exists on disk

	include_child_processes – Include tool’s child processes on approved list

Initialize the ReputationOverride object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
classmethod bulk_delete(cb, overrides)

	Deletes reputation overrides in bulk by id.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	overrides (List) – List if reputation override ids

Example

>>>
[
 "e9410b754ea011ebbfd0db2585a41b07"
]

	
classmethod create(cb, initial_data)

	Returns all vendors and products that have been seen for the organization.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (Object) – The initial data for a ReputationOverride

Example

>>>
{
 "description": "Banned as known malware",
 "override_list": "BLACK_LIST",
 "override_type": "SHA256",
 "sha256_hash": "dd191a5b23df92e13a8852291f9fb5ed594b76a28a5a464418442584afd1e048",
 "filename": "foo.exe"
}

	Returns:

	The created ReputationOverride object based on the specified properties

	Return type:

	ReputationOverride

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class ReputationOverrideQuery(doc_class, cb)

	Bases: BaseQuery, QueryBuilderSupportMixin, IterableQueryMixin, AsyncQueryMixin

Represents a query that is used to locate ReputationOverride objects.

Initialize the ReputationOverrideQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_override_list(override_list)

	Sets the override_list criteria filter.

	Parameters:

	override_list (str) – Override List to filter on.

	Returns:

	The ReputationOverrideQuery with specified override_list.

	
set_override_type(override_type)

	Sets the override_type criteria filter.

	Parameters:

	override_type (str) – Override List to filter on.

	Returns:

	The ReputationOverrideQuery with specified override_type.

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(ReputationOverride).sort_by("create_time")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	This instance.

	Return type:

	ReputationOverrideQuery

	Raises:

	ApiError – If an invalid direction value is passed.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

Users Module

Model and Query Classes for Users

	
class User(cb, model_unique_id, initial_data=None)

	Bases: MutableBaseModel

Represents a user in the Carbon Black Cloud.

	Parameters:

	
	org_key – Organization key for this user

	auth_method – Method to be used for the user to authenticate

	admin_login_version – Version number of the user information

	email – User’s E-mail address

	login_name – Login name for the user

	login_id – Login ID (user ID) for this user

	phone – User’s phone number

	first_name – User’s first name

	last_name – User’s last name

	org_id – ID of the organization the user is in

	org_admin_version – TBD

	role – Not used, always “DEPRECATED”

	contact_id – ID of the user’s contact information

	contact_version – Version of the user’s contact information

Initialize the User object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (int) – Login ID of this user.

	initial_data (dict) – Initial data used to populate the user.

	
class UserBuilder(cb)

	Bases: object

Auxiliary object used to construct a new User.

Create the empty UserBuilder object.

	Parameters:

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_grant_profile(orgs, roles)

	Adds a grant profile for the new user.

	Parameters:

	
	orgs (list[str]) – List of organizations to be allowed, specified as keys or URNs.

	roles (list[str]) – List of roles to be granted, specified as URNs.

	Returns:

	This object.

	Return type:

	UserBuilder

	
build()

	Builds the new user.

Notes

The new user will not be “findable” by other API functions until it has been activated and its initial
password has been set.

	
set_auth_method(method)

	Sets the authentication method for the new user. The default is ‘PASSWORD’.

	Parameters:

	method (str) – The authentication method for the new user.

	Returns:

	This object.

	Return type:

	UserBuilder

	
set_email(email)

	Sets the E-mail address for the new user.

	Parameters:

	email (str) – The E-mail address for the new user.

	Returns:

	This object.

	Return type:

	UserBuilder

	
set_first_name(first_name)

	Sets the first name for the new user.

	Parameters:

	first_name (str) – The first name for the new user.

	Returns:

	This object.

	Return type:

	UserBuilder

	
set_last_name(last_name)

	Sets the last name for the new user.

	Parameters:

	last_name (str) – The last name for the new user.

	Returns:

	This object.

	Return type:

	UserBuilder

	
set_phone(phone)

	Sets the phone number for the new user.

	Parameters:

	phone (str) – The phone number for the new user.

	Returns:

	This object.

	Return type:

	UserBuilder

	
set_role(role)

	Sets the role URN for the new user.

	Parameters:

	role (str) – The URN of the role to set for the user.

	Returns:

	This object.

	Return type:

	UserBuilder

	
add_profiles(profile_templates)

	Add the specified profiles to the user’s grant.

	Parameters:

	profile_templates (list[dict]) – List of profile templates to be added to the user.

	
classmethod bulk_add_profiles(users, profile_templates)

	Add the specified profiles to the specified users’ grants.

	Parameters:

	
	users (list[User]) – List of User objects specifying users to be modified.

	profile_templates (list[dict]) – List of profile templates to be added to the users.

	
classmethod bulk_create(cb, user_templates, profile_templates)

	Creates a series of new users.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	user_templates (list[dict]) – List of templates for users to be created.

	profile_templates (list[dict]) – List of profile templates to be applied to each user.

	
classmethod bulk_delete(users)

	Deletes all the listed users.

	Parameters:

	users (list[User]) – List of User objects specifying users to be deleted.

	
classmethod bulk_disable_all_access(users)

	Disables all access profiles held by the listed users.

	Parameters:

	users (list[User]) – List of User objects specifying users to be disabled.

	
classmethod bulk_disable_profiles(users, profile_templates)

	Disable the specified profiles in the specified users’ grants.

	Parameters:

	
	users (list[User]) – List of User objects specifying users to be modified.

	profile_templates (list[dict]) – List of profile templates to be disabled.

	
change_role(role_urn, org=None)

	Add the specified role to the user (either to the grant or the profiles).

	Parameters:

	
	role_urn (str) – URN of the role to be added.

	org (str) – If specified, only profiles that match this organization will have the role added. Organization
may be specified as either an org key or a URN.

	Raises:

	ApiError – If the user is a “legacy” user that has no grant.

	
classmethod create(cb, template=None)

	Creates a new user.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	template (dict) – Optional template data for creating the new user.

	Returns:

	
	If template is None, returns an instance of this object. Call methods on the object to set
	the values associated with the new user, and then call build() to create it.

	Return type:

	UserBuilder

	
delete()

	Delete this object.

	
disable_all_access()

	Disables all access profiles held by ths user.

	Raises:

	ApiError – If the user is a “legacy” user that has no grant.

	
disable_profiles(profile_templates)

	Disable the specified profiles in the user’s grant.

	Parameters:

	profile_templates (list[dict]) – List of profile templates to be disabled.

	Raises:

	ApiError – If the user is a “legacy” user that has no grant.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
grant()

	Locates the access grant for this user.

	Returns:

	Access grant for this user, or None if the user has none.

	Return type:

	Grant

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
property org_urn

	Returns the URN for this user’s organization (used in accessing Grants).

	Returns:

	URN for this user’s organization.

	Return type:

	str

	
refresh()

	Reload this object from the server.

	
reset()

	Undo any changes made to this object’s fields.

	
reset_google_authenticator_registration()

	Forces Google Authenticator registration to be reset for this user.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
set_profile_expiration(profile_templates, expiration_date)

	Set the expiration time for the specified profiles in the user’s grant.

	Parameters:

	
	profile_templates (list[dict]) – List of profile templates to be reset.

	expiration_date (str) – New expiration date, in ISO 8601 format.

	Raises:

	ApiError – If the user is a “legacy” user that has no grant.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
property urn

	Returns the URN for this user (used in accessing Grants).

	Returns:

	URN for this user.

	Return type:

	str

	
validate()

	Validates this object.

	Returns:

	True if the object is validated.

	Return type:

	bool

	Raises:

	InvalidObjectError – If the object has missing fields.

	
class UserQuery(doc_class, cb)

	Bases: BaseQuery, IterableQueryMixin, AsyncQueryMixin

Query for retrieving users in bulk.

Initialize the Query object.

	Parameters:

	
	doc_class (class) – The class of the model this query returns.

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
email_addresses(addrs)

	Limit the query to users with the specified E-mail addresses. Call multiple times to add multiple addresses.

	Parameters:

	addrs (list[str]) – List of addresses to be added to the query.

	Returns:

	This object.

	Return type:

	UserQuery

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
user_ids(userids)

	Limit the query to users with the specified user IDs. Call multiple times to add multiple user IDs.

	Parameters:

	userids (list[str]) – List of user IDs to be added to the query.

	Returns:

	This object.

	Return type:

	UserQuery

	
log = <Logger cbc_sdk.platform.users (WARNING)>

	User Models

	
normalize_profile_list(profile_templates)

	Internal function to normalize a list of profile templates.

Vulnerability Assessment Module

Model and Query Classes for Vulnerability Assessment API

	
class AffectedAssetQuery(vulnerability, cb)

	Bases: VulnerabilityQuery

Query Class for the Vulnerability

Initialize the AffectedAssetQuery.

	Parameters:

	
	vulnerability (class) – The vulnerability that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, value, operator='EQUALS')

	Restricts the vulnerabilities that this query is performed on to the specified key value pair.

	Parameters:

	
	key (str) – Property from the vulnerability object

	value (str) – Value of the property to filter by

	operator (str) – (optional) logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
export()

	Performs the query and export the results in the form of a Job.

Example

>>> # Create the Vulnerability query
>>> query = cb.select(Vulnerability).set_severity('CRITICAL')
>>> # Export the results
>>> job = query.export()
>>> # wait for the export to finish
>>> job.await_completion()
>>> # write the results to a file
>>> job.get_output_as_file("vulnerabilities.csv")

	Returns:

	The export job.

	Return type:

	Job

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_deployment_type(deployment_type, operator)

	Restricts the vulnerabilities that this query is performed on to the specified deployment type.

	Parameters:

	
	deployment_type (str) – deployment type (“ENDPOINT”, “AWS”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_device_type(device_type, operator)

	Restricts the vulnerabilities that this query is performed on to the specified device type.

	Parameters:

	
	device_type (str) – device type (“WORKLOAD”, “ENDPOINT”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_highest_risk_score(highest_risk_score, operator)

	Restricts the vulnerabilities that this query is performed on to the specified highest_risk_score.

	Parameters:

	
	highest_risk_score (double) – highest_risk_score.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_last_sync_ts(last_sync_ts, operator)

	Restricts the vulnerabilities that this query is performed on to the specified last_sync_ts.

	Parameters:

	
	last_sync_ts (str) – last_sync_ts.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_name(name, operator)

	Restricts the vulnerabilities that this query is performed on to the specified name.

	Parameters:

	
	name (str) – name.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_os_arch(os_arch, operator)

	Restricts the vulnerabilities that this query is performed on to the specified os_arch.

	Parameters:

	
	os_arch (str) – os_arch.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_os_name(os_name, operator)

	Restricts the vulnerabilities that this query is performed on to the specified os_name.

	Parameters:

	
	os_name (str) – os_name.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_os_product_id(os_product_id, operator)

	Restricts the vulnerabilities that this query is performed on to the specified os_product_id.

	Parameters:

	
	os_product_id (str) – os_product_id.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	AffectedAssetQuery

	
set_os_type(os_type, operator)

	Restricts the vulnerabilities that this query is performed on to the specified os type.

	Parameters:

	
	os_type (str) – os type (“CENTOS”, “RHEL”, “SLES”, “UBUNTU”, “WINDOWS”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_os_version(os_version, operator)

	Restricts the vulnerabilities that this query is performed on to the specified os_version.

	Parameters:

	
	os_version (str) – os_version.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_severity(severity, operator)

	Restricts the vulnerabilities that this query is performed on to the specified severity.

	Parameters:

	
	severity (str) – severity (“CRITICAL”, “IMPORTANT”, “MODERATE”, “LOW”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_sync_status(sync_status, operator)

	Restricts the vulnerabilities that this query is performed on to the specified sync_status.

	Parameters:

	
	sync_status (str) – sync_status (“NOT_STARTED”, “MATCHED”, “ERROR”, “NOT_MATCHED”, “NOT_SUPPORTED”,
“CANCELLED”, “IN_PROGRESS”, “ACTIVE”, “COMPLETED”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_sync_type(sync_type, operator)

	Restricts the vulnerabilities that this query is performed on to the specified sync_type.

	Parameters:

	
	sync_type (str) – sync_type (“MANUAL”, “SCHEDULED”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_vcenter(vcenter_uuid)

	Restricts the vulnerabilities that this query is performed on to the specified vcenter id.

	Parameters:

	vcenter_uuid (str) – vcenter uuid.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_visibility(visibility)

	Restricts the vulnerabilities that this query is performed on to the specified visibility

	Parameters:

	visibility (str) – The visibility state of the vulnerabilty. (supports ACTIVE, DISMISSED)

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_vm_id(vm_id, operator)

	Restricts the vulnerabilities that this query is performed on to the specified vm_id.

	Parameters:

	
	vm_id (str) – vm_id.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_vuln_count(vuln_count, operator)

	Restricts the vulnerabilities that this query is performed on to the specified vuln_count.

	Parameters:

	
	vuln_count (str) – vuln_count.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(Vulnerabiltiy).sort_by("status")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	Raises:

	ApiError – If an invalid direction value is passed.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
class Vulnerability(cb, model_unique_id, os_product_id=None, initial_data=None)

	Bases: NewBaseModel

Represents a vulnerability

	Parameters:

	
	affected_assets – List of affected assets

	category – Vulnerability category

	device_count – Number of affected devices

	os_info – Information about the operating system associated with the vulnerability

	os_product_id – Operating system product ID

	product_info – Information about the vulnerable product

	vuln_info – Information about the vulnerability

Initialize the Vulnerability object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the vulnerability represented.

	os_product_id (str) – os_product_id of the vulnerabilty used to uniquely identify a CVE with
multiple OS/Product instances

	initial_data (dict) – Initial data used to populate the alert.

	
class AssetView(cb, initial_data=None)

	Bases: list

Represents a list of Vulnerability for an organization.

Initialize Vulnerability.AssetView object

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (list[dict]) – list of assets and their vulnerabilty view

	
append(object, /)

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count(value, /)

	Return number of occurrences of value.

	
extend(iterable, /)

	Extend list by appending elements from the iterable.

	
index(value, start=0, stop=9223372036854775807, /)

	Return first index of value.

Raises ValueError if the value is not present.

	
insert(index, object, /)

	Insert object before index.

	
pop(index=-1, /)

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove(value, /)

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort(*, key=None, reverse=False)

	Sort the list in ascending order and return None.

The sort is in-place (i.e. the list itself is modified) and stable (i.e. the
order of two equal elements is maintained).

If a key function is given, apply it once to each list item and sort them,
ascending or descending, according to their function values.

The reverse flag can be set to sort in descending order.

	
class OrgSummary(cb, initial_data=None)

	Bases: UnrefreshableModel

Represents a vulnerability summary for an organization.

	Parameters:

	
	monitored_assets – Number of assets being monitored

	severity_summary – Information about vulnerabilities at each severity level

Initialize Vulnerability.OrgSummary object

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – dictionary of the data

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
severity_levels()

	Returns the severity levels

	Returns:

	List of severities

	Return type:

	Severities (list[str])

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_affected_assets()

	Returns an AffectedAssetQuery to fetch the list of devices affected by the Vulnerability.

	Args;
	os_product_id (str) operating system product ID

	Returns:

	AffectedAssetQuery

	
perform_action(type, reason=None, notes=None)

	Take an action to manage the Vulnerability.

	Parameters:

	
	type (str) – The type of action. (supports DISMISS, DISMISS_EDIT, or UNDISMISS)

	reason (str) – The reason the vulnerabilty is dismissed. Required when type is DISMISS or DISMISS_EDIT.
(supports FALSE_POSITIVE, RESOLUTION_DEFERRED, NON_ISSUE, NON_CRITICAL_ASSET, UNDER_RESOLUTION, OTHER)

	notes (str) – Notes to be associated with the dismissal. Required when reason is OTHER.

	Returns:

	The action response

	Return type:

	obj

	Raises:

	ApiError – If the request is invalid or missing required properties

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class VulnerabilityAssetViewQuery(doc_class, cb)

	Bases: VulnerabilityQuery

Represents a query that is used fetch the Vulnerability Asset View

Initialize the VulnerabilityAssetViewQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, value, operator='EQUALS')

	Restricts the vulnerabilities that this query is performed on to the specified key value pair.

	Parameters:

	
	key (str) – Property from the vulnerability object

	value (str) – Value of the property to filter by

	operator (str) – (optional) logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
export()

	Performs the query and export the results in the form of a Job.

	Returns:

	The export job.

	Return type:

	Job

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_deployment_type(deployment_type, operator)

	Restricts the vulnerabilities that this query is performed on to the specified deployment type.

	Parameters:

	
	deployment_type (str) – deployment type (“ENDPOINT”, “AWS”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_device_type(device_type, operator)

	Restricts the vulnerabilities that this query is performed on to the specified device type.

	Parameters:

	
	device_type (str) – device type (“WORKLOAD”, “ENDPOINT”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_highest_risk_score(highest_risk_score, operator)

	Restricts the vulnerabilities that this query is performed on to the specified highest_risk_score.

	Parameters:

	
	highest_risk_score (double) – highest_risk_score.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_last_sync_ts(last_sync_ts, operator)

	Restricts the vulnerabilities that this query is performed on to the specified last_sync_ts.

	Parameters:

	
	last_sync_ts (str) – last_sync_ts.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_name(name, operator)

	Restricts the vulnerabilities that this query is performed on to the specified name.

	Parameters:

	
	name (str) – name.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_os_arch(os_arch, operator)

	Restricts the vulnerabilities that this query is performed on to the specified os_arch.

	Parameters:

	
	os_arch (str) – os_arch.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_os_name(os_name, operator)

	Restricts the vulnerabilities that this query is performed on to the specified os_name.

	Parameters:

	
	os_name (str) – os_name.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_os_type(os_type, operator)

	Restricts the vulnerabilities that this query is performed on to the specified os type.

	Parameters:

	
	os_type (str) – os type (“CENTOS”, “RHEL”, “SLES”, “UBUNTU”, “WINDOWS”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_os_version(os_version, operator)

	Restricts the vulnerabilities that this query is performed on to the specified os_version.

	Parameters:

	
	os_version (str) – os_version.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_severity(severity, operator)

	Restricts the vulnerabilities that this query is performed on to the specified severity.

	Parameters:

	
	severity (str) – severity (“CRITICAL”, “IMPORTANT”, “MODERATE”, “LOW”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_sync_status(sync_status, operator)

	Restricts the vulnerabilities that this query is performed on to the specified sync_status.

	Parameters:

	
	sync_status (str) – sync_status (“NOT_STARTED”, “MATCHED”, “ERROR”, “NOT_MATCHED”, “NOT_SUPPORTED”,
“CANCELLED”, “IN_PROGRESS”, “ACTIVE”, “COMPLETED”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_sync_type(sync_type, operator)

	Restricts the vulnerabilities that this query is performed on to the specified sync_type.

	Parameters:

	
	sync_type (str) – sync_type (“MANUAL”, “SCHEDULED”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_vcenter(vcenter_uuid)

	Restricts the vulnerabilities that this query is performed on to the specified vcenter id.

	Parameters:

	vcenter_uuid (str) – vcenter uuid.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_visibility(visibility)

	Restricts the vulnerabilities that this query is performed on to the specified visibility

	Parameters:

	visibility (str) – The visibility state of the vulnerabilty. (supports ACTIVE, DISMISSED)

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_vm_id(vm_id, operator)

	Restricts the vulnerabilities that this query is performed on to the specified vm_id.

	Parameters:

	
	vm_id (str) – vm_id.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_vuln_count(vuln_count, operator)

	Restricts the vulnerabilities that this query is performed on to the specified vuln_count.

	Parameters:

	
	vuln_count (str) – vuln_count.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(Vulnerabiltiy).sort_by("status")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	Raises:

	ApiError – If an invalid direction value is passed.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
class VulnerabilityOrgSummaryQuery(doc_class, cb, device=None)

	Bases: BaseQuery

Represents a query that is used fetch the VulnerabiltitySummary

Initialize the VulnerabilityQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	device (cbc_sdk.platform.devices.Device) – Optional Device object to indicate
VulnerabilityQuery is for a specific device

	
set_severity(severity)

	Restricts the vulnerability summary to a severity level

	Parameters:

	severity (str) – filters the vulnerability summary per severity (CRITICAL, IMPORTANT, MODERATE, LOW)

	Returns:

	This instance.

	Return type:

	VulnerabilityOrgSummaryQuery

	
set_vcenter(vcenter_uuid)

	Restricts the vulnerability summary to a specific vcenter

	Parameters:

	vcenter_uuid (str) – vcenter uuid.

	Returns:

	This instance.

	Return type:

	VulnerabilityOrgSummaryQuery

	
set_visibility(visibility)

	Restricts the vulnerabilities that this query is performed on to the specified visibility

	Parameters:

	visibility (str) – The visibility state of the vulnerabilty. (supports ACTIVE, DISMISSED)

	Returns:

	This instance.

	Return type:

	VulnerabilityOrgSummaryQuery

	
submit()

	Performs the query and returns the Vulnerability.OrgSummary

	Returns:

	The vulnerabilty summary for the organization

	Return type:

	Vulnerability.OrgSummary

	
class VulnerabilityQuery(doc_class, cb, device=None)

	Bases: BaseQuery, QueryBuilderSupportMixin, IterableQueryMixin, AsyncQueryMixin

Represents a query that is used to locate Vulnerabiltity objects.

Initialize the VulnerabilityQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	device (cbc_sdk.platform.devices.Device) – Optional Device object to indicate
VulnerabilityQuery is for a specific device

	
add_criteria(key, value, operator='EQUALS')

	Restricts the vulnerabilities that this query is performed on to the specified key value pair.

	Parameters:

	
	key (str) – Property from the vulnerability object

	value (str) – Value of the property to filter by

	operator (str) – (optional) logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
export()

	Performs the query and export the results in the form of a Job.

Example

>>> # Create the Vulnerability query
>>> query = cb.select(Vulnerability).set_severity('CRITICAL')
>>> # Export the results
>>> job = query.export()
>>> # wait for the export to finish
>>> job.await_completion()
>>> # write the results to a file
>>> job.get_output_as_file("vulnerabilities.csv")

	Returns:

	The export job.

	Return type:

	Job

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_deployment_type(deployment_type, operator)

	Restricts the vulnerabilities that this query is performed on to the specified deployment type.

	Parameters:

	
	deployment_type (str) – deployment type (“ENDPOINT”, “AWS”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_device_type(device_type, operator)

	Restricts the vulnerabilities that this query is performed on to the specified device type.

	Parameters:

	
	device_type (str) – device type (“WORKLOAD”, “ENDPOINT”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_highest_risk_score(highest_risk_score, operator)

	Restricts the vulnerabilities that this query is performed on to the specified highest_risk_score.

	Parameters:

	
	highest_risk_score (double) – highest_risk_score.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_last_sync_ts(last_sync_ts, operator)

	Restricts the vulnerabilities that this query is performed on to the specified last_sync_ts.

	Parameters:

	
	last_sync_ts (str) – last_sync_ts.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_name(name, operator)

	Restricts the vulnerabilities that this query is performed on to the specified name.

	Parameters:

	
	name (str) – name.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_os_arch(os_arch, operator)

	Restricts the vulnerabilities that this query is performed on to the specified os_arch.

	Parameters:

	
	os_arch (str) – os_arch.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_os_name(os_name, operator)

	Restricts the vulnerabilities that this query is performed on to the specified os_name.

	Parameters:

	
	os_name (str) – os_name.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_os_type(os_type, operator)

	Restricts the vulnerabilities that this query is performed on to the specified os type.

	Parameters:

	
	os_type (str) – os type (“CENTOS”, “RHEL”, “SLES”, “UBUNTU”, “WINDOWS”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_os_version(os_version, operator)

	Restricts the vulnerabilities that this query is performed on to the specified os_version.

	Parameters:

	
	os_version (str) – os_version.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_severity(severity, operator)

	Restricts the vulnerabilities that this query is performed on to the specified severity.

	Parameters:

	
	severity (str) – severity (“CRITICAL”, “IMPORTANT”, “MODERATE”, “LOW”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_sync_status(sync_status, operator)

	Restricts the vulnerabilities that this query is performed on to the specified sync_status.

	Parameters:

	
	sync_status (str) – sync_status (“NOT_STARTED”, “MATCHED”, “ERROR”, “NOT_MATCHED”, “NOT_SUPPORTED”,
“CANCELLED”, “IN_PROGRESS”, “ACTIVE”, “COMPLETED”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_sync_type(sync_type, operator)

	Restricts the vulnerabilities that this query is performed on to the specified sync_type.

	Parameters:

	
	sync_type (str) – sync_type (“MANUAL”, “SCHEDULED”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_vcenter(vcenter_uuid)

	Restricts the vulnerabilities that this query is performed on to the specified vcenter id.

	Parameters:

	vcenter_uuid (str) – vcenter uuid.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_visibility(visibility)

	Restricts the vulnerabilities that this query is performed on to the specified visibility

	Parameters:

	visibility (str) – The visibility state of the vulnerabilty. (supports ACTIVE, DISMISSED)

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_vm_id(vm_id, operator)

	Restricts the vulnerabilities that this query is performed on to the specified vm_id.

	Parameters:

	
	vm_id (str) – vm_id.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_vuln_count(vuln_count, operator)

	Restricts the vulnerabilities that this query is performed on to the specified vuln_count.

	Parameters:

	
	vuln_count (str) – vuln_count.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(Vulnerabiltiy).sort_by("status")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	Raises:

	ApiError – If an invalid direction value is passed.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
log = <Logger cbc_sdk.platform.vulnerability_assessment (WARNING)>

	Vulnerability models

Workload Package

CIS Benchmarks

Model and Query Classes for Compliance Assessment API

	
class ComplianceBenchmark(cb, model_unique_id, initial_data=None)

	Bases: UnrefreshableModel

Class representing Compliance Benchmarks.

	Parameters:

	
	id – Unique identifier for the benchmark set.

	name – Name of the benchmark set.

	version – Version of the benchmark set.

	os_family – Operating system family associated with the benchmark set (e.g., WINDOWS_SERVER).

	enabled – Indicates whether the benchmark set is enabled or not.

	type – Type of the benchmark set (e.g., Custom).

	supported_os_info – Array of supported operating system information.

	created_by – Name of the user who created the benchmark set.

	updated_by – Email of the user who last updated the benchmark set.

	create_time – Timestamp indicating when the benchmark set was created (in ISO 8601 format).

	update_time – Timestamp indicating when the benchmark set was last updated (in ISO 8601 format).

	release_time – Timestamp indicating when the benchmark set was released (in ISO 8601 format).

Initialize a ComplianceBenchmark instance.

	Parameters:

	
	cb (CBCloudAPI) – Instance of CBCloudAPI.

	initial_data (dict) – Initial data for the instance.

	model_unique_id (str) – Unique identifier for the model.

	Returns:

	An instance of ComplianceBenchmark.

	Return type:

	ComplianceBenchmark

	
execute_action(action, device_ids=None)

	Execute a specified action for the Benchmark Set for all devices or a specified subset.

	Required Permissions:
	complianceAssessment.data(EXECUTE)

	Parameters:

	
	action (str) – The action to be executed. Options: ENABLE, DISABLE, REASSESS

	device_ids (str or list, optional) – IDs of devices on which the action will be executed.
If specified as a string, only one device will be targeted. If specified as a list,
the action will be executed on multiple devices. Default is None.

	Returns:

	JSON response containing information about the executed action.

	Return type:

	dict

	Raises:

	ApiError – If the provided action is not one of the allowed actions.

Example

To reassess an object:
benchmark_sets = cb.select(ComplianceBenchmark)
benchmark_sets[0].execute_action(‘REASSESS’)

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
static get_compliance_schedule(cb)

	Gets the compliance scan schedule and timezone configured for the Organization.

	Parameters:

	cb (CBCloudAPI) – An instance of CBCloudAPI representing the Carbon Black Cloud API.

	Required Permissions:
	complianceAssessment.data(READ)

	Raises:

	ApiError – If cb is not an instance of CBCloudAPI.

	Returns:

	The configured organization settings for Compliance Assessment.

	Return type:

	dict

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> schedule = ComplianceBenchmark.get_compliance_schedule(cb)
>>> print(schedule)

	
get_device_compliances(query='')

	Fetches devices compliance summaries associated with the benchmark set.

	Required Permissions:
	complianceAssessment.data(READ)

	Parameters:

	query (str, optional) – The query to filter results.

	Returns:

	List of Device Compliances

	Return type:

	[dict]

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> benchmark_set = cb.select(ComplianceBenchmark).first()
>>> device_compliances = benchmark_set.get_device_compliance()

	
get_device_rule_compliances(device_id, query='')

	Fetches rule compliances for specific device.

	Required Permissions:
	complianceAssessment.data(READ)

	Parameters:

	
	device_id (int) – Device id to fetch benchmark rule compliance

	query (str, optional) – The query to filter results.

	Returns:

	List of Rule Compliances

	Return type:

	[dict]

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> benchmark_set = cb.select(ComplianceBenchmark).first()
>>> rules = benchmark_set.get_device_rule_compliance(123)

	
get_rule_compliance_devices(rule_id, query='')

	Fetches device compliances for a specific rule.

	Required Permissions:
	complianceAssessment.data(READ)

	Parameters:

	
	rule_id (str) – Rule id to fetch device compliances

	query (str, optional) – The query to filter results.

	Returns:

	List of Device Compliances

	Return type:

	[dict]

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> benchmark_set = cb.select(ComplianceBenchmark).first()
>>> rules = benchmark_set.get_rule_compliance_devices("BCCAAACA-F0BE-4C0F-BE0A-A09FC1641EE2")

	
get_rule_compliances(query='')

	Fetches rule compliance summaries associated with the benchmark set.

	Required Permissions:
	complianceAssessment.data(READ)

	Parameters:

	query (str, optional) – The query to filter results.

	Returns:

	List of Rule Compliances

	Return type:

	[dict]

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> benchmark_set = cb.select(ComplianceBenchmark).first()
>>> rules = benchmark_set.get_rule_compliance()

	
get_rules(rule_id=None)

	Fetches compliance rules associated with the benchmark set.

	Required Permissions:
	complianceAssessment.data(READ)

	Parameters:

	rule_id (str, optional) – The rule ID to fetch a specific rule. Defaults to None.

	Returns:

	List of Benchmark Rules

	Return type:

	[dict]

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> benchmark_set = cb.select(ComplianceBenchmark).first()
>>> # To return all rules within a benchmark set, leave get_rules empty.
>>> rules = benchmark_set.get_rules()

	
get_sections()

	Get Sections of the Benchmark Set.

	Required Permissions:
	complianceAssessment.data(READ)

	Returns:

	List of sections within the Benchmark Set.

	Return type:

	list[dict]

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> benchmark = cb.select(ComplianceBenchmark).first()
>>> for section in benchmark.get_sections():
... print(section.section_name, section.section_id)

	
refresh()

	Reload this object from the server.

	
static set_compliance_schedule(cb, scan_schedule, scan_timezone)

	Sets the compliance scan schedule and timezone for the organization.

	Required Permissions:
	complianceAssessment.data(UPDATE)

	Parameters:

	
	cb (CBCloudAPI) – An instance of CBCloudAPI representing the Carbon Black Cloud API.

	scan_schedule (str) – The scan schedule, specified in RFC 5545 format.
Example: “RRULE:FREQ=DAILY;BYHOUR=17;BYMINUTE=30;BYSECOND=0”.

	scan_timezone (str) – The timezone in which the scan will run,
specified as a timezone string. Example: “UTC”.

	Raises:

	ApiError – If cb is not an instance of CBCloudAPI, or if scan_schedule or scan_timezone are not provided.

	Returns:

	The configured organization settings for Compliance Assessment.

	Return type:

	dict

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> schedule = ComplianceBenchmark.set_compliance_schedule(cb,
 scan_schedule="RRULE:FREQ=DAILY;BYHOUR=17;BYMINUTE=30;BYSECOND=0",
 scan_timezone="UTC")
>>> print(schedule)

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
update_rules(rule_ids, enabled)

	Update compliance rules associated with the benchmark set.

	Required Permissions:
	complianceAssessment.data(UPDATE)

	Parameters:

	
	rule_ids (list[str]) – The rule IDs to update their enabled/disabled status.

	enabled (bool) – Whether the rule is enabled or disabled.

	Returns:

	List of Updated Benchmark Rules

	Return type:

	[dict]

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> benchmark_set = cb.select(ComplianceBenchmark).first()
>>> # To return all rules within a benchmark set, leave get_rules empty.
>>> rules = benchmark_set.update_rules(["2A65B63E-89D9-4844-8290-5042FDF2A27B"], True)

	
class ComplianceBenchmarkQuery(doc_class, cb)

	Bases: BaseQuery, QueryBuilderSupportMixin, CriteriaBuilderSupportMixin, IterableQueryMixin, AsyncQueryMixin

A class representing a query for Compliance Benchmark.

Initialize a ComplianceBenchmarkQuery instance.

	Parameters:

	
	doc_class (class) – The document class for this query.

	cb (CBCloudAPI) – An instance of CBCloudAPI.

	Returns:

	An instance of ComplianceBenchmarkQuery.

	Return type:

	ComplianceBenchmarkQuery

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	The query with sorting parameters.

	Return type:

	Query

	Raises:

	ApiError – If an invalid sort direction is specified.

Example

To sort by a field in descending order:

>>> cb = CBCloudAPI(profile="example_profile")
>>> benchmark_sets = cb.select(ComplianceBenchmark).sort_by("name", direction="DESC")
>>> print(*benchmark_sets)

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
log = <Logger cbc_sdk.workload.compliance_assessment (WARNING)>

	Compliance models

NSX Remediation Module

NSX Remediation for Workloads

	
class NSXRemediationJob(cb, running_job_ids)

	Bases: object

An object that runs and monitors an NSX Remediation operation.

Creates a new NSXRemediationJob object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	running_job_ids (list[str]) – The list of running job IDs.

	
async_await_result()

	Sets up a Future which can be used to wait asynchronously for all running jobs to be completed.

	Required Permissions:
	appliances.registration(READ)

	Returns:

	A future representing the job and its results.

	Return type:

	Future

	
await_result()

	Waits for all running jobs to be completed and returns the final status.

	Required Permissions:
	appliances.registration(READ)

	Returns:

	The final status, mapping individual job IDs to status value dicts.

	Return type:

	dict

	
classmethod start_request(cb, device_ids, tag, set_tag=True)

	Starts an NSX Remediation request and returns the job object.

	Required Permissions:
	appliances.nsx.remediation(EXECUTE)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	device_ids (int|list) – The device ID(s) to run the remediation request on.

	tag (str) – The NSX tag to apply to specified devices. Valid values are “CB-NSX-Quarantine”,
“CB-NSX-Isolate”, and “CB-NSX-Custom”.

	set_tag (bool) – True to toggle the specified tag on, False to toggle it off. Default True.

	Returns:

	The object representing all running jobs.

	Return type:

	NSXRemediationJob

	Raises:

	
	ApiError – If the parameters to start the request are incorrect.

	ServerError – If the request could not be successfully started.

	
property status

	Returns the current status.

	Returns:

	The current status, mapping individual job IDs to status value dicts.

	Return type:

	dict

Sensor Lifecycle Module

Sensor Lifecycle Management for Workloads

	
class SensorKit(cb, initial_data=None)

	Bases: UnrefreshableModel

Represents the information about a sensor, including installation file URLs.

	Parameters:

	
	sensor_type – The type of information this sensor is for.

	sensor_url – The URL for downloading the sensor installation package.

	sensor_config_url – The URL for downloading the sensor configuration information.

	error_code – Code for any error that occurred while getting the sensor information.

	message – Message for any error that occurred while getting the sensor information.

Initialize the SensorKit object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the sensor kit data.

	
classmethod from_type(cb, device_type, architecture, sensor_type, version)

	Helper method used to create a temporary SensorKit object from its four components.

This method CANNOT be used to create an object that will be persisted to the server.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	device_type (str) – Device type to be used. Valid values are “WINDOWS”, “LINUX”, and “MAC”.

	architecture (str) – Architecture to be used. Valid values are “32”, “64”, and “OTHER”.

	sensor_type (str) – Sensor type to be used. Valid values are “WINDOWS”, “MAC”, “RHEL”, “UBUNTU”, “SUSE”,
and “AMAZON_LINUX”.

	version (str) – Sensor version number to be used.

	Returns:

	A SensorType object with those specified values.

	Return type:

	SensorType

	Raises:

	ApiError – If an invalid value was used for one of the three limited values.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
classmethod get_config_template(cb)

	Retrieve the sample config.ini file with the properties populated from the server.

	Parameters:

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	Returns:

	Text of the sample configuration file.

	Return type:

	str

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class SensorKitQuery(doc_class, cb)

	Bases: BaseQuery, CriteriaBuilderSupportMixin, IterableQueryMixin, AsyncQueryMixin

Query class used to read in SensorKit objects.

Initialize the SensorKitQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
add_sensor_kit_type(skit=None, **kwargs)

	Add a sensor kit type to the request.

	Parameters:

	
	skit (SensorKit) – The sensor kit type to be added to the request.

	**kwargs (dict) – If skit is None, the keyword arguments ‘device_type’, ‘architecture’, ‘sensor_type’,
and ‘version’ are used to create the sensor kit type to be added.

	Returns:

	Reference to this object.

	Return type:

	SensorKitQuery

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
config_params(params)

	Sets the configuration parameters for the sensor kit query request.

	Parameters:

	params (str) – The text of a config.ini file with a list of sensor properties to configure
on installation.

	Returns:

	Reference to this object.

	Return type:

	SensorKitQuery

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
expires(expiration_date_time)

	Sets the expiration date and time for the sensor kit query request.

	Parameters:

	expiration_date_time (str) – The time at which the sensor download link will expire, expressed
as ISO 8601 UTC.

	Returns:

	Reference to this object.

	Return type:

	SensorKitQuery

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

VM Workloads Search Module

Model and Query Classes for VM Workloads Search API

	
class AWSComputeResource(cb, model_unique_id, initial_data=None)

	Bases: BaseComputeResource

Models an AWS compute resource.

Initialize the AWSComputeResource object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
classmethod bulk_install(cb, compute_resources, sensor_kit_types, config_file=None)

	Install a sensor on a list of compute resources.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	compute_resources (list) – A list of ComputeResource objects used to specify compute resources to install
sensors on.

	sensor_kit_types (list) – A list of SensorKit objects used to specify sensor types to choose from
in installation.

	config_file (str) – The text of a config.ini file with a list of sensor properties to configure
on installation.

	Returns:

	A dict with two members, ‘type’ and ‘code’, indicating the status of the installation.

	Return type:

	dict

	Raises:

	NotImplementedError – Always, for BaseComputeResource.

	
classmethod bulk_install_by_id(cb, compute_resources, sensor_kit_types, config_file=None)

	Install a sensor on a list of compute resources, specified by ID.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	compute_resources (list) – A list of dicts, each of which contains the keys ‘vcenter_uuid’ and
‘compute_resource_id’, specifying the compute resources to install sensors on.

	sensor_kit_types (list) – A list of SensorKit objects used to specify sensor types to choose from
in installation.

	config_file (str) – The text of a config.ini file with a list of sensor properties to configure
on installation.

	Returns:

	A dict with two members, ‘type’ and ‘code’, indicating the status of the installation.

	Return type:

	dict

	Raises:

	NotImplementedError – Always, for BaseComputeResource.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
install_sensor(sensor_version, config_file=None)

	Install a sensor on this compute resource.

	Parameters:

	
	sensor_version (str) – The version number of the sensor to be used.

	config_file (str) – The text of a config.ini file with a list of sensor properties to configure
on installation.

	Returns:

	A dict with two members, ‘type’ and ‘code’, indicating the status of the installation.

	Return type:

	dict

	Raises:

	NotImplementedError – Always, for BaseComputeResource.

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class AWSComputeResourceQuery(doc_class, cb)

	Bases: BaseComputeResourceQuery

Represents a query that is used to locate AWSComputeResource objects.

Initialize the ComputeResourceQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
download(download_format=None)

	Downloads all compute resources matching the specific criteria.

Example

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.workload import VCenterComputeResource
>>> cbc = CBCloudAPI()
>>> query = cbc.select(VCenterComputeResource).set_os_type(["UBUNTU"]).set_eligibility(["ELIGIBLE"])
>>> query.set_installation_status(["ERROR"])
>>> job = query.download("CSV")
>>> job.await_completion()
>>> print(job.get_output_as_string())

	Required Permissions:
	public.cloud.inventory(READ) or _API.Public.Cloud:Public.cloud.inventory:READ, jobs.status(READ)

	Parameters:

	download_format (str) – The download format to be used. Valid values are “JSON” (the default) and “CSV”.

	Returns:

	Asynchronous job which will supply the results of the download when they’re complete.

	Return type:

	Job

	Raises:

	ApiError – If the format specified was not valid, or if the server did not properly return the job.

	
exclude_auto_scaling_group_name(auto_scaling_group_name)

	Excludes the specified auto scaling group name from appearing in the search results.

	Parameters:

	auto_scaling_group_name (list) – List of string auto scaling group names.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
exclude_availability_zone(availability_zone)

	Excludes the specified availability zone from appearing in the search results.

	Parameters:

	availability_zone (list) – List of string availability zones.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
exclude_cloud_provider_account_id(cloud_provider_account_id)

	Excludes the specified cloud provider account ID from appearing in the search results.

	Parameters:

	cloud_provider_account_id (list) – List of string cloud provider account IDs.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
exclude_cloud_provider_resource_id(cloud_provider_resource_id)

	Excludes the specified cloud provider resource ID from appearing in the search results.

	Parameters:

	cloud_provider_resource_id (list) – List of string cloud provider resource IDs.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
exclude_cloud_provider_tags(cloud_provider_tags)

	Excludes the specified cloud provider tags from appearing in the search results.

	Parameters:

	cloud_provider_tags (list) – List of string cloud provider tags.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
exclude_id(id_value)

	Excludes the specified compute resource ID from appearing in the search results.

	Parameters:

	id_value (list) – List of string compute resource IDs.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
exclude_installation_status(installation_status)

	Excludes the specified installation status from appearing in the search results.

	Parameters:

	installation_status (list) – List of string installation statuses.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
exclude_name(name)

	Excludes the specified compute resource name from appearing in the search results.

	Parameters:

	name (list) – List of string compute resource names.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
exclude_platform(platform)

	Excludes the specified platform from appearing in the search results.

	Parameters:

	platform (list) – List of string platforms.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
exclude_platform_details(platform_details)

	Excludes the specified platform details from appearing in the search results.

	Parameters:

	platform_details (list) – List of string platform details.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
exclude_region(region)

	Excludes the specified region from appearing in the search results.

	Parameters:

	region (list) – List of string regions.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
exclude_subnet_id(subnet_id)

	Excludes the specified subnet ID from appearing in the search results.

	Parameters:

	subnet_id (list) – List of string subnet IDs.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
exclude_virtual_private_cloud_id(virtual_private_cloud_id)

	Excludes the specified virtual private cloud ID from appearing in the search results.

	Parameters:

	virtual_private_cloud_id (list) – List of string virtual private cloud IDs.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
facet(fields, rows=None)

	Facets all compute resources matching the specified criteria and returns the facet results.

Example

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.workload import AWSComputeResource
>>> cbc = CBCloudAPI()
>>> query = cbc.select(AWSComputeResource)
>>> facets = query.facet(['platform', 'virtual_private_cloud_id'])

	Required Permissions:
	public.cloud.inventory(READ) or _API.Public.Cloud:Public.cloud.inventory:READ

	Parameters:

	
	fields (list[str]) – List of the fields to be faceted on.

	rows (int) – Number of the top entries to return. Default is 20.

	Returns:

	The facet data.

	Return type:

	list[ComputeResourceFacet]

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_auto_scaling_group_name(auto_scaling_group_name)

	Restricts the search that this query is performed on to the specified auto scaling group name.

	Parameters:

	auto_scaling_group_name (list) – List of string auto scaling group names.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
set_availability_zone(availability_zone)

	Restricts the search that this query is performed on to the specified availability zone.

	Parameters:

	availability_zone (list) – List of string availability zones.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
set_cloud_provider_account_id(cloud_provider_account_id)

	Restricts the search that this query is performed on to the specified cloud provider account ID.

	Parameters:

	cloud_provider_account_id (list) – List of string cloud provider account IDs.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
set_cloud_provider_resource_id(cloud_provider_resource_id)

	Restricts the search that this query is performed on to the specified cloud provider resource ID.

	Parameters:

	cloud_provider_resource_id (list) – List of string cloud provider resource IDs.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
set_cloud_provider_tags(cloud_provider_tags)

	Restricts the search that this query is performed on to the specified cloud provider tags.

	Parameters:

	cloud_provider_tags (list) – List of string cloud provider tags.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
set_id(id_value)

	Restricts the search that this query is performed on to the specified compute resource ID.

	Parameters:

	id_value (list) – List of string compute resource IDs.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
set_installation_status(installation_status)

	Restricts the search that this query is performed on to the specified installation status.

	Parameters:

	installation_status (list) – List of string installation statuses.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
set_name(name)

	Restricts the search that this query is performed on to the specified compute resource name.

	Parameters:

	name (list) – List of string compute resource names.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
set_platform(platform)

	Restricts the search that this query is performed on to the specified platform.

	Parameters:

	platform (list) – List of string platforms.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
set_platform_details(platform_details)

	Restricts the search that this query is performed on to the specified platform details.

	Parameters:

	platform_details (list) – List of string platform details.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
set_region(region)

	Restricts the search that this query is performed on to the specified region.

	Parameters:

	region (list) – List of string regions.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
set_subnet_id(subnet_id)

	Restricts the search that this query is performed on to the specified subnet ID.

	Parameters:

	subnet_id (list) – List of string subnet IDs.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
set_virtual_private_cloud_id(virtual_private_cloud_id)

	Restricts the search that this query is performed on to the specified virtual private cloud ID.

	Parameters:

	virtual_private_cloud_id (list) – List of string virtual private cloud IDs.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(ComputeResource).sort_by("name")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order.

	Returns:

	This instance.

	Return type:

	BaseComputeResourceQuery

	
summarize(summary_fields)

	Get compute resource summaries on required fields of the resources with the specified criteria.

Example

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.workload import AWSComputeResource
>>> cbc = CBCloudAPI()
>>> query = cbc.select(AWSComputeResource)
>>> summary = query.summarize(['availability_zone', 'region', 'virtual_private_cloud_id'])

	Required Permissions:
	public.cloud.inventory(READ) or _API.Public.Cloud:Public.cloud.inventory:READ

	Parameters:

	summary_fields (list[str]) – The fields to be summarized.

	Returns:

	A mapping of field names to the number of resources with that field.

	Return type:

	map[str, int]

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
class BaseComputeResource(cb, model_unique_id, initial_data=None)

	Bases: NewBaseModel

Internal BaseComputeResource model

Initialize the BaseComputeResource object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the compute resource represented.

	initial_data (dict) – Initial data used to populate the resource object.

	
classmethod bulk_install(cb, compute_resources, sensor_kit_types, config_file=None)

	Install a sensor on a list of compute resources.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	compute_resources (list) – A list of ComputeResource objects used to specify compute resources to install
sensors on.

	sensor_kit_types (list) – A list of SensorKit objects used to specify sensor types to choose from
in installation.

	config_file (str) – The text of a config.ini file with a list of sensor properties to configure
on installation.

	Returns:

	A dict with two members, ‘type’ and ‘code’, indicating the status of the installation.

	Return type:

	dict

	Raises:

	NotImplementedError – Always, for BaseComputeResource.

	
classmethod bulk_install_by_id(cb, compute_resources, sensor_kit_types, config_file=None)

	Install a sensor on a list of compute resources, specified by ID.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	compute_resources (list) – A list of dicts, each of which contains the keys ‘vcenter_uuid’ and
‘compute_resource_id’, specifying the compute resources to install sensors on.

	sensor_kit_types (list) – A list of SensorKit objects used to specify sensor types to choose from
in installation.

	config_file (str) – The text of a config.ini file with a list of sensor properties to configure
on installation.

	Returns:

	A dict with two members, ‘type’ and ‘code’, indicating the status of the installation.

	Return type:

	dict

	Raises:

	NotImplementedError – Always, for BaseComputeResource.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
install_sensor(sensor_version, config_file=None)

	Install a sensor on this compute resource.

	Parameters:

	
	sensor_version (str) – The version number of the sensor to be used.

	config_file (str) – The text of a config.ini file with a list of sensor properties to configure
on installation.

	Returns:

	A dict with two members, ‘type’ and ‘code’, indicating the status of the installation.

	Return type:

	dict

	Raises:

	NotImplementedError – Always, for BaseComputeResource.

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class BaseComputeResourceQuery(doc_class, cb)

	Bases: BaseQuery, QueryBuilderSupportMixin, CriteriaBuilderSupportMixin, IterableQueryMixin, AsyncQueryMixin

Base class for compute resource queries, not intended for direct use.

Initialize the BaseComputeResourceQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
download(download_format=None)

	Downloads all compute resources matching the specific criteria.

Example

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.workload import VCenterComputeResource
>>> cbc = CBCloudAPI()
>>> query = cbc.select(VCenterComputeResource).set_os_type(["UBUNTU"]).set_eligibility(["ELIGIBLE"])
>>> query.set_installation_status(["ERROR"])
>>> job = query.download("CSV")
>>> job.await_completion()
>>> print(job.get_output_as_string())

	Required Permissions:
	public.cloud.inventory(READ) or _API.Public.Cloud:Public.cloud.inventory:READ, jobs.status(READ)

	Parameters:

	download_format (str) – The download format to be used. Valid values are “JSON” (the default) and “CSV”.

	Returns:

	Asynchronous job which will supply the results of the download when they’re complete.

	Return type:

	Job

	Raises:

	ApiError – If the format specified was not valid, or if the server did not properly return the job.

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
facet(fields, rows=None)

	Facets all compute resources matching the specified criteria and returns the facet results.

Example

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.workload import AWSComputeResource
>>> cbc = CBCloudAPI()
>>> query = cbc.select(AWSComputeResource)
>>> facets = query.facet(['platform', 'virtual_private_cloud_id'])

	Required Permissions:
	public.cloud.inventory(READ) or _API.Public.Cloud:Public.cloud.inventory:READ

	Parameters:

	
	fields (list[str]) – List of the fields to be faceted on.

	rows (int) – Number of the top entries to return. Default is 20.

	Returns:

	The facet data.

	Return type:

	list[ComputeResourceFacet]

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(ComputeResource).sort_by("name")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order.

	Returns:

	This instance.

	Return type:

	BaseComputeResourceQuery

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
class ComputeResourceFacet(cb, model_unique_id, initial_data=None)

	Bases: UnrefreshableModel

Facet data returned by the facet() method of the query.

Initialize the ComputeResourceFacet object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the facet represented.

	initial_data (dict) – Initial data used to populate the facet.

	
class ComputeResourceFacetValue(cb, model_unique_id, initial_data=None)

	Bases: UnrefreshableModel

Represents a single facet value inside a ComputeResourceFacet.

Initialize the ComputeResourceFacetValue object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the facet value represented.

	initial_data (dict) – Initial data used to populate the facet value.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
property values

	Returns the values for this particular facet.

	Returns:

	The values of this facet.

	Return type:

	list[ComputeResourceFacet.ComputeResourceFacetValue]

	
class VCenterComputeResource(cb, model_unique_id, initial_data=None)

	Bases: BaseComputeResource

Models a vCenter compute resource.

Initialize the VCenterComputeResource object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
classmethod bulk_install(cb, compute_resources, sensor_kit_types, config_file=None)

	Install a sensor on a list of compute resources.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	compute_resources (list) – A list of ComputeResource objects used to specify compute resources to install
sensors on.

	sensor_kit_types (list) – A list of SensorKit objects used to specify sensor types to choose from
in installation.

	config_file (str) – The text of a config.ini file with a list of sensor properties to configure
on installation.

	Returns:

	A dict with two members, ‘type’ and ‘code’, indicating the status of the installation.

	Return type:

	dict

	
classmethod bulk_install_by_id(cb, compute_resources, sensor_kit_types, config_file=None)

	Install a sensor on a list of compute resources, specified by ID.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	compute_resources (list) – A list of dicts, each of which contains the keys ‘vcenter_uuid’ and
‘compute_resource_id’, specifying the compute resources to install sensors on.

	sensor_kit_types (list) – A list of SensorKit objects used to specify sensor types to choose from
in installation.

	config_file (str) – The text of a config.ini file with a list of sensor properties to configure
on installation.

	Returns:

	A dict with two members, ‘type’ and ‘code’, indicating the status of the installation.

	Return type:

	dict

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
install_sensor(sensor_version, config_file=None)

	Install a sensor on this compute resource.

	Parameters:

	
	sensor_version (str) – The version number of the sensor to be used.

	config_file (str) – The text of a config.ini file with a list of sensor properties to configure
on installation.

	Returns:

	A dict with two members, ‘type’ and ‘code’, indicating the status of the installation.

	Return type:

	dict

	Raises:

	ApiError – If the compute node is not eligible or is of an invalid type.

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class VCenterComputeResourceQuery(doc_class, cb)

	Bases: BaseComputeResourceQuery

Represents a query that is used to locate ComputeResource objects.

Initialize the ComputeResourceQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
download(download_format=None)

	Downloads all compute resources matching the specific criteria.

Example

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.workload import VCenterComputeResource
>>> cbc = CBCloudAPI()
>>> query = cbc.select(VCenterComputeResource).set_os_type(["UBUNTU"]).set_eligibility(["ELIGIBLE"])
>>> query.set_installation_status(["ERROR"])
>>> job = query.download("CSV")
>>> job.await_completion()
>>> print(job.get_output_as_string())

	Required Permissions:
	public.cloud.inventory(READ) or _API.Public.Cloud:Public.cloud.inventory:READ, jobs.status(READ)

	Parameters:

	download_format (str) – The download format to be used. Valid values are “JSON” (the default) and “CSV”.

	Returns:

	Asynchronous job which will supply the results of the download when they’re complete.

	Return type:

	Job

	Raises:

	ApiError – If the format specified was not valid, or if the server did not properly return the job.

	
exclude_appliance_uuid(appliance_uuid)

	Excludes the specified appliance UUID from appearing in the search results.

	Parameters:

	appliance_uuid (list) – List of string appliance uuids.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_cluster_name(cluster_name)

	Excludes the specified cluster name from appearing in the search results.

	Parameters:

	cluster_name (list) – List of string cluster names.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_datacenter_name(datacenter_name)

	Excludes the specified datacenter name from appearing in the search results.

	Parameters:

	datacenter_name (list) – List of string datacenter names.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_device_guid(device_guid)

	Excludes the specified device GUID from appearing in the search results.

	Parameters:

	device_guid (list) – List of string device GUIDs.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_eligibility(eligibility)

	Excludes the specified eligibility from appearing in the search results.

	Parameters:

	eligibility (list) – List of string eligibilities.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_eligibility_code(eligibility_code)

	Excludes the specified eligibility code from appearing in the search results.

	Parameters:

	eligibility_code (list) – List of string eligibility codes.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_esx_host_name(esx_host_name)

	Excludes the specified ESX host name from appearing in the search results.

	Parameters:

	esx_host_name (list) – List of string ESX host names.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_esx_host_uuid(esx_host_uuid)

	Excludes the specified ESX host UUID from appearing in the search results.

	Parameters:

	esx_host_uuid (list) – List of string ESX host UUIDs.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_host_name(host_name)

	Excludes the specified host name from appearing in the search results.

	Parameters:

	host_name (list) – List of string host names.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_installation_status(installation_status)

	Excludes the specified installation status from appearing in the search results.

	Parameters:

	installation_status (list) – List of string installation statuses.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_installation_type(installation_type)

	Excludes the specified installation type from appearing in the search results.

	Parameters:

	installation_type (list) – List of string installation types.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_ip_address(ip_address)

	Excludes the specified IP address from appearing in the search results.

	Parameters:

	ip_address (list) – List of string IP addresses.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_name(name)

	Excludes the specified name from appearing in the search results.

	Parameters:

	name (list) – List of string names.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_os_architecture(os_architecture)

	Excludes the specified OS architecture from appearing in the search results.

	Parameters:

	os_architecture (list) – List of string OS architectures.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_os_description(os_description)

	Excludes the specified OS description from appearing in the search results.

	Parameters:

	os_description (list) – List of string OS descriptions.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_os_type(os_type)

	Excludes the specified OS type from appearing in the search results.

	Parameters:

	os_type (list) – List of string OS types.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_registration_id(registration_id)

	Excludes the specified registration ID from appearing in the search results.

	Parameters:

	registration_id (list) – List of string registration IDs.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_uuid(uuid)

	Excludes the specified UUID from appearing in the search results.

	Parameters:

	uuid (list) – List of string UUIDs.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_vcenter_host_url(vcenter_host_url)

	Excludes the specified vCenter host URL from appearing in the search results.

	Parameters:

	vcenter_host_url (list) – List of string vCenter host URLs.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_vcenter_name(vcenter_name)

	Excludes the specified vCenter name from appearing in the search results.

	Parameters:

	vcenter_name (list) – List of string vCenter names.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_vcenter_uuid(vcenter_uuid)

	Excludes the specified vCenter UUID from appearing in the search results.

	Parameters:

	vcenter_uuid (list) – List of string vCenter UUIDs.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_vmwaretools_version(vmwaretools_version)

	Excludes the specified VMware Tools version from appearing in the search results.

	Parameters:

	vmwaretools_version (list) – List of string VMware Tools versions.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
facet(fields, rows=None)

	Facets all compute resources matching the specified criteria and returns the facet results.

Example

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.workload import AWSComputeResource
>>> cbc = CBCloudAPI()
>>> query = cbc.select(AWSComputeResource)
>>> facets = query.facet(['platform', 'virtual_private_cloud_id'])

	Required Permissions:
	public.cloud.inventory(READ) or _API.Public.Cloud:Public.cloud.inventory:READ

	Parameters:

	
	fields (list[str]) – List of the fields to be faceted on.

	rows (int) – Number of the top entries to return. Default is 20.

	Returns:

	The facet data.

	Return type:

	list[ComputeResourceFacet]

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_appliance_uuid(appliance_uuid)

	Restricts the search that this query is performed on to the specified appliance uuid.

	Parameters:

	appliance_uuid (list) – List of string appliance uuids.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_cluster_name(cluster_name)

	Restricts the search that this query is performed on to the specified cluster name.

	Parameters:

	cluster_name (list) – List of string cluster names.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_datacenter_name(datacenter_name)

	Restricts the search that this query is performed on to the specified datacenter name.

	Parameters:

	datacenter_name (list) – List of string datacenter names.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_device_guid(device_guid)

	Restricts the search that this query is performed on to the specified device GUID.

	Parameters:

	device_guid (list) – List of string device GUIDs.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_eligibility(eligibility)

	Restricts the search that this query is performed on to the specified eligibility.

	Parameters:

	eligibility (list) – List of string eligibilities.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_eligibility_code(eligibility_code)

	Restricts the search that this query is performed on to the specified eligibility code.

	Parameters:

	eligibility_code (list) – List of string eligibility codes.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_esx_host_name(esx_host_name)

	Restricts the search that this query is performed on to the specified ESX host name.

	Parameters:

	esx_host_name (list) – List of string ESX host names.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_esx_host_uuid(esx_host_uuid)

	Restricts the search that this query is performed on to the specified ESX host UUID.

	Parameters:

	esx_host_uuid (list) – List of string ESX host UUIDs.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_host_name(host_name)

	Restricts the search that this query is performed on to the specified host name.

	Parameters:

	host_name (list) – List of string host names.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_installation_status(installation_status)

	Restricts the search that this query is performed on to the specified installation status.

	Parameters:

	installation_status (list) – List of string installation status.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_installation_type(installation_type)

	Restricts the search that this query is performed on to the specified installation type.

	Parameters:

	installation_type (list) – List of string installation types.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_ip_address(ip_address)

	Restricts the search that this query is performed on to the specified ip address.

	Parameters:

	ip_address (list) – List of string ip addresses.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_name(name)

	Restricts the search that this query is performed on to the specified name.

	Parameters:

	name (list) – List of string names.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_os_architecture(os_architecture)

	Restricts the search that this query is performed on to the specified os architecture.

	Parameters:

	os_architecture (list) – List of string os architecture.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_os_description(os_description)

	Restricts the search that this query is performed on to the specified os description.

	Parameters:

	os_description (list) – List of string os description.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_os_type(os_type)

	Restricts the search that this query is performed on to the specified os type.

	Parameters:

	os_type (list) – List of string os type.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_registration_id(registration_id)

	Restricts the search that this query is performed on to the specified registration ID.

	Parameters:

	registration_id (list) – List of string registration IDs.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_uuid(uuid)

	Restricts the search that this query is performed on to the specified uuid.

	Parameters:

	uuid (list) – List of string uuid.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_vcenter_host_url(vcenter_host_url)

	Restricts the search that this query is performed on to the specified vCenter host URL.

	Parameters:

	vcenter_host_url (list) – List of string vCenter host URLs.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_vcenter_name(vcenter_name)

	Restricts the search that this query is performed on to the specified vCenter name.

	Parameters:

	vcenter_name (list) – List of string vCenter names.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_vcenter_uuid(vcenter_uuid)

	Restricts the search that this query is performed on to the specified vCenter UUID.

	Parameters:

	vcenter_uuid (list) – List of string vCenter UUIDs.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_vmwaretools_version(vmwaretools_version)

	Restricts the search that this query is performed on to the specified VMware Tools version.

	Parameters:

	vmwaretools_version (list) – List of string VMware Tools versions.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(ComputeResource).sort_by("name")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order.

	Returns:

	This instance.

	Return type:

	BaseComputeResourceQuery

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
log = <Logger cbc_sdk.workload.vm_workloads_search (WARNING)>

	Workloads Search model

CBC SDK Package

Subpackages

	Audit and Remediation Package
	Base Module
	DeviceSummary
	DeviceSummary.Metrics

	DeviceSummary.get()

	DeviceSummary.metrics_

	DeviceSummary.refresh()

	DeviceSummary.to_json()

	DeviceSummaryFacet
	DeviceSummaryFacet.Values

	DeviceSummaryFacet.get()

	DeviceSummaryFacet.refresh()

	DeviceSummaryFacet.to_json()

	DeviceSummaryFacet.values_

	FacetQuery
	FacetQuery.add_criteria()

	FacetQuery.all()

	FacetQuery.and_()

	FacetQuery.execute_async()

	FacetQuery.facet_field()

	FacetQuery.first()

	FacetQuery.not_()

	FacetQuery.one()

	FacetQuery.or_()

	FacetQuery.run_id()

	FacetQuery.set_device_ids()

	FacetQuery.set_device_names()

	FacetQuery.set_device_os()

	FacetQuery.set_policy_ids()

	FacetQuery.set_policy_names()

	FacetQuery.set_statuses()

	FacetQuery.update_criteria()

	FacetQuery.where()

	MAX_RESULTS_LIMIT

	Result
	Result.Device

	Result.Fields

	Result.Metrics

	Result.device_

	Result.fields_

	Result.get()

	Result.metrics_

	Result.query_device_summaries()

	Result.query_device_summary_facets()

	Result.query_result_facets()

	Result.refresh()

	Result.to_json()

	ResultFacet
	ResultFacet.Values

	ResultFacet.get()

	ResultFacet.refresh()

	ResultFacet.to_json()

	ResultFacet.values_

	ResultQuery
	ResultQuery.add_criteria()

	ResultQuery.all()

	ResultQuery.and_()

	ResultQuery.async_export()

	ResultQuery.execute_async()

	ResultQuery.export_csv_as_file()

	ResultQuery.export_csv_as_lines()

	ResultQuery.export_csv_as_stream()

	ResultQuery.export_csv_as_string()

	ResultQuery.export_zipped_csv()

	ResultQuery.first()

	ResultQuery.not_()

	ResultQuery.one()

	ResultQuery.or_()

	ResultQuery.run_id()

	ResultQuery.scroll()

	ResultQuery.set_device_ids()

	ResultQuery.set_device_names()

	ResultQuery.set_device_os()

	ResultQuery.set_policy_ids()

	ResultQuery.set_policy_names()

	ResultQuery.set_run_ids()

	ResultQuery.set_statuses()

	ResultQuery.set_time_received()

	ResultQuery.sort_by()

	ResultQuery.update_criteria()

	ResultQuery.where()

	Run
	Run.delete()

	Run.get()

	Run.query_device_summaries()

	Run.query_facets()

	Run.query_results()

	Run.refresh()

	Run.stop()

	Run.to_json()

	RunHistory
	RunHistory.delete()

	RunHistory.get()

	RunHistory.query_device_summaries()

	RunHistory.query_facets()

	RunHistory.query_results()

	RunHistory.refresh()

	RunHistory.stop()

	RunHistory.to_json()

	RunHistoryQuery
	RunHistoryQuery.add_criteria()

	RunHistoryQuery.all()

	RunHistoryQuery.and_()

	RunHistoryQuery.execute_async()

	RunHistoryQuery.first()

	RunHistoryQuery.not_()

	RunHistoryQuery.one()

	RunHistoryQuery.or_()

	RunHistoryQuery.set_template_ids()

	RunHistoryQuery.sort_by()

	RunHistoryQuery.update_criteria()

	RunHistoryQuery.where()

	RunQuery
	RunQuery.device_ids()

	RunQuery.device_types()

	RunQuery.execute_async()

	RunQuery.name()

	RunQuery.notify_on_finish()

	RunQuery.policy_id()

	RunQuery.schedule()

	RunQuery.submit()

	RunQuery.where()

	Template
	Template.delete()

	Template.get()

	Template.query_device_summaries()

	Template.query_facets()

	Template.query_results()

	Template.query_runs()

	Template.refresh()

	Template.stop()

	Template.to_json()

	TemplateHistory
	TemplateHistory.delete()

	TemplateHistory.get()

	TemplateHistory.query_device_summaries()

	TemplateHistory.query_facets()

	TemplateHistory.query_results()

	TemplateHistory.query_runs()

	TemplateHistory.refresh()

	TemplateHistory.stop()

	TemplateHistory.to_json()

	TemplateHistoryQuery
	TemplateHistoryQuery.add_criteria()

	TemplateHistoryQuery.all()

	TemplateHistoryQuery.and_()

	TemplateHistoryQuery.execute_async()

	TemplateHistoryQuery.first()

	TemplateHistoryQuery.not_()

	TemplateHistoryQuery.one()

	TemplateHistoryQuery.or_()

	TemplateHistoryQuery.sort_by()

	TemplateHistoryQuery.update_criteria()

	TemplateHistoryQuery.where()

	Differential Module
	ASYNC_RATE_LIMIT

	Differential
	Differential.get()

	Differential.refresh()

	Differential.to_json()

	DifferentialQuery
	DifferentialQuery.add_criteria()

	DifferentialQuery.all()

	DifferentialQuery.async_export()

	DifferentialQuery.count_only()

	DifferentialQuery.first()

	DifferentialQuery.newer_run_id()

	DifferentialQuery.older_run_id()

	DifferentialQuery.one()

	DifferentialQuery.set_device_ids()

	DifferentialQuery.submit()

	DifferentialQuery.update_criteria()

	Cache Package
	LRU Module
	LRUCacheDict
	LRUCacheDict.EmptyCacheThread

	LRUCachedFunction

	lru_cache_function()

	Credential Providers Package
	Default Module
	DefaultProvider
	DefaultProvider.get_default_provider()

	default_credential_provider()

	AWS SM Credential Provider Module
	AWSCredentialProvider
	AWSCredentialProvider.get_credentials()

	Environ Credential Provider Module
	EnvironCredentialProvider
	EnvironCredentialProvider.get_credentials()

	File Credential Provider Module
	FileCredentialProvider
	FileCredentialProvider.get_credentials()

	Keychain Credential Provider Module
	KeychainCredentialProvider
	KeychainCredentialProvider.get_credentials()

	Registry Credential Provider Module
	OpenKey()

	QueryValueEx()

	RegistryCredentialProvider
	RegistryCredentialProvider.get_credentials()

	Endpoint Standard Package
	Base Module
	EnrichedEvent
	EnrichedEvent.approve_process_sha256()

	EnrichedEvent.ban_process_sha256()

	EnrichedEvent.get()

	EnrichedEvent.get_details()

	EnrichedEvent.process_sha256

	EnrichedEvent.refresh()

	EnrichedEvent.to_json()

	EnrichedEventFacet
	EnrichedEventFacet.Ranges

	EnrichedEventFacet.Terms

	EnrichedEventFacet.get()

	EnrichedEventFacet.ranges_

	EnrichedEventFacet.refresh()

	EnrichedEventFacet.terms_

	EnrichedEventFacet.to_json()

	EnrichedEventQuery
	EnrichedEventQuery.add_criteria()

	EnrichedEventQuery.add_exclusions()

	EnrichedEventQuery.aggregation()

	EnrichedEventQuery.all()

	EnrichedEventQuery.and_()

	EnrichedEventQuery.batch_size()

	EnrichedEventQuery.execute_async()

	EnrichedEventQuery.first()

	EnrichedEventQuery.not_()

	EnrichedEventQuery.one()

	EnrichedEventQuery.or_()

	EnrichedEventQuery.set_fields()

	EnrichedEventQuery.set_rows()

	EnrichedEventQuery.set_start()

	EnrichedEventQuery.set_time_range()

	EnrichedEventQuery.sort_by()

	EnrichedEventQuery.timeout()

	EnrichedEventQuery.update_criteria()

	EnrichedEventQuery.update_exclusions()

	EnrichedEventQuery.where()

	Event

	log

	Standard Recommendation Module
	Recommendation
	Recommendation.RecommendationApplication

	Recommendation.RecommendationImpact

	Recommendation.RecommendationNewRule

	Recommendation.RecommendationWorkflow

	Recommendation.accept()

	Recommendation.get()

	Recommendation.impact_

	Recommendation.new_rule_

	Recommendation.refresh()

	Recommendation.reject()

	Recommendation.reputation_override()

	Recommendation.reset()

	Recommendation.to_json()

	Recommendation.workflow_

	RecommendationQuery
	RecommendationQuery.add_criteria()

	RecommendationQuery.all()

	RecommendationQuery.execute_async()

	RecommendationQuery.first()

	RecommendationQuery.one()

	RecommendationQuery.set_hashes()

	RecommendationQuery.set_policy_types()

	RecommendationQuery.set_statuses()

	RecommendationQuery.sort_by()

	RecommendationQuery.update_criteria()

	log

	USB Device Control Module
	USBDevice
	USBDevice.approve()

	USBDevice.get()

	USBDevice.get_endpoints()

	USBDevice.get_vendors_and_products_seen()

	USBDevice.refresh()

	USBDevice.to_json()

	USBDeviceApproval
	USBDeviceApproval.bulk_create()

	USBDeviceApproval.bulk_create_csv()

	USBDeviceApproval.create_from_usb_device()

	USBDeviceApproval.delete()

	USBDeviceApproval.get()

	USBDeviceApproval.is_dirty()

	USBDeviceApproval.refresh()

	USBDeviceApproval.reset()

	USBDeviceApproval.save()

	USBDeviceApproval.to_json()

	USBDeviceApproval.touch()

	USBDeviceApproval.validate()

	USBDeviceApprovalQuery
	USBDeviceApprovalQuery.add_criteria()

	USBDeviceApprovalQuery.all()

	USBDeviceApprovalQuery.and_()

	USBDeviceApprovalQuery.execute_async()

	USBDeviceApprovalQuery.export()

	USBDeviceApprovalQuery.first()

	USBDeviceApprovalQuery.not_()

	USBDeviceApprovalQuery.one()

	USBDeviceApprovalQuery.or_()

	USBDeviceApprovalQuery.set_device_ids()

	USBDeviceApprovalQuery.set_product_names()

	USBDeviceApprovalQuery.set_vendor_names()

	USBDeviceApprovalQuery.update_criteria()

	USBDeviceApprovalQuery.where()

	USBDeviceBlock
	USBDeviceBlock.bulk_create()

	USBDeviceBlock.create()

	USBDeviceBlock.delete()

	USBDeviceBlock.get()

	USBDeviceBlock.refresh()

	USBDeviceBlock.to_json()

	USBDeviceBlockQuery
	USBDeviceBlockQuery.all()

	USBDeviceBlockQuery.execute_async()

	USBDeviceBlockQuery.first()

	USBDeviceBlockQuery.one()

	USBDeviceQuery
	USBDeviceQuery.add_criteria()

	USBDeviceQuery.all()

	USBDeviceQuery.and_()

	USBDeviceQuery.execute_async()

	USBDeviceQuery.export()

	USBDeviceQuery.facets()

	USBDeviceQuery.first()

	USBDeviceQuery.not_()

	USBDeviceQuery.one()

	USBDeviceQuery.or_()

	USBDeviceQuery.set_endpoint_names()

	USBDeviceQuery.set_max_rows()

	USBDeviceQuery.set_product_names()

	USBDeviceQuery.set_serial_numbers()

	USBDeviceQuery.set_statuses()

	USBDeviceQuery.set_vendor_names()

	USBDeviceQuery.sort_by()

	USBDeviceQuery.update_criteria()

	USBDeviceQuery.where()

	log

	Enterprise EDR Package
	Auth Events Module
	AuthEvent
	AuthEvent.bulk_get_details()

	AuthEvent.get()

	AuthEvent.get_auth_events_descriptions()

	AuthEvent.get_details()

	AuthEvent.refresh()

	AuthEvent.search_suggestions()

	AuthEvent.to_json()

	AuthEventFacet
	AuthEventFacet.Ranges

	AuthEventFacet.Terms

	AuthEventFacet.get()

	AuthEventFacet.ranges_

	AuthEventFacet.refresh()

	AuthEventFacet.terms_

	AuthEventFacet.to_json()

	AuthEventGroup

	AuthEventQuery
	AuthEventQuery.add_criteria()

	AuthEventQuery.add_exclusions()

	AuthEventQuery.all()

	AuthEventQuery.and_()

	AuthEventQuery.batch_size()

	AuthEventQuery.execute_async()

	AuthEventQuery.first()

	AuthEventQuery.group_results()

	AuthEventQuery.not_()

	AuthEventQuery.one()

	AuthEventQuery.or_()

	AuthEventQuery.set_fields()

	AuthEventQuery.set_rows()

	AuthEventQuery.set_start()

	AuthEventQuery.set_time_range()

	AuthEventQuery.sort_by()

	AuthEventQuery.timeout()

	AuthEventQuery.update_criteria()

	AuthEventQuery.update_exclusions()

	AuthEventQuery.where()

	Threat Intelligence Module
	Feed
	Feed.FeedBuilder

	Feed.append_reports()

	Feed.append_reports_rawdata()

	Feed.create()

	Feed.delete()

	Feed.get()

	Feed.is_dirty()

	Feed.refresh()

	Feed.replace_reports()

	Feed.replace_reports_rawdata()

	Feed.reports

	Feed.reset()

	Feed.save()

	Feed.to_json()

	Feed.touch()

	Feed.update()

	Feed.validate()

	FeedModel
	FeedModel.delete()

	FeedModel.get()

	FeedModel.is_dirty()

	FeedModel.refresh()

	FeedModel.reset()

	FeedModel.save()

	FeedModel.to_json()

	FeedModel.touch()

	FeedModel.validate()

	FeedQuery
	FeedQuery.all()

	FeedQuery.and_()

	FeedQuery.first()

	FeedQuery.one()

	FeedQuery.results

	FeedQuery.sort()

	FeedQuery.where()

	IOC
	IOC.delete()

	IOC.get()

	IOC.is_dirty()

	IOC.refresh()

	IOC.reset()

	IOC.save()

	IOC.to_json()

	IOC.touch()

	IOC.validate()

	IOC_V2
	IOC_V2.create_equality()

	IOC_V2.create_query()

	IOC_V2.create_regex()

	IOC_V2.delete()

	IOC_V2.get()

	IOC_V2.ignore()

	IOC_V2.ignored

	IOC_V2.ipv6_equality_format()

	IOC_V2.is_dirty()

	IOC_V2.refresh()

	IOC_V2.reset()

	IOC_V2.save()

	IOC_V2.to_json()

	IOC_V2.touch()

	IOC_V2.unignore()

	IOC_V2.validate()

	Report
	Report.ReportBuilder

	Report.append_iocs()

	Report.create()

	Report.custom_severity

	Report.delete()

	Report.get()

	Report.ignore()

	Report.ignored

	Report.iocs_

	Report.is_dirty()

	Report.refresh()

	Report.remove_iocs()

	Report.remove_iocs_by_id()

	Report.reset()

	Report.save()

	Report.save_watchlist()

	Report.to_json()

	Report.touch()

	Report.unignore()

	Report.update()

	Report.validate()

	ReportQuery
	ReportQuery.all()

	ReportQuery.and_()

	ReportQuery.first()

	ReportQuery.one()

	ReportQuery.results

	ReportQuery.sort()

	ReportQuery.where()

	ReportSeverity
	ReportSeverity.delete()

	ReportSeverity.get()

	ReportSeverity.is_dirty()

	ReportSeverity.refresh()

	ReportSeverity.reset()

	ReportSeverity.save()

	ReportSeverity.to_json()

	ReportSeverity.touch()

	ReportSeverity.validate()

	Watchlist
	Watchlist.WatchlistBuilder

	Watchlist.add_report_ids()

	Watchlist.add_reports()

	Watchlist.classifier_

	Watchlist.create()

	Watchlist.create_from_feed()

	Watchlist.delete()

	Watchlist.disable_alerts()

	Watchlist.disable_tags()

	Watchlist.enable_alerts()

	Watchlist.enable_tags()

	Watchlist.feed

	Watchlist.get()

	Watchlist.is_dirty()

	Watchlist.refresh()

	Watchlist.reports

	Watchlist.reset()

	Watchlist.save()

	Watchlist.to_json()

	Watchlist.touch()

	Watchlist.update()

	Watchlist.validate()

	WatchlistQuery
	WatchlistQuery.all()

	WatchlistQuery.and_()

	WatchlistQuery.first()

	WatchlistQuery.one()

	WatchlistQuery.results

	WatchlistQuery.sort()

	WatchlistQuery.where()

	log

	UBS Module
	Binary
	Binary.Summary

	Binary.download_url()

	Binary.get()

	Binary.refresh()

	Binary.summary

	Binary.to_json()

	Downloads
	Downloads.FoundItem

	Downloads.found

	Downloads.get()

	Downloads.refresh()

	Downloads.to_json()

	Platform Package
	Base Module
	PlatformModel
	PlatformModel.get()

	PlatformModel.refresh()

	PlatformModel.to_json()

	log

	Submodules

	Alerts Module
	Alert
	Alert.Note

	Alert.add_threat_tags()

	Alert.close()

	Alert.create_note()

	Alert.delete_threat_tag()

	Alert.deobfuscate_cmdline()

	Alert.dismiss_threat()

	Alert.get()

	Alert.get_history()

	Alert.get_observations()

	Alert.get_process()

	Alert.get_threat_tags()

	Alert.notes_()

	Alert.refresh()

	Alert.search_suggestions()

	Alert.to_json()

	Alert.update()

	Alert.update_threat()

	Alert.workflow_

	AlertSearchQuery
	AlertSearchQuery.add_criteria()

	AlertSearchQuery.add_exclusions()

	AlertSearchQuery.add_time_criteria()

	AlertSearchQuery.all()

	AlertSearchQuery.and_()

	AlertSearchQuery.close()

	AlertSearchQuery.facets()

	AlertSearchQuery.first()

	AlertSearchQuery.not_()

	AlertSearchQuery.one()

	AlertSearchQuery.or_()

	AlertSearchQuery.set_alert_ids()

	AlertSearchQuery.set_alert_notes_present()

	AlertSearchQuery.set_blocked_threat_categories()

	AlertSearchQuery.set_categories()

	AlertSearchQuery.set_cluster_names()

	AlertSearchQuery.set_create_time()

	AlertSearchQuery.set_device_ids()

	AlertSearchQuery.set_device_locations()

	AlertSearchQuery.set_device_names()

	AlertSearchQuery.set_device_os()

	AlertSearchQuery.set_device_os_versions()

	AlertSearchQuery.set_device_username()

	AlertSearchQuery.set_egress_group_ids()

	AlertSearchQuery.set_egress_group_names()

	AlertSearchQuery.set_external_device_friendly_names()

	AlertSearchQuery.set_external_device_ids()

	AlertSearchQuery.set_group_by()

	AlertSearchQuery.set_group_results()

	AlertSearchQuery.set_ip_reputations()

	AlertSearchQuery.set_kill_chain_statuses()

	AlertSearchQuery.set_legacy_alert_ids()

	AlertSearchQuery.set_minimum_severity()

	AlertSearchQuery.set_namespaces()

	AlertSearchQuery.set_not_blocked_threat_categories()

	AlertSearchQuery.set_policy_applied()

	AlertSearchQuery.set_policy_ids()

	AlertSearchQuery.set_policy_names()

	AlertSearchQuery.set_ports()

	AlertSearchQuery.set_process_names()

	AlertSearchQuery.set_process_sha256()

	AlertSearchQuery.set_product_ids()

	AlertSearchQuery.set_product_names()

	AlertSearchQuery.set_protocols()

	AlertSearchQuery.set_reason_code()

	AlertSearchQuery.set_remote_domains()

	AlertSearchQuery.set_remote_ips()

	AlertSearchQuery.set_remote_is_private()

	AlertSearchQuery.set_replica_ids()

	AlertSearchQuery.set_reputations()

	AlertSearchQuery.set_rows()

	AlertSearchQuery.set_rule_ids()

	AlertSearchQuery.set_rule_names()

	AlertSearchQuery.set_run_states()

	AlertSearchQuery.set_sensor_actions()

	AlertSearchQuery.set_serial_numbers()

	AlertSearchQuery.set_tags()

	AlertSearchQuery.set_target_priorities()

	AlertSearchQuery.set_threat_cause_vectors()

	AlertSearchQuery.set_threat_ids()

	AlertSearchQuery.set_threat_notes_present()

	AlertSearchQuery.set_time_range()

	AlertSearchQuery.set_types()

	AlertSearchQuery.set_vendor_ids()

	AlertSearchQuery.set_vendor_names()

	AlertSearchQuery.set_watchlist_ids()

	AlertSearchQuery.set_watchlist_names()

	AlertSearchQuery.set_workflows()

	AlertSearchQuery.set_workload_ids()

	AlertSearchQuery.set_workload_kinds()

	AlertSearchQuery.set_workload_names()

	AlertSearchQuery.sort_by()

	AlertSearchQuery.update()

	AlertSearchQuery.update_criteria()

	AlertSearchQuery.update_exclusions()

	AlertSearchQuery.where()

	CBAnalyticsAlert
	CBAnalyticsAlert.Note

	CBAnalyticsAlert.add_threat_tags()

	CBAnalyticsAlert.close()

	CBAnalyticsAlert.create_note()

	CBAnalyticsAlert.delete_threat_tag()

	CBAnalyticsAlert.deobfuscate_cmdline()

	CBAnalyticsAlert.dismiss_threat()

	CBAnalyticsAlert.get()

	CBAnalyticsAlert.get_events()

	CBAnalyticsAlert.get_history()

	CBAnalyticsAlert.get_observations()

	CBAnalyticsAlert.get_process()

	CBAnalyticsAlert.get_threat_tags()

	CBAnalyticsAlert.notes_()

	CBAnalyticsAlert.refresh()

	CBAnalyticsAlert.search_suggestions()

	CBAnalyticsAlert.to_json()

	CBAnalyticsAlert.update()

	CBAnalyticsAlert.update_threat()

	CBAnalyticsAlert.workflow_

	ContainerRuntimeAlert
	ContainerRuntimeAlert.Note

	ContainerRuntimeAlert.add_threat_tags()

	ContainerRuntimeAlert.close()

	ContainerRuntimeAlert.create_note()

	ContainerRuntimeAlert.delete_threat_tag()

	ContainerRuntimeAlert.deobfuscate_cmdline()

	ContainerRuntimeAlert.dismiss_threat()

	ContainerRuntimeAlert.get()

	ContainerRuntimeAlert.get_history()

	ContainerRuntimeAlert.get_observations()

	ContainerRuntimeAlert.get_process()

	ContainerRuntimeAlert.get_threat_tags()

	ContainerRuntimeAlert.notes_()

	ContainerRuntimeAlert.refresh()

	ContainerRuntimeAlert.search_suggestions()

	ContainerRuntimeAlert.to_json()

	ContainerRuntimeAlert.update()

	ContainerRuntimeAlert.update_threat()

	ContainerRuntimeAlert.workflow_

	DeviceControlAlert
	DeviceControlAlert.Note

	DeviceControlAlert.add_threat_tags()

	DeviceControlAlert.close()

	DeviceControlAlert.create_note()

	DeviceControlAlert.delete_threat_tag()

	DeviceControlAlert.deobfuscate_cmdline()

	DeviceControlAlert.dismiss_threat()

	DeviceControlAlert.get()

	DeviceControlAlert.get_history()

	DeviceControlAlert.get_observations()

	DeviceControlAlert.get_process()

	DeviceControlAlert.get_threat_tags()

	DeviceControlAlert.notes_()

	DeviceControlAlert.refresh()

	DeviceControlAlert.search_suggestions()

	DeviceControlAlert.to_json()

	DeviceControlAlert.update()

	DeviceControlAlert.update_threat()

	DeviceControlAlert.workflow_

	GroupedAlert
	GroupedAlert.get()

	GroupedAlert.get_alert_search_query()

	GroupedAlert.get_alerts()

	GroupedAlert.most_recent_alert_

	GroupedAlert.refresh()

	GroupedAlert.to_json()

	GroupedAlertSearchQuery
	GroupedAlertSearchQuery.add_criteria()

	GroupedAlertSearchQuery.add_exclusions()

	GroupedAlertSearchQuery.add_time_criteria()

	GroupedAlertSearchQuery.all()

	GroupedAlertSearchQuery.and_()

	GroupedAlertSearchQuery.close()

	GroupedAlertSearchQuery.facets()

	GroupedAlertSearchQuery.first()

	GroupedAlertSearchQuery.get_alert_search_query()

	GroupedAlertSearchQuery.not_()

	GroupedAlertSearchQuery.one()

	GroupedAlertSearchQuery.or_()

	GroupedAlertSearchQuery.set_alert_ids()

	GroupedAlertSearchQuery.set_alert_notes_present()

	GroupedAlertSearchQuery.set_blocked_threat_categories()

	GroupedAlertSearchQuery.set_categories()

	GroupedAlertSearchQuery.set_cluster_names()

	GroupedAlertSearchQuery.set_create_time()

	GroupedAlertSearchQuery.set_device_ids()

	GroupedAlertSearchQuery.set_device_locations()

	GroupedAlertSearchQuery.set_device_names()

	GroupedAlertSearchQuery.set_device_os()

	GroupedAlertSearchQuery.set_device_os_versions()

	GroupedAlertSearchQuery.set_device_username()

	GroupedAlertSearchQuery.set_egress_group_ids()

	GroupedAlertSearchQuery.set_egress_group_names()

	GroupedAlertSearchQuery.set_external_device_friendly_names()

	GroupedAlertSearchQuery.set_external_device_ids()

	GroupedAlertSearchQuery.set_group_by()

	GroupedAlertSearchQuery.set_group_results()

	GroupedAlertSearchQuery.set_ip_reputations()

	GroupedAlertSearchQuery.set_kill_chain_statuses()

	GroupedAlertSearchQuery.set_legacy_alert_ids()

	GroupedAlertSearchQuery.set_minimum_severity()

	GroupedAlertSearchQuery.set_namespaces()

	GroupedAlertSearchQuery.set_not_blocked_threat_categories()

	GroupedAlertSearchQuery.set_policy_applied()

	GroupedAlertSearchQuery.set_policy_ids()

	GroupedAlertSearchQuery.set_policy_names()

	GroupedAlertSearchQuery.set_ports()

	GroupedAlertSearchQuery.set_process_names()

	GroupedAlertSearchQuery.set_process_sha256()

	GroupedAlertSearchQuery.set_product_ids()

	GroupedAlertSearchQuery.set_product_names()

	GroupedAlertSearchQuery.set_protocols()

	GroupedAlertSearchQuery.set_reason_code()

	GroupedAlertSearchQuery.set_remote_domains()

	GroupedAlertSearchQuery.set_remote_ips()

	GroupedAlertSearchQuery.set_remote_is_private()

	GroupedAlertSearchQuery.set_replica_ids()

	GroupedAlertSearchQuery.set_reputations()

	GroupedAlertSearchQuery.set_rows()

	GroupedAlertSearchQuery.set_rule_ids()

	GroupedAlertSearchQuery.set_rule_names()

	GroupedAlertSearchQuery.set_run_states()

	GroupedAlertSearchQuery.set_sensor_actions()

	GroupedAlertSearchQuery.set_serial_numbers()

	GroupedAlertSearchQuery.set_tags()

	GroupedAlertSearchQuery.set_target_priorities()

	GroupedAlertSearchQuery.set_threat_cause_vectors()

	GroupedAlertSearchQuery.set_threat_ids()

	GroupedAlertSearchQuery.set_threat_notes_present()

	GroupedAlertSearchQuery.set_time_range()

	GroupedAlertSearchQuery.set_types()

	GroupedAlertSearchQuery.set_vendor_ids()

	GroupedAlertSearchQuery.set_vendor_names()

	GroupedAlertSearchQuery.set_watchlist_ids()

	GroupedAlertSearchQuery.set_watchlist_names()

	GroupedAlertSearchQuery.set_workflows()

	GroupedAlertSearchQuery.set_workload_ids()

	GroupedAlertSearchQuery.set_workload_kinds()

	GroupedAlertSearchQuery.set_workload_names()

	GroupedAlertSearchQuery.sort_by()

	GroupedAlertSearchQuery.update()

	GroupedAlertSearchQuery.update_criteria()

	GroupedAlertSearchQuery.update_exclusions()

	GroupedAlertSearchQuery.where()

	HostBasedFirewallAlert
	HostBasedFirewallAlert.Note

	HostBasedFirewallAlert.add_threat_tags()

	HostBasedFirewallAlert.close()

	HostBasedFirewallAlert.create_note()

	HostBasedFirewallAlert.delete_threat_tag()

	HostBasedFirewallAlert.deobfuscate_cmdline()

	HostBasedFirewallAlert.dismiss_threat()

	HostBasedFirewallAlert.get()

	HostBasedFirewallAlert.get_history()

	HostBasedFirewallAlert.get_observations()

	HostBasedFirewallAlert.get_process()

	HostBasedFirewallAlert.get_threat_tags()

	HostBasedFirewallAlert.notes_()

	HostBasedFirewallAlert.refresh()

	HostBasedFirewallAlert.search_suggestions()

	HostBasedFirewallAlert.to_json()

	HostBasedFirewallAlert.update()

	HostBasedFirewallAlert.update_threat()

	HostBasedFirewallAlert.workflow_

	IntrusionDetectionSystemAlert
	IntrusionDetectionSystemAlert.Note

	IntrusionDetectionSystemAlert.add_threat_tags()

	IntrusionDetectionSystemAlert.close()

	IntrusionDetectionSystemAlert.create_note()

	IntrusionDetectionSystemAlert.delete_threat_tag()

	IntrusionDetectionSystemAlert.deobfuscate_cmdline()

	IntrusionDetectionSystemAlert.dismiss_threat()

	IntrusionDetectionSystemAlert.get()

	IntrusionDetectionSystemAlert.get_history()

	IntrusionDetectionSystemAlert.get_network_threat_metadata()

	IntrusionDetectionSystemAlert.get_observations()

	IntrusionDetectionSystemAlert.get_process()

	IntrusionDetectionSystemAlert.get_threat_tags()

	IntrusionDetectionSystemAlert.notes_()

	IntrusionDetectionSystemAlert.refresh()

	IntrusionDetectionSystemAlert.search_suggestions()

	IntrusionDetectionSystemAlert.to_json()

	IntrusionDetectionSystemAlert.update()

	IntrusionDetectionSystemAlert.update_threat()

	IntrusionDetectionSystemAlert.workflow_

	WatchlistAlert
	WatchlistAlert.Note

	WatchlistAlert.add_threat_tags()

	WatchlistAlert.close()

	WatchlistAlert.create_note()

	WatchlistAlert.delete_threat_tag()

	WatchlistAlert.deobfuscate_cmdline()

	WatchlistAlert.dismiss_threat()

	WatchlistAlert.get()

	WatchlistAlert.get_history()

	WatchlistAlert.get_observations()

	WatchlistAlert.get_process()

	WatchlistAlert.get_threat_tags()

	WatchlistAlert.get_watchlist_objects()

	WatchlistAlert.notes_()

	WatchlistAlert.refresh()

	WatchlistAlert.search_suggestions()

	WatchlistAlert.to_json()

	WatchlistAlert.update()

	WatchlistAlert.update_threat()

	WatchlistAlert.workflow_

	Asset Groups Module
	AssetGroup
	AssetGroup.add_members()

	AssetGroup.create_group()

	AssetGroup.delete()

	AssetGroup.get()

	AssetGroup.get_all_groups()

	AssetGroup.get_statistics()

	AssetGroup.is_dirty()

	AssetGroup.list_member_ids()

	AssetGroup.list_members()

	AssetGroup.preview_add_members()

	AssetGroup.preview_add_members_to_groups()

	AssetGroup.preview_create_asset_group()

	AssetGroup.preview_delete()

	AssetGroup.preview_delete_asset_groups()

	AssetGroup.preview_remove_members()

	AssetGroup.preview_remove_members_from_groups()

	AssetGroup.preview_save()

	AssetGroup.preview_update_asset_groups()

	AssetGroup.refresh()

	AssetGroup.remove_members()

	AssetGroup.reset()

	AssetGroup.save()

	AssetGroup.swagger_meta_file

	AssetGroup.to_json()

	AssetGroup.touch()

	AssetGroup.validate()

	AssetGroupQuery
	AssetGroupQuery.add_criteria()

	AssetGroupQuery.all()

	AssetGroupQuery.and_()

	AssetGroupQuery.execute_async()

	AssetGroupQuery.first()

	AssetGroupQuery.not_()

	AssetGroupQuery.one()

	AssetGroupQuery.or_()

	AssetGroupQuery.set_rows()

	AssetGroupQuery.sort_by()

	AssetGroupQuery.update_criteria()

	AssetGroupQuery.where()

	Audit Module
	AuditLog
	AuditLog.get()

	AuditLog.get_auditlogs()

	AuditLog.get_queued_auditlogs()

	AuditLog.refresh()

	AuditLog.to_json()

	AuditLogQuery
	AuditLogQuery.add_boolean_criteria()

	AuditLogQuery.add_criteria()

	AuditLogQuery.add_exclusions()

	AuditLogQuery.add_time_criteria()

	AuditLogQuery.all()

	AuditLogQuery.and_()

	AuditLogQuery.execute_async()

	AuditLogQuery.export()

	AuditLogQuery.first()

	AuditLogQuery.not_()

	AuditLogQuery.one()

	AuditLogQuery.or_()

	AuditLogQuery.sort_by()

	AuditLogQuery.update_criteria()

	AuditLogQuery.update_exclusions()

	AuditLogQuery.where()

	Devices Module
	Device
	Device.add_to_groups()

	Device.add_to_groups_by_id()

	Device.background_scan()

	Device.bypass()

	Device.delete_sensor()

	Device.deviceId

	Device.get()

	Device.get_asset_group_ids()

	Device.get_asset_groups()

	Device.get_asset_groups_for_devices()

	Device.get_vulnerability_summary()

	Device.get_vulnerabilties()

	Device.lr_session()

	Device.nsx_available

	Device.nsx_remediation()

	Device.preview_add_policy_override_for_devices()

	Device.preview_remove_policy_override()

	Device.preview_remove_policy_override_for_devices()

	Device.quarantine()

	Device.refresh()

	Device.remove_from_groups()

	Device.remove_from_groups_by_id()

	Device.swagger_meta_file

	Device.to_json()

	Device.uninstall_sensor()

	Device.update_policy()

	Device.update_sensor_version()

	Device.vulnerability_refresh()

	DeviceFacet
	DeviceFacet.DeviceFacetValue

	DeviceFacet.get()

	DeviceFacet.refresh()

	DeviceFacet.to_json()

	DeviceFacet.values_

	DeviceSearchQuery
	DeviceSearchQuery.add_criteria()

	DeviceSearchQuery.all()

	DeviceSearchQuery.and_()

	DeviceSearchQuery.background_scan()

	DeviceSearchQuery.bypass()

	DeviceSearchQuery.delete_sensor()

	DeviceSearchQuery.download()

	DeviceSearchQuery.execute_async()

	DeviceSearchQuery.export()

	DeviceSearchQuery.facets()

	DeviceSearchQuery.first()

	DeviceSearchQuery.not_()

	DeviceSearchQuery.one()

	DeviceSearchQuery.or_()

	DeviceSearchQuery.quarantine()

	DeviceSearchQuery.scroll()

	DeviceSearchQuery.set_ad_group_ids()

	DeviceSearchQuery.set_auto_scaling_group_name()

	DeviceSearchQuery.set_cloud_provider_account_id()

	DeviceSearchQuery.set_deployment_type()

	DeviceSearchQuery.set_device_ids()

	DeviceSearchQuery.set_exclude_sensor_versions()

	DeviceSearchQuery.set_last_contact_time()

	DeviceSearchQuery.set_max_rows()

	DeviceSearchQuery.set_os()

	DeviceSearchQuery.set_policy_ids()

	DeviceSearchQuery.set_status()

	DeviceSearchQuery.set_target_priorities()

	DeviceSearchQuery.set_virtual_private_cloud_id()

	DeviceSearchQuery.sort_by()

	DeviceSearchQuery.uninstall_sensor()

	DeviceSearchQuery.update_criteria()

	DeviceSearchQuery.update_policy()

	DeviceSearchQuery.update_sensor_version()

	DeviceSearchQuery.where()

	log

	Events Module
	Event
	Event.get()

	Event.refresh()

	Event.to_json()

	EventFacet
	EventFacet.Ranges

	EventFacet.Terms

	EventFacet.get()

	EventFacet.ranges_

	EventFacet.refresh()

	EventFacet.terms_

	EventFacet.to_json()

	EventFacetQuery
	EventFacetQuery.add_criteria()

	EventFacetQuery.add_exclusions()

	EventFacetQuery.add_facet_field()

	EventFacetQuery.add_range()

	EventFacetQuery.and_()

	EventFacetQuery.execute_async()

	EventFacetQuery.limit()

	EventFacetQuery.not_()

	EventFacetQuery.or_()

	EventFacetQuery.results

	EventFacetQuery.set_rows()

	EventFacetQuery.set_time_range()

	EventFacetQuery.timeout()

	EventFacetQuery.update_criteria()

	EventFacetQuery.update_exclusions()

	EventFacetQuery.where()

	EventQuery
	EventQuery.add_criteria()

	EventQuery.add_exclusions()

	EventQuery.all()

	EventQuery.and_()

	EventQuery.batch_size()

	EventQuery.execute_async()

	EventQuery.first()

	EventQuery.not_()

	EventQuery.one()

	EventQuery.or_()

	EventQuery.set_fields()

	EventQuery.set_rows()

	EventQuery.set_start()

	EventQuery.set_time_range()

	EventQuery.sort_by()

	EventQuery.update_criteria()

	EventQuery.update_exclusions()

	EventQuery.where()

	Grants Module
	Grant
	Grant.GrantBuilder

	Grant.Profile

	Grant.ProfileBuilder

	Grant.create()

	Grant.create_profile()

	Grant.delete()

	Grant.get()

	Grant.get_permitted_role_urns()

	Grant.is_dirty()

	Grant.profiles_

	Grant.refresh()

	Grant.reset()

	Grant.save()

	Grant.to_json()

	Grant.touch()

	Grant.validate()

	GrantQuery
	GrantQuery.add_principal()

	GrantQuery.all()

	GrantQuery.execute_async()

	GrantQuery.first()

	GrantQuery.one()

	log

	normalize_org()

	Jobs Module
	Job
	Job.await_completion()

	Job.get()

	Job.get_output_as_file()

	Job.get_output_as_lines()

	Job.get_output_as_stream()

	Job.get_output_as_string()

	Job.get_progress()

	Job.refresh()

	Job.to_json()

	JobQuery
	JobQuery.all()

	JobQuery.execute_async()

	JobQuery.first()

	JobQuery.one()

	Legacy Alerts Module
	LegacyAlertSearchQueryCriterionMixin
	LegacyAlertSearchQueryCriterionMixin.set_alert_ids()

	LegacyAlertSearchQueryCriterionMixin.set_blocked_threat_categories()

	LegacyAlertSearchQueryCriterionMixin.set_categories()

	LegacyAlertSearchQueryCriterionMixin.set_cluster_names()

	LegacyAlertSearchQueryCriterionMixin.set_create_time()

	LegacyAlertSearchQueryCriterionMixin.set_device_ids()

	LegacyAlertSearchQueryCriterionMixin.set_device_locations()

	LegacyAlertSearchQueryCriterionMixin.set_device_names()

	LegacyAlertSearchQueryCriterionMixin.set_device_os()

	LegacyAlertSearchQueryCriterionMixin.set_device_os_versions()

	LegacyAlertSearchQueryCriterionMixin.set_device_username()

	LegacyAlertSearchQueryCriterionMixin.set_egress_group_ids()

	LegacyAlertSearchQueryCriterionMixin.set_egress_group_names()

	LegacyAlertSearchQueryCriterionMixin.set_external_device_friendly_names()

	LegacyAlertSearchQueryCriterionMixin.set_external_device_ids()

	LegacyAlertSearchQueryCriterionMixin.set_group_results()

	LegacyAlertSearchQueryCriterionMixin.set_ip_reputations()

	LegacyAlertSearchQueryCriterionMixin.set_kill_chain_statuses()

	LegacyAlertSearchQueryCriterionMixin.set_legacy_alert_ids()

	LegacyAlertSearchQueryCriterionMixin.set_namespaces()

	LegacyAlertSearchQueryCriterionMixin.set_not_blocked_threat_categories()

	LegacyAlertSearchQueryCriterionMixin.set_policy_applied()

	LegacyAlertSearchQueryCriterionMixin.set_policy_ids()

	LegacyAlertSearchQueryCriterionMixin.set_policy_names()

	LegacyAlertSearchQueryCriterionMixin.set_ports()

	LegacyAlertSearchQueryCriterionMixin.set_process_names()

	LegacyAlertSearchQueryCriterionMixin.set_process_sha256()

	LegacyAlertSearchQueryCriterionMixin.set_product_ids()

	LegacyAlertSearchQueryCriterionMixin.set_product_names()

	LegacyAlertSearchQueryCriterionMixin.set_protocols()

	LegacyAlertSearchQueryCriterionMixin.set_reason_code()

	LegacyAlertSearchQueryCriterionMixin.set_remote_domains()

	LegacyAlertSearchQueryCriterionMixin.set_remote_ips()

	LegacyAlertSearchQueryCriterionMixin.set_replica_ids()

	LegacyAlertSearchQueryCriterionMixin.set_reputations()

	LegacyAlertSearchQueryCriterionMixin.set_rule_ids()

	LegacyAlertSearchQueryCriterionMixin.set_rule_names()

	LegacyAlertSearchQueryCriterionMixin.set_run_states()

	LegacyAlertSearchQueryCriterionMixin.set_sensor_actions()

	LegacyAlertSearchQueryCriterionMixin.set_serial_numbers()

	LegacyAlertSearchQueryCriterionMixin.set_tags()

	LegacyAlertSearchQueryCriterionMixin.set_target_priorities()

	LegacyAlertSearchQueryCriterionMixin.set_threat_cause_vectors()

	LegacyAlertSearchQueryCriterionMixin.set_threat_ids()

	LegacyAlertSearchQueryCriterionMixin.set_types()

	LegacyAlertSearchQueryCriterionMixin.set_vendor_ids()

	LegacyAlertSearchQueryCriterionMixin.set_vendor_names()

	LegacyAlertSearchQueryCriterionMixin.set_watchlist_ids()

	LegacyAlertSearchQueryCriterionMixin.set_watchlist_names()

	LegacyAlertSearchQueryCriterionMixin.set_workflows()

	LegacyAlertSearchQueryCriterionMixin.set_workload_ids()

	LegacyAlertSearchQueryCriterionMixin.set_workload_kinds()

	LegacyAlertSearchQueryCriterionMixin.set_workload_names()

	Network Threat Metadata Module
	NetworkThreatMetadata
	NetworkThreatMetadata.get()

	NetworkThreatMetadata.refresh()

	NetworkThreatMetadata.to_json()

	Observations Module
	Observation
	Observation.bulk_get_details()

	Observation.deobfuscate_cmdline()

	Observation.get()

	Observation.get_details()

	Observation.get_network_threat_metadata()

	Observation.refresh()

	Observation.search_suggestions()

	Observation.to_json()

	ObservationFacet
	ObservationFacet.Ranges

	ObservationFacet.Terms

	ObservationFacet.get()

	ObservationFacet.ranges_

	ObservationFacet.refresh()

	ObservationFacet.terms_

	ObservationFacet.to_json()

	ObservationGroup

	ObservationQuery
	ObservationQuery.add_criteria()

	ObservationQuery.add_exclusions()

	ObservationQuery.all()

	ObservationQuery.and_()

	ObservationQuery.batch_size()

	ObservationQuery.execute_async()

	ObservationQuery.first()

	ObservationQuery.get_group_results()

	ObservationQuery.not_()

	ObservationQuery.one()

	ObservationQuery.or_()

	ObservationQuery.set_fields()

	ObservationQuery.set_rows()

	ObservationQuery.set_start()

	ObservationQuery.set_time_range()

	ObservationQuery.sort_by()

	ObservationQuery.timeout()

	ObservationQuery.update_criteria()

	ObservationQuery.update_exclusions()

	ObservationQuery.where()

	Policies Module
	Policy
	Policy.PolicyBuilder

	Policy.add_rule()

	Policy.bypass_rule_configs

	Policy.bypass_rule_configs_list

	Policy.core_prevention_rule_configs

	Policy.core_prevention_rule_configs_list

	Policy.create()

	Policy.data_collection_rule_configs

	Policy.data_collection_rule_configs_list

	Policy.delete()

	Policy.delete_rule()

	Policy.delete_rule_config()

	Policy.get()

	Policy.get_ruleconfig_parameter_schema()

	Policy.host_based_firewall_rule_config

	Policy.is_dirty()

	Policy.latestRevision

	Policy.object_rule_configs

	Policy.object_rule_configs_list

	Policy.object_rules

	Policy.policy

	Policy.preview_add_policy_override()

	Policy.preview_policy_rank_changes()

	Policy.preview_rank_change()

	Policy.priorityLevel

	Policy.refresh()

	Policy.replace_rule()

	Policy.replace_rule_config()

	Policy.reset()

	Policy.save()

	Policy.set_auth_event_collection()

	Policy.set_data_collection()

	Policy.set_xdr_collection()

	Policy.systemPolicy

	Policy.to_json()

	Policy.touch()

	Policy.valid_rule_configs()

	Policy.validate()

	PolicyQuery
	PolicyQuery.add_descriptions()

	PolicyQuery.add_names()

	PolicyQuery.add_policy_ids()

	PolicyQuery.add_priorities()

	PolicyQuery.all()

	PolicyQuery.execute_async()

	PolicyQuery.first()

	PolicyQuery.one()

	PolicyQuery.set_system()

	PolicyRule
	PolicyRule.delete()

	PolicyRule.get()

	PolicyRule.is_deleted

	PolicyRule.is_dirty()

	PolicyRule.refresh()

	PolicyRule.reset()

	PolicyRule.save()

	PolicyRule.to_json()

	PolicyRule.touch()

	PolicyRule.validate()

	RuleConfigs Module
	BypassRuleConfig
	BypassRuleConfig.delete()

	BypassRuleConfig.get()

	BypassRuleConfig.get_parameter()

	BypassRuleConfig.is_dirty()

	BypassRuleConfig.parameter_names

	BypassRuleConfig.refresh()

	BypassRuleConfig.replace_exclusions()

	BypassRuleConfig.reset()

	BypassRuleConfig.save()

	BypassRuleConfig.set_parameter()

	BypassRuleConfig.to_json()

	BypassRuleConfig.touch()

	BypassRuleConfig.validate()

	CorePreventionRuleConfig
	CorePreventionRuleConfig.delete()

	CorePreventionRuleConfig.get()

	CorePreventionRuleConfig.get_assignment_mode()

	CorePreventionRuleConfig.get_parameter()

	CorePreventionRuleConfig.is_dirty()

	CorePreventionRuleConfig.parameter_names

	CorePreventionRuleConfig.refresh()

	CorePreventionRuleConfig.replace_exclusions()

	CorePreventionRuleConfig.reset()

	CorePreventionRuleConfig.save()

	CorePreventionRuleConfig.set_assignment_mode()

	CorePreventionRuleConfig.set_parameter()

	CorePreventionRuleConfig.to_json()

	CorePreventionRuleConfig.touch()

	CorePreventionRuleConfig.validate()

	DataCollectionRuleConfig
	DataCollectionRuleConfig.delete()

	DataCollectionRuleConfig.get()

	DataCollectionRuleConfig.get_parameter()

	DataCollectionRuleConfig.is_dirty()

	DataCollectionRuleConfig.parameter_names

	DataCollectionRuleConfig.refresh()

	DataCollectionRuleConfig.reset()

	DataCollectionRuleConfig.save()

	DataCollectionRuleConfig.set_parameter()

	DataCollectionRuleConfig.to_json()

	DataCollectionRuleConfig.touch()

	DataCollectionRuleConfig.validate()

	HostBasedFirewallRuleConfig
	HostBasedFirewallRuleConfig.FirewallRule

	HostBasedFirewallRuleConfig.FirewallRuleGroup

	HostBasedFirewallRuleConfig.append_rule_group()

	HostBasedFirewallRuleConfig.copy_rules()

	HostBasedFirewallRuleConfig.default_action

	HostBasedFirewallRuleConfig.delete()

	HostBasedFirewallRuleConfig.enabled

	HostBasedFirewallRuleConfig.export_rules()

	HostBasedFirewallRuleConfig.get()

	HostBasedFirewallRuleConfig.get_parameter()

	HostBasedFirewallRuleConfig.is_dirty()

	HostBasedFirewallRuleConfig.parameter_names

	HostBasedFirewallRuleConfig.refresh()

	HostBasedFirewallRuleConfig.reset()

	HostBasedFirewallRuleConfig.rule_groups

	HostBasedFirewallRuleConfig.save()

	HostBasedFirewallRuleConfig.set_default_action()

	HostBasedFirewallRuleConfig.set_enabled()

	HostBasedFirewallRuleConfig.set_parameter()

	HostBasedFirewallRuleConfig.to_json()

	HostBasedFirewallRuleConfig.touch()

	HostBasedFirewallRuleConfig.validate()

	PolicyRuleConfig
	PolicyRuleConfig.delete()

	PolicyRuleConfig.get()

	PolicyRuleConfig.get_parameter()

	PolicyRuleConfig.is_dirty()

	PolicyRuleConfig.parameter_names

	PolicyRuleConfig.refresh()

	PolicyRuleConfig.reset()

	PolicyRuleConfig.save()

	PolicyRuleConfig.set_parameter()

	PolicyRuleConfig.to_json()

	PolicyRuleConfig.touch()

	PolicyRuleConfig.validate()

	Previewer Module
	DevicePolicyChangePreview
	DevicePolicyChangePreview.asset_count

	DevicePolicyChangePreview.asset_query

	DevicePolicyChangePreview.assets

	DevicePolicyChangePreview.current_policy

	DevicePolicyChangePreview.current_policy_id

	DevicePolicyChangePreview.current_policy_position

	DevicePolicyChangePreview.new_policy

	DevicePolicyChangePreview.new_policy_id

	DevicePolicyChangePreview.new_policy_position

	Processes Module
	AsyncProcessQuery
	AsyncProcessQuery.add_criteria()

	AsyncProcessQuery.add_exclusions()

	AsyncProcessQuery.all()

	AsyncProcessQuery.and_()

	AsyncProcessQuery.batch_size()

	AsyncProcessQuery.execute_async()

	AsyncProcessQuery.first()

	AsyncProcessQuery.not_()

	AsyncProcessQuery.one()

	AsyncProcessQuery.or_()

	AsyncProcessQuery.set_collapse_field()

	AsyncProcessQuery.set_fields()

	AsyncProcessQuery.set_rows()

	AsyncProcessQuery.set_start()

	AsyncProcessQuery.set_time_range()

	AsyncProcessQuery.sort_by()

	AsyncProcessQuery.timeout()

	AsyncProcessQuery.update_criteria()

	AsyncProcessQuery.update_exclusions()

	AsyncProcessQuery.where()

	Process
	Process.Summary

	Process.Tree

	Process.approve_process_sha256()

	Process.ban_process_sha256()

	Process.children

	Process.deobfuscate_cmdline()

	Process.events()

	Process.facets()

	Process.get()

	Process.get_details()

	Process.parents

	Process.process_md5

	Process.process_pids

	Process.process_sha256

	Process.refresh()

	Process.siblings

	Process.summary

	Process.to_json()

	Process.tree

	ProcessFacet
	ProcessFacet.Ranges

	ProcessFacet.Terms

	ProcessFacet.get()

	ProcessFacet.ranges_

	ProcessFacet.refresh()

	ProcessFacet.terms_

	ProcessFacet.to_json()

	SummaryQuery
	SummaryQuery.and_()

	SummaryQuery.execute_async()

	SummaryQuery.not_()

	SummaryQuery.or_()

	SummaryQuery.results

	SummaryQuery.set_time_range()

	SummaryQuery.timeout()

	SummaryQuery.where()

	Reputation Module
	ReputationOverride
	ReputationOverride.bulk_delete()

	ReputationOverride.create()

	ReputationOverride.delete()

	ReputationOverride.get()

	ReputationOverride.refresh()

	ReputationOverride.to_json()

	ReputationOverrideQuery
	ReputationOverrideQuery.all()

	ReputationOverrideQuery.and_()

	ReputationOverrideQuery.execute_async()

	ReputationOverrideQuery.first()

	ReputationOverrideQuery.not_()

	ReputationOverrideQuery.one()

	ReputationOverrideQuery.or_()

	ReputationOverrideQuery.set_override_list()

	ReputationOverrideQuery.set_override_type()

	ReputationOverrideQuery.sort_by()

	ReputationOverrideQuery.where()

	Users Module
	User
	User.UserBuilder

	User.add_profiles()

	User.bulk_add_profiles()

	User.bulk_create()

	User.bulk_delete()

	User.bulk_disable_all_access()

	User.bulk_disable_profiles()

	User.change_role()

	User.create()

	User.delete()

	User.disable_all_access()

	User.disable_profiles()

	User.get()

	User.grant()

	User.is_dirty()

	User.org_urn

	User.refresh()

	User.reset()

	User.reset_google_authenticator_registration()

	User.save()

	User.set_profile_expiration()

	User.to_json()

	User.touch()

	User.urn

	User.validate()

	UserQuery
	UserQuery.all()

	UserQuery.email_addresses()

	UserQuery.execute_async()

	UserQuery.first()

	UserQuery.one()

	UserQuery.user_ids()

	log

	normalize_profile_list()

	Vulnerability Assessment Module
	AffectedAssetQuery
	AffectedAssetQuery.add_criteria()

	AffectedAssetQuery.all()

	AffectedAssetQuery.and_()

	AffectedAssetQuery.execute_async()

	AffectedAssetQuery.export()

	AffectedAssetQuery.first()

	AffectedAssetQuery.not_()

	AffectedAssetQuery.one()

	AffectedAssetQuery.or_()

	AffectedAssetQuery.set_deployment_type()

	AffectedAssetQuery.set_device_type()

	AffectedAssetQuery.set_highest_risk_score()

	AffectedAssetQuery.set_last_sync_ts()

	AffectedAssetQuery.set_name()

	AffectedAssetQuery.set_os_arch()

	AffectedAssetQuery.set_os_name()

	AffectedAssetQuery.set_os_product_id()

	AffectedAssetQuery.set_os_type()

	AffectedAssetQuery.set_os_version()

	AffectedAssetQuery.set_severity()

	AffectedAssetQuery.set_sync_status()

	AffectedAssetQuery.set_sync_type()

	AffectedAssetQuery.set_vcenter()

	AffectedAssetQuery.set_visibility()

	AffectedAssetQuery.set_vm_id()

	AffectedAssetQuery.set_vuln_count()

	AffectedAssetQuery.sort_by()

	AffectedAssetQuery.where()

	Vulnerability
	Vulnerability.AssetView

	Vulnerability.OrgSummary

	Vulnerability.get()

	Vulnerability.get_affected_assets()

	Vulnerability.perform_action()

	Vulnerability.refresh()

	Vulnerability.to_json()

	VulnerabilityAssetViewQuery
	VulnerabilityAssetViewQuery.add_criteria()

	VulnerabilityAssetViewQuery.all()

	VulnerabilityAssetViewQuery.and_()

	VulnerabilityAssetViewQuery.execute_async()

	VulnerabilityAssetViewQuery.export()

	VulnerabilityAssetViewQuery.first()

	VulnerabilityAssetViewQuery.not_()

	VulnerabilityAssetViewQuery.one()

	VulnerabilityAssetViewQuery.or_()

	VulnerabilityAssetViewQuery.set_deployment_type()

	VulnerabilityAssetViewQuery.set_device_type()

	VulnerabilityAssetViewQuery.set_highest_risk_score()

	VulnerabilityAssetViewQuery.set_last_sync_ts()

	VulnerabilityAssetViewQuery.set_name()

	VulnerabilityAssetViewQuery.set_os_arch()

	VulnerabilityAssetViewQuery.set_os_name()

	VulnerabilityAssetViewQuery.set_os_type()

	VulnerabilityAssetViewQuery.set_os_version()

	VulnerabilityAssetViewQuery.set_severity()

	VulnerabilityAssetViewQuery.set_sync_status()

	VulnerabilityAssetViewQuery.set_sync_type()

	VulnerabilityAssetViewQuery.set_vcenter()

	VulnerabilityAssetViewQuery.set_visibility()

	VulnerabilityAssetViewQuery.set_vm_id()

	VulnerabilityAssetViewQuery.set_vuln_count()

	VulnerabilityAssetViewQuery.sort_by()

	VulnerabilityAssetViewQuery.where()

	VulnerabilityOrgSummaryQuery
	VulnerabilityOrgSummaryQuery.set_severity()

	VulnerabilityOrgSummaryQuery.set_vcenter()

	VulnerabilityOrgSummaryQuery.set_visibility()

	VulnerabilityOrgSummaryQuery.submit()

	VulnerabilityQuery
	VulnerabilityQuery.add_criteria()

	VulnerabilityQuery.all()

	VulnerabilityQuery.and_()

	VulnerabilityQuery.execute_async()

	VulnerabilityQuery.export()

	VulnerabilityQuery.first()

	VulnerabilityQuery.not_()

	VulnerabilityQuery.one()

	VulnerabilityQuery.or_()

	VulnerabilityQuery.set_deployment_type()

	VulnerabilityQuery.set_device_type()

	VulnerabilityQuery.set_highest_risk_score()

	VulnerabilityQuery.set_last_sync_ts()

	VulnerabilityQuery.set_name()

	VulnerabilityQuery.set_os_arch()

	VulnerabilityQuery.set_os_name()

	VulnerabilityQuery.set_os_type()

	VulnerabilityQuery.set_os_version()

	VulnerabilityQuery.set_severity()

	VulnerabilityQuery.set_sync_status()

	VulnerabilityQuery.set_sync_type()

	VulnerabilityQuery.set_vcenter()

	VulnerabilityQuery.set_visibility()

	VulnerabilityQuery.set_vm_id()

	VulnerabilityQuery.set_vuln_count()

	VulnerabilityQuery.sort_by()

	VulnerabilityQuery.where()

	log

	Workload Package
	CIS Benchmarks
	ComplianceBenchmark
	ComplianceBenchmark.execute_action()

	ComplianceBenchmark.get()

	ComplianceBenchmark.get_compliance_schedule()

	ComplianceBenchmark.get_device_compliances()

	ComplianceBenchmark.get_device_rule_compliances()

	ComplianceBenchmark.get_rule_compliance_devices()

	ComplianceBenchmark.get_rule_compliances()

	ComplianceBenchmark.get_rules()

	ComplianceBenchmark.get_sections()

	ComplianceBenchmark.refresh()

	ComplianceBenchmark.set_compliance_schedule()

	ComplianceBenchmark.to_json()

	ComplianceBenchmark.update_rules()

	ComplianceBenchmarkQuery
	ComplianceBenchmarkQuery.add_criteria()

	ComplianceBenchmarkQuery.all()

	ComplianceBenchmarkQuery.and_()

	ComplianceBenchmarkQuery.execute_async()

	ComplianceBenchmarkQuery.first()

	ComplianceBenchmarkQuery.not_()

	ComplianceBenchmarkQuery.one()

	ComplianceBenchmarkQuery.or_()

	ComplianceBenchmarkQuery.sort_by()

	ComplianceBenchmarkQuery.update_criteria()

	ComplianceBenchmarkQuery.where()

	log

	NSX Remediation Module
	NSXRemediationJob
	NSXRemediationJob.async_await_result()

	NSXRemediationJob.await_result()

	NSXRemediationJob.start_request()

	NSXRemediationJob.status

	Sensor Lifecycle Module
	SensorKit
	SensorKit.from_type()

	SensorKit.get()

	SensorKit.get_config_template()

	SensorKit.refresh()

	SensorKit.to_json()

	SensorKitQuery
	SensorKitQuery.add_criteria()

	SensorKitQuery.add_sensor_kit_type()

	SensorKitQuery.all()

	SensorKitQuery.config_params()

	SensorKitQuery.execute_async()

	SensorKitQuery.expires()

	SensorKitQuery.first()

	SensorKitQuery.one()

	SensorKitQuery.update_criteria()

	VM Workloads Search Module
	AWSComputeResource
	AWSComputeResource.bulk_install()

	AWSComputeResource.bulk_install_by_id()

	AWSComputeResource.get()

	AWSComputeResource.install_sensor()

	AWSComputeResource.refresh()

	AWSComputeResource.to_json()

	AWSComputeResourceQuery
	AWSComputeResourceQuery.add_criteria()

	AWSComputeResourceQuery.all()

	AWSComputeResourceQuery.and_()

	AWSComputeResourceQuery.download()

	AWSComputeResourceQuery.exclude_auto_scaling_group_name()

	AWSComputeResourceQuery.exclude_availability_zone()

	AWSComputeResourceQuery.exclude_cloud_provider_account_id()

	AWSComputeResourceQuery.exclude_cloud_provider_resource_id()

	AWSComputeResourceQuery.exclude_cloud_provider_tags()

	AWSComputeResourceQuery.exclude_id()

	AWSComputeResourceQuery.exclude_installation_status()

	AWSComputeResourceQuery.exclude_name()

	AWSComputeResourceQuery.exclude_platform()

	AWSComputeResourceQuery.exclude_platform_details()

	AWSComputeResourceQuery.exclude_region()

	AWSComputeResourceQuery.exclude_subnet_id()

	AWSComputeResourceQuery.exclude_virtual_private_cloud_id()

	AWSComputeResourceQuery.execute_async()

	AWSComputeResourceQuery.facet()

	AWSComputeResourceQuery.first()

	AWSComputeResourceQuery.not_()

	AWSComputeResourceQuery.one()

	AWSComputeResourceQuery.or_()

	AWSComputeResourceQuery.set_auto_scaling_group_name()

	AWSComputeResourceQuery.set_availability_zone()

	AWSComputeResourceQuery.set_cloud_provider_account_id()

	AWSComputeResourceQuery.set_cloud_provider_resource_id()

	AWSComputeResourceQuery.set_cloud_provider_tags()

	AWSComputeResourceQuery.set_id()

	AWSComputeResourceQuery.set_installation_status()

	AWSComputeResourceQuery.set_name()

	AWSComputeResourceQuery.set_platform()

	AWSComputeResourceQuery.set_platform_details()

	AWSComputeResourceQuery.set_region()

	AWSComputeResourceQuery.set_subnet_id()

	AWSComputeResourceQuery.set_virtual_private_cloud_id()

	AWSComputeResourceQuery.sort_by()

	AWSComputeResourceQuery.summarize()

	AWSComputeResourceQuery.update_criteria()

	AWSComputeResourceQuery.where()

	BaseComputeResource
	BaseComputeResource.bulk_install()

	BaseComputeResource.bulk_install_by_id()

	BaseComputeResource.get()

	BaseComputeResource.install_sensor()

	BaseComputeResource.refresh()

	BaseComputeResource.to_json()

	BaseComputeResourceQuery
	BaseComputeResourceQuery.add_criteria()

	BaseComputeResourceQuery.all()

	BaseComputeResourceQuery.and_()

	BaseComputeResourceQuery.download()

	BaseComputeResourceQuery.execute_async()

	BaseComputeResourceQuery.facet()

	BaseComputeResourceQuery.first()

	BaseComputeResourceQuery.not_()

	BaseComputeResourceQuery.one()

	BaseComputeResourceQuery.or_()

	BaseComputeResourceQuery.sort_by()

	BaseComputeResourceQuery.update_criteria()

	BaseComputeResourceQuery.where()

	ComputeResourceFacet
	ComputeResourceFacet.ComputeResourceFacetValue

	ComputeResourceFacet.get()

	ComputeResourceFacet.refresh()

	ComputeResourceFacet.to_json()

	ComputeResourceFacet.values

	VCenterComputeResource
	VCenterComputeResource.bulk_install()

	VCenterComputeResource.bulk_install_by_id()

	VCenterComputeResource.get()

	VCenterComputeResource.install_sensor()

	VCenterComputeResource.refresh()

	VCenterComputeResource.to_json()

	VCenterComputeResourceQuery
	VCenterComputeResourceQuery.add_criteria()

	VCenterComputeResourceQuery.all()

	VCenterComputeResourceQuery.and_()

	VCenterComputeResourceQuery.download()

	VCenterComputeResourceQuery.exclude_appliance_uuid()

	VCenterComputeResourceQuery.exclude_cluster_name()

	VCenterComputeResourceQuery.exclude_datacenter_name()

	VCenterComputeResourceQuery.exclude_device_guid()

	VCenterComputeResourceQuery.exclude_eligibility()

	VCenterComputeResourceQuery.exclude_eligibility_code()

	VCenterComputeResourceQuery.exclude_esx_host_name()

	VCenterComputeResourceQuery.exclude_esx_host_uuid()

	VCenterComputeResourceQuery.exclude_host_name()

	VCenterComputeResourceQuery.exclude_installation_status()

	VCenterComputeResourceQuery.exclude_installation_type()

	VCenterComputeResourceQuery.exclude_ip_address()

	VCenterComputeResourceQuery.exclude_name()

	VCenterComputeResourceQuery.exclude_os_architecture()

	VCenterComputeResourceQuery.exclude_os_description()

	VCenterComputeResourceQuery.exclude_os_type()

	VCenterComputeResourceQuery.exclude_registration_id()

	VCenterComputeResourceQuery.exclude_uuid()

	VCenterComputeResourceQuery.exclude_vcenter_host_url()

	VCenterComputeResourceQuery.exclude_vcenter_name()

	VCenterComputeResourceQuery.exclude_vcenter_uuid()

	VCenterComputeResourceQuery.exclude_vmwaretools_version()

	VCenterComputeResourceQuery.execute_async()

	VCenterComputeResourceQuery.facet()

	VCenterComputeResourceQuery.first()

	VCenterComputeResourceQuery.not_()

	VCenterComputeResourceQuery.one()

	VCenterComputeResourceQuery.or_()

	VCenterComputeResourceQuery.set_appliance_uuid()

	VCenterComputeResourceQuery.set_cluster_name()

	VCenterComputeResourceQuery.set_datacenter_name()

	VCenterComputeResourceQuery.set_device_guid()

	VCenterComputeResourceQuery.set_eligibility()

	VCenterComputeResourceQuery.set_eligibility_code()

	VCenterComputeResourceQuery.set_esx_host_name()

	VCenterComputeResourceQuery.set_esx_host_uuid()

	VCenterComputeResourceQuery.set_host_name()

	VCenterComputeResourceQuery.set_installation_status()

	VCenterComputeResourceQuery.set_installation_type()

	VCenterComputeResourceQuery.set_ip_address()

	VCenterComputeResourceQuery.set_name()

	VCenterComputeResourceQuery.set_os_architecture()

	VCenterComputeResourceQuery.set_os_description()

	VCenterComputeResourceQuery.set_os_type()

	VCenterComputeResourceQuery.set_registration_id()

	VCenterComputeResourceQuery.set_uuid()

	VCenterComputeResourceQuery.set_vcenter_host_url()

	VCenterComputeResourceQuery.set_vcenter_name()

	VCenterComputeResourceQuery.set_vcenter_uuid()

	VCenterComputeResourceQuery.set_vmwaretools_version()

	VCenterComputeResourceQuery.sort_by()

	VCenterComputeResourceQuery.update_criteria()

	VCenterComputeResourceQuery.where()

	log

Submodules

Base Module

Models and Queries for the Base Carbon Black Cloud SDK

	
class ArrayFieldDescriptor(field_name, coerce_to=None, default_value=None)

	Bases: FieldDescriptor

Field descriptor for fields of ‘array’ type.

Initialize the FieldDescriptor object.

	Parameters:

	
	field_name (str) – The name of the field.

	coerce_to (class) – The type to which the value should be coerced, or None.

	default_value (Any) – The default value of the field.

	
class AsyncQueryMixin

	Bases: object

A mix-in which provides support for asynchronous queries.

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
class BaseQuery(query=None)

	Bases: object

The base query for finding objects via the API.

Initializes the BaseQuery object.

	Parameters:

	query (solrq.Q) – The parent query of this one.

	
class BinaryFieldDescriptor(field_name, coerce_to=None, default_value=None)

	Bases: FieldDescriptor

Field descriptor for fields of ‘byte’ type.

Initialize the FieldDescriptor object.

	Parameters:

	
	field_name (str) – The name of the field.

	coerce_to (class) – The type to which the value should be coerced, or None.

	default_value (Any) – The default value of the field.

	
class CbMetaModel(name, bases, clsdict)

	Bases: type

Meta-model for NewBaseModel and its subclasses.

Creates a new instance of a class, setting up the field descriptors based on the metafile.

	Parameters:

	
	name (str) – The name of the class.

	bases (list) – Base classes of the class to be created.

	clsdict (dict) – Elements defined in the new class.

	
mro()

	Return a type’s method resolution order.

	
class CreatableModelMixin

	Bases: object

Mixin for all objects which are creatable.

	
class CriteriaBuilderSupportMixin

	Bases: object

A mixin that supplies wrapper methods to access the criteria.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
class EpochDateTimeFieldDescriptor(field_name, multiplier=1.0)

	Bases: FieldDescriptor

Field descriptor for fields of ‘epoch-ms-date-time’ type.

Initialize the EpochDateTimeFieldDescriptor object.

	Parameters:

	
	field_name (str) – The name of the field.

	multiplier (float) – Unused.

	
class ExclusionBuilderSupportMixin

	Bases: object

A mixin that supplies wrapper methods to access the exclusions.

	
add_exclusions(key, newlist)

	Add to the exclusions on this query with a custom exclusions key.

Will overwrite any existing exclusion for the specified key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).add_exclusions("type", ["WATCHLIST"])
>>> query = api.select(Alert).add_exclusions("type", "WATCHLIST")

	
update_exclusions(key, newlist)

	Update the exclusion on this query with a custom exclusion key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (list) – List of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).update_exclusions("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
class FacetQuery(cls, cb, query=None)

	Bases: BaseQuery, AsyncQueryMixin, QueryBuilderSupportMixin, CriteriaBuilderSupportMixin, ExclusionBuilderSupportMixin

Query class for asynchronous Facet API calls.

These API calls return one result, and are not paginated or iterable.

Initialize the FacetQuery object.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
add_exclusions(key, newlist)

	Add to the exclusions on this query with a custom exclusions key.

Will overwrite any existing exclusion for the specified key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).add_exclusions("type", ["WATCHLIST"])
>>> query = api.select(Alert).add_exclusions("type", "WATCHLIST")

	
add_facet_field(field)

	Sets the facet fields to be received by this query.

	Parameters:

	field (str or [str]) – Field(s) to be received.

	Returns:

	The Query object that will receive the specified field(s).

	Return type:

	Query (AsyncQuery)

Example

>>> cb.select(ProcessFacet).add_facet_field(["process_name", "process_username"])

	
add_range(range)

	Sets the facet ranges to be received by this query.

	Parameters:

	range (dict or [dict]) – Range(s) to be received.

	Returns:

	The Query object that will receive the specified range(s).

	Return type:

	Query (AsyncQuery)

Note

The range parameter must be in this dictionary format:

{

“bucket_size”: “<object>”,

“start”: “<object>”,

“end”: “<object>”,

“field”: “<string>”

},

where “bucket_size”, “start”, and “end” can be numbers or ISO 8601 timestamps.

Examples

>>> cb.select(ProcessFacet).add_range({"bucket_size": 5, "start": 0, "end": 10, "field": "netconn_count"})
>>> cb.select(ProcessFacet).add_range({"bucket_size": "+1DAY", "start": "2020-11-01T00:00:00Z",
... "end": "2020-11-12T00:00:00Z", "field": "backend_timestamp"})

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
limit(limit)

	Sets the maximum number of facets per category (i.e. any Process Search Fields in self._fields).

The default limit for Process Facet searches in the Carbon Black Cloud backend is 100.

	Parameters:

	limit (int) – Maximum number of facets per category.

	Returns:

	The Query object with new limit parameter.

	Return type:

	Query (AsyncQuery)

Example

>>> cb.select(ProcessFacet).where(process_name="foo.exe").limit(50)

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
property results

	Save query results to self._results with self._search() method.

	
set_rows(rows)

	Sets the number of facet results to return with the query.

	Parameters:

	rows (int) – Number of rows to return.

	Returns:

	The Query object with the new rows parameter.

	Return type:

	Query (AsyncQuery)

Example

>>> cb.select(ProcessFacet).set_rows(50)

	
set_time_range(start=None, end=None, window=None)

	Sets the ‘time_range’ query body parameter, determining a time window based on ‘device_timestamp’.

	Parameters:

	
	start (str in ISO 8601 timestamp) – When to start the result search.

	end (str in ISO 8601 timestamp) – When to end the result search.

	window (str) – Time window to execute the result search, ending on the current time.

	"-2w" (Should be in the form) –

	y=year (where) –

	w=week –

	d=day –

	h=hour –

	m=minute –

	s=second. –

Note

	window will take precendent over start and end if provided.

Examples

>>> query = api.select(Process).set_time_range(start="2020-10-20T20:34:07Z").where("query is required")
>>> second_query = api.select(Process).
... set_time_range(start="2020-10-20T20:34:07Z", end="2020-10-30T20:34:07Z").where("query is required")
>>> third_query = api.select(Process).set_time_range(window='-3d').where("query is required")

	
timeout(msecs)

	Sets the timeout on an AsyncQuery.

	Parameters:

	msecs (int) – Timeout duration, in milliseconds. This value can never be greater than the configured
default timeout. If this is 0, the configured default timeout value is used.

	Returns:

	The Query object with new milliseconds parameter.

	Return type:

	Query (AsyncQuery)

Example

>>> cb.select(ProcessFacet).where(process_name="foo.exe").timeout(5000)

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
update_exclusions(key, newlist)

	Update the exclusion on this query with a custom exclusion key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (list) – List of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).update_exclusions("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
class FieldDescriptor(field_name, coerce_to=None, default_value=None)

	Bases: object

Object that describes a field within a model instance.

Initialize the FieldDescriptor object.

	Parameters:

	
	field_name (str) – The name of the field.

	coerce_to (class) – The type to which the value should be coerced, or None.

	default_value (Any) – The default value of the field.

	
class ForeignKeyFieldDescriptor(field_name, join_model, join_field=None)

	Bases: FieldDescriptor

Field descriptor for fields that are foreign keys.

Initialize the ForeignKeyFieldDescriptor object.

	Parameters:

	
	field_name (str) – The name of the field.

	join_model (class) – The class for which this field value is a foreign key.

	join_field (str) – The name fo the field in the joined class for which this field value is a foreign key.

	
class IsoDateTimeFieldDescriptor(field_name)

	Bases: FieldDescriptor

Field descriptor for fields of ‘iso-date-time’ type.

Initialize the IsoDateTimeFieldDescriptor object.

	Parameters:

	field_name (str) – The name of the field.

	
class IterableQueryMixin

	Bases: object

A mix-in to provide iterability to a query.

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
class MutableBaseModel(cb, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: NewBaseModel

Base model for objects that can have properties changed and then saved back to the server.

Initialize the NewBaseModel object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (Any) – The unique ID for this particular instance of the model object.

	initial_data (dict) – The data to use when initializing the model object.

	force_init (bool) – True to force object initialization.

	full_doc (bool) – True to mark the object as fully initialized.

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
refresh()

	Reload this object from the server.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this object.

	Returns:

	True if the object is validated.

	Return type:

	bool

	Raises:

	InvalidObjectError – If the object has missing fields.

	
class NewBaseModel(cb, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: object

Base class of all model objects within the Carbon Black Cloud SDK.

Initialize the NewBaseModel object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (Any) – The unique ID for this particular instance of the model object.

	initial_data (dict) – The data to use when initializing the model object.

	force_init (bool) – True to force object initialization.

	full_doc (bool) – True to mark the object as fully initialized.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class ObjectFieldDescriptor(field_name, coerce_to=None, default_value=None)

	Bases: FieldDescriptor

Field descriptor for fields of ‘object’ type.

Initialize the FieldDescriptor object.

	Parameters:

	
	field_name (str) – The name of the field.

	coerce_to (class) – The type to which the value should be coerced, or None.

	default_value (Any) – The default value of the field.

	
class PaginatedQuery(cls, cb, query=None)

	Bases: BaseQuery, IterableQueryMixin

A query that returns objects in a paginated fashion.

Initialize the PaginatedQuery object.

	Parameters:

	
	cls (class) – The class of objects being returned by this query.

	cb (CBCloudAPI) – Reference to the CBCloudAPI object.

	query (BaseQuery) – The query that we are paginating.

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
batch_size(new_batch_size)

	Set the batch size of the paginated query.

	Parameters:

	new_batch_size (int) – The new batch size.

	Returns:

	A new query with the updated batch size.

	Return type:

	PaginatedQuery

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
class Query(doc_class, cb)

	Bases: PaginatedQuery, QueryBuilderSupportMixin, IterableQueryMixin, AsyncQueryMixin, CriteriaBuilderSupportMixin, ExclusionBuilderSupportMixin

Represents a prepared query to the Carbon Black Cloud.

This object is returned as part of a CBCCloudAPI.select
operation on models requested from the Carbon Black Cloud backend.
You should not have to create this class yourself.

The query is not executed on the server until it’s accessed, either as an iterator (where it will generate values
on demand as they’re requested) or as a list (where it will retrieve the entire result set and save to a list).
You can also call the Python built-in len() on this object to retrieve the total number of items matching
the query.

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.enterprise_edr import Report
>>> cb = CBCloudAPI()
>>> query = cb.select(Report)
>>> query = query.where(report_id="ABCDEFG1234")
>>> # alternatively:
>>> query = query.where("report_id:ABCDEFG1234")

Notes

	The slicing operator only supports start and end parameters, but not step. [1:-1] is legal, but
[1:2:-1] is not.

	You can chain where clauses together to create AND queries; only objects that match all where clauses
will be returned.

Initialize the Query object.

	Parameters:

	
	doc_class (class) – The class of the model this query returns.

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
add_exclusions(key, newlist)

	Add to the exclusions on this query with a custom exclusions key.

Will overwrite any existing exclusion for the specified key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).add_exclusions("type", ["WATCHLIST"])
>>> query = api.select(Alert).add_exclusions("type", "WATCHLIST")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
batch_size(new_batch_size)

	Set the batch size of the paginated query.

	Parameters:

	new_batch_size (int) – The new batch size.

	Returns:

	A new query with the updated batch size.

	Return type:

	PaginatedQuery

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_fields(fields)

	Sets the fields to be returned with the response.

	Parameters:

	fields (str or list[str]) – Field or list of fields to be returned.

	
set_rows(rows)

	Sets the ‘rows’ query body parameter, determining how many rows of results to request.

	Parameters:

	rows (int) – How many rows to request.

	
set_start(start)

	Sets the ‘start’ query body parameter, determining where to begin retrieving results from.

	Parameters:

	start (int) – Where to start results from.

	
set_time_range(start=None, end=None, window=None)

	Sets the ‘time_range’ query body parameter, determining a time window based on ‘device_timestamp’.

	Parameters:

	
	start (str in ISO 8601 timestamp) – When to start the result search.

	end (str in ISO 8601 timestamp) – When to end the result search.

	window (str) – Time window to execute the result search, ending on the current time.
Should be in the form “-2w”, where y=year, w=week, d=day, h=hour, m=minute, s=second.

Note

	window will take precendent over start and end if provided.

Examples

>>> query = api.select(Process).set_time_range(start="2020-10-20T20:34:07Z").where("query is required")
>>> second_query = api.select(Process).
... set_time_range(start="2020-10-20T20:34:07Z", end="2020-10-30T20:34:07Z").where("query is required")
>>> third_query = api.select(Process).set_time_range(window='-3d').where("query is required")

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	The query with sorting parameters.

	Return type:

	Query

Example

>>> cb.select(Process).where(process_name="cmd.exe").sort_by("device_timestamp")

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
update_exclusions(key, newlist)

	Update the exclusion on this query with a custom exclusion key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (list) – List of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).update_exclusions("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
class QueryBuilder(**kwargs)

	Bases: object

Provides a flexible interface for building prepared queries for the CB Cloud backend.

This object can be instantiated directly, or can be managed implicitly
through the CBCloudAPI.select API.

Examples

>>> from cbc_sdk.base import QueryBuilder
>>> # build a query with chaining
>>> query = QueryBuilder().where(process_name="malicious.exe").and_(device_name="suspect")
>>> # start with an initial query, and chain another condition to it
>>> query = QueryBuilder(device_os="WINDOWS").or_(process_username="root")

Initialize the QueryBuilder object.

	Parameters:

	**kwargs (dict) – If present, these are used to construct a Solrq Query.

	
and_(q, **kwargs)

	Adds a conjunctive filter to a QueryBuilder.

	Parameters:

	
	q (object) – Either a string or solrq.Q object representing the query to be added.

	**kwargs (dict) – Arguments with which to construct a solrq.Q object.

	Returns:

	This object.

	Return type:

	QueryBuilder

	Raises:

	ApiError – If the q parameter is of an invalid type.

	
not_(q, **kwargs)

	Adds a negative filter to a QueryBuilder.

	Parameters:

	
	q (object) – Either a string or solrq.Q object representing the query to be added.

	**kwargs (dict) – Arguments with which to construct a solrq.Q object.

	Returns:

	This object.

	Return type:

	QueryBuilder

	Raises:

	ApiError – If the q parameter is of an invalid type.

	
or_(q, **kwargs)

	Adds a disjunctive filter to a QueryBuilder.

	Parameters:

	
	q (object) – Either a string or solrq.Q object representing the query to be added.

	**kwargs (dict) – Arguments with which to construct a solrq.Q object.

	Returns:

	This object.

	Return type:

	QueryBuilder

	Raises:

	ApiError – If the q parameter is of an invalid type.

	
where(q, **kwargs)

	Adds a conjunctive filter to a QueryBuilder.

	Parameters:

	
	q (object) – Either a string or solrq.Q object representing the query to be added.

	**kwargs (dict) – Arguments with which to construct a solrq.Q object.

	Returns:

	This object.

	Return type:

	QueryBuilder

	Raises:

	ApiError – If the q parameter is of an invalid type.

	
class QueryBuilderSupportMixin

	Bases: object

A mixin that supplies wrapper methods to access the _query_builder.

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
class SimpleQuery(cls, cb, urlobject=None, returns_fulldoc=True)

	Bases: BaseQuery, IterableQueryMixin

A simple query object.

Initialize the SimpleQuery object.

	Parameters:

	
	cls (class) – Class of the object to be returned by the query.

	cb (CBCloudAPI) – Reference to the CBCloudAPI object.

	urlobject (str) – URL to be used in making the query.

	returns_fulldoc (bool) – Whether the result of the Query yields objects that have been fully initialized.

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(new_query)

	Add an additional “where” clause to this query.

	Parameters:

	new_query (object) – The additional “where” clause, as a string or solrq.Q object.

	Returns:

	A new query with the extra “where” clause specified.

	Return type:

	SimpleQuery

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
property results

	Collect and return the results of this query.

	Returns:

	The results of this query.

	Return type:

	list

	
sort(new_sort)

	Set the sorting for this query.

	Parameters:

	new_sort (object) – The new sort criteria for this query.

	Returns:

	A new query with the sort parameter specified.

	Return type:

	SimpleQuery

	
where(new_query)

	Add a “where” clause to this query.

	Parameters:

	new_query (object) – The “where” clause, as a string or solrq.Q object.

	Returns:

	A new query with the “where” clause specified.

	Return type:

	SimpleQuery

	
class SwaggerLoader(stream)

	Bases: SafeLoader

YAML loader class for loading Swagger metafiles.

Initialize the scanner.

	
check_state_key(key)

	Block special attributes/methods from being set in a newly created
object, to prevent user-controlled methods from being called during
deserialization

	
class UnrefreshableModel(cb, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: NewBaseModel

Represents a model that can’t be refreshed, i.e. for which reset() is not a valid operation.

Initialize the NewBaseModel object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (Any) – The unique ID for this particular instance of the model object.

	initial_data (dict) – The data to use when initializing the model object.

	force_init (bool) – True to force object initialization.

	full_doc (bool) – True to mark the object as fully initialized.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
construct_include(loader, node)

	Include the file referenced by the node.

	Parameters:

	
	loader (yaml.Loader) – YAML loader object.

	node (yaml.Node) – Current node being loaded.

	Returns:

	The data to be included in the YAML loader output.

	Return type:

	Any

	
log = <Logger cbc_sdk.base (WARNING)>

	Base Models

Connection Module

Manages the CBC SDK connection to the server.

	
class BaseAPI(*args, **kwargs)

	Bases: object

The base API object used by all CBC SDK objects to communicate with the server.

This class is not used directly, but most commonly via the CBCloudAPI class.

Initialize the base API information.

	Parameters:

	
	*args (list) – Unused.

	**kwargs (dict) – Additional arguments.

	Keyword Arguments:

	
	credential_file (str) – The name of a credential file to be used by the default credential provider.

	credential_provider (cbc_sdk.credentials.CredentialProvider) – An alternate credential provider to use to
find the credentials to be used when accessing the Carbon Black Cloud.

	csp_api_token (str) – The CSP API Token for Carbon Black Cloud.

	csp_oauth_app_id (str) – The CSP OAuth App ID for Carbon Black Cloud.

	csp_oauth_app_secret (str) – The CSP OAuth App Secret for Carbon Black Cloud.

	integration_name (str) – The name of the integration using this connection. This should be specified as
a string in the format ‘name/version’

	max_retries (int) – The maximum number of times to retry failing API calls. Default is 5.

	org_key (str) – The organization key value to use when accessing the Carbon Black Cloud.

	pool_block (bool) – True if the connection pool should block when no free connections are available.
Default is False.

	pool_connections (int) – Number of HTTP connections to be pooled for this instance. Default is 1.

	pool_maxsize (int) – Maximum size of the connection pool. Default is 10.

	profile (str) – Use the credentials in the named profile when connecting to the Carbon Black Cloud server.
Uses the profile named ‘default’ when not specified.

	proxy_session (requests.session.Session) – Proxy session to be used for cookie persistence, connection
pooling, and configuration. Default is None (use the standard session).

	timeout (float) – The timeout to use for API request connections. Default is None (no timeout).

	token (str) – The API token to use when accessing the Carbon Black Cloud.

	url (str) – The URL of the Carbon Black Cloud provider to use.

	
api_json_request(method, uri, **kwargs)

	Submit a request to the server.

Normally only used by other SDK objects; used from user code only to submit a request to the server that is
not currently implemented in the SDK.

	Parameters:

	
	method (str) – HTTP method to use.

	uri (str) – URI to submit the request to.

	**kwargs (dict) – Additional arguments.

	Keyword Arguments:

	
	data (object) – Body data to be passed to the request, formatted as JSON.

	headers (dict) – Header names and values to pass to the request.

	Returns:

	Result of the operation, as JSON

	Return type:

	object

	Raises:

	ServerError – If there’s an error output from the server.

	
api_request_iterate(method, uri, **kwargs)

	Submit a request to the specified URI and iterate over the response as lines of text.

Should only be used for requests that can be expressed as large amounts of text that can be broken into lines.

Normally only used by other SDK objects; used from user code only to submit a request to the server that is
not currently implemented in the SDK.

	Parameters:

	
	method (str) – HTTP method to use.

	uri (str) – The URI to send the request to.

	**kwargs (dict) – Additional arguments for the request.

	Keyword Arguments:

	
	data (object) – Body data to be passed to the request, formatted as JSON.

	headers (dict) – Header names and values to pass to the request.

	Yields:

	str – Each line of text in the returned data.

	
api_request_stream(method, uri, stream_output, **kwargs)

	Submit a request to the specified URI and stream the results back into the given stream object.

Normally only used by other SDK objects; used from user code only to submit a request to the server that is
not currently implemented in the SDK.

	Parameters:

	
	method (str) – HTTP method to use.

	uri (str) – The URI to send the request to.

	stream_output (RawIOBase) – The output stream to write the data to.

	**kwargs (dict) – Additional arguments for the request.

	Keyword Arguments:

	
	data (object) – Body data to be passed to the request, formatted as JSON.

	headers (dict) – Header names and values to pass to the request.

	Returns:

	The return data from the request.

	Return type:

	object

	
create(cls, data=None)

	Create a new object of a Model class.

	Parameters:

	
	cls (class) – The Model class (only some models can be created, for example, Feed, Notification, …)

	data (object) – The data used to initialize the new object.

	Returns:

	An empty instance of the model class.

	Return type:

	Model

	Raises:

	ApiError – If the Model cannot be created.

	
delete_object(uri)

	Send a DELETE request to the specified URI.

Normally only used by other SDK objects; used from user code only to submit a request to the server that is
not currently implemented in the SDK.

	Parameters:

	uri (str) – The URI to send the DELETE request to.

	Returns:

	The return data from the DELETE request, as JSON.

	Return type:

	object

	
get_object(uri, query_parameters=None, default=None)

	Submit a GET request to the server and parse the result as JSON before returning.

Normally only used by other SDK objects; used from user code only to submit a request to the server that is
not currently implemented in the SDK.

	Parameters:

	
	uri (str) – The URI to send the GET request to.

	query_parameters (dict) – Parameters for the query.

	default (object) – What gets returned in the event of an empty response.

	Returns:

	Result of the GET request, as JSON.

	Return type:

	object

	
get_raw_data(uri, query_parameters=None, default=None, **kwargs)

	Submit a GET request to the server and return the result without parsing it.

Normally only used by other SDK objects; used from user code only to submit a request to the server that is
not currently implemented in the SDK.

	Parameters:

	
	uri (str) – The URI to send the GET request to.

	query_parameters (dict) – Parameters for the query.

	default (object) – What gets returned in the event of an empty response.

	**kwargs (dict) – Additional arguments.

	Keyword Arguments:

	headers (dict) – Header names and values to pass to the GET request.

	Returns:

	Result of the GET request.

	Return type:

	object

	
post_multipart(uri, param_table, **kwargs)

	Send a POST request to the specified URI, with parameters sent as multipart/form-data.

Normally only used by other SDK objects; used from user code only to submit a request to the server that is
not currently implemented in the SDK.

	Parameters:

	
	uri (str) – The URI to send the POST request to.

	param_table (dict) – A dict of known parameters to the underlying method, each element of which is a
parameter name mapped to a dict, which contains elements ‘filename’ and ‘type’
representing the pseudo-filename to be used for the data and the MIME type of the data.

	**kwargs (dict) – Arguments to pass to the API. Except for “headers,” these will all be added as parameters
to the form data sent.

	Keyword Arguments:

	headers (dict) – Header names and values to pass to the request.

	Returns:

	The return data from the POST request.

	Return type:

	object

	
post_object(uri, body, **kwargs)

	Send a POST request to the specified URI.

Normally only used by other SDK objects; used from user code only to submit a request to the server that is
not currently implemented in the SDK.

	Parameters:

	
	uri (str) – The URI to send the POST request to.

	body (object) – The data to be sent in the body of the POST request, as JSON.

	**kwargs (dict) – Additional arguments for the HTTP POST.

	Keyword Arguments:

	headers (dict) – Header names and values to pass to the request.

	Returns:

	The return data from the POST request, as JSON.

	Return type:

	object

	
put_object(uri, body, **kwargs)

	Send a PUT request to the specified URI.

Normally only used by other SDK objects; used from user code only to submit a request to the server that is
not currently implemented in the SDK.

	Parameters:

	
	uri (str) – The URI to send the PUT request to.

	body (object) – The data to be sent in the body of the PUT request.

	**kwargs (dict) – Additional arguments for the HTTP PUT.

	Keyword Arguments:

	headers (dict) – Header names and values to pass to the request.

	Returns:

	The return data from the PUT request, as JSON.

	Return type:

	object

	
select(cls, unique_id=None, *args, **kwargs)

	Prepare a query against the Carbon Black data store.

Most objects returned by the SDK are returned via queries created using this method.

	Parameters:

	
	cls (class | str) – The Model class (for example, Computer, Process, Binary, FileInstance) to query

	unique_id (Any) – The unique id of the object to retrieve, to retrieve a single object by ID. Default
is None (create a standard query).

	*args (list) – Additional arguments to pass to a created object.

	**kwargs (dict) – Additional arguments to pass to a created object or query.

	Returns:

	An instance of the Model class if a unique_id is provided, otherwise a Query object.

	Return type:

	object

	
property url

	The connection URL.

	
class CBCSDKSessionAdapter(verify_hostname=True, force_tls_1_2=False, max_retries=0, **pool_kwargs)

	Bases: HTTPAdapter

Adapter object used to handle TLS connections to the CB server.

Initialize the CBCSDKSessionManager.

	Parameters:

	
	verify_hostname (boolean) – True if we want to verify the hostname.

	force_tls_1_2 (boolean) – True to force the use of TLS 1.2.

	max_retries (int) – Maximum number of retries.

	**pool_kwargs – Additional arguments.

	Raises:

	ApiError – If the library versions are too old to force the use of TLS 1.2.

	
add_headers(request, **kwargs)

	Add any headers needed by the connection. As of v2.0 this does
nothing by default, but is left for overriding by users that subclass
the HTTPAdapter.

This should not be called from user code, and is only exposed for use
when subclassing the
HTTPAdapter.

	Parameters:

	
	request – The PreparedRequest to add headers to.

	kwargs – The keyword arguments from the call to send().

	
build_response(req, resp)

	Builds a Response object from a urllib3
response. This should not be called from user code, and is only exposed
for use when subclassing the
HTTPAdapter

	Parameters:

	
	req – The PreparedRequest used to generate the response.

	resp – The urllib3 response object.

	Return type:

	requests.Response

	
cert_verify(conn, url, verify, cert)

	Verify a SSL certificate. This method should not be called from user
code, and is only exposed for use when subclassing the
HTTPAdapter.

	Parameters:

	
	conn – The urllib3 connection object associated with the cert.

	url – The requested URL.

	verify – Either a boolean, in which case it controls whether we verify
the server’s TLS certificate, or a string, in which case it must be a path
to a CA bundle to use

	cert – The SSL certificate to verify.

	
close()

	Disposes of any internal state.

Currently, this closes the PoolManager and any active ProxyManager,
which closes any pooled connections.

	
get_connection(url, proxies=None)

	Returns a urllib3 connection for the given URL. This should not be
called from user code, and is only exposed for use when subclassing the
HTTPAdapter.

	Parameters:

	
	url – The URL to connect to.

	proxies – (optional) A Requests-style dictionary of proxies used on this request.

	Return type:

	urllib3.ConnectionPool

	
init_poolmanager(connections, maxsize, block=False, **pool_kwargs)

	Initialize the connection pool manager.

	Parameters:

	
	connections (int) – Initial number of connections to be used.

	maxsize (int) – Maximum size of the connection pool.

	block (object) – Blocking policy.

	**pool_kwargs – Additional arguments for the connection pool.

	Returns:

	None

	
proxy_headers(proxy)

	Returns a dictionary of the headers to add to any request sent
through a proxy. This works with urllib3 magic to ensure that they are
correctly sent to the proxy, rather than in a tunnelled request if
CONNECT is being used.

This should not be called from user code, and is only exposed for use
when subclassing the
HTTPAdapter.

	Parameters:

	proxy – The url of the proxy being used for this request.

	Return type:

	dict

	
proxy_manager_for(proxy, **proxy_kwargs)

	Return urllib3 ProxyManager for the given proxy.

This method should not be called from user code, and is only
exposed for use when subclassing the
HTTPAdapter.

	Parameters:

	
	proxy – The proxy to return a urllib3 ProxyManager for.

	proxy_kwargs – Extra keyword arguments used to configure the Proxy Manager.

	Returns:

	ProxyManager

	Return type:

	urllib3.ProxyManager

	
request_url(request, proxies)

	Obtain the url to use when making the final request.

If the message is being sent through a HTTP proxy, the full URL has to
be used. Otherwise, we should only use the path portion of the URL.

This should not be called from user code, and is only exposed for use
when subclassing the
HTTPAdapter.

	Parameters:

	
	request – The PreparedRequest being sent.

	proxies – A dictionary of schemes or schemes and hosts to proxy URLs.

	Return type:

	str

	
send(request, stream=False, timeout=None, verify=True, cert=None, proxies=None)

	Sends PreparedRequest object. Returns Response object.

	Parameters:

	
	request – The PreparedRequest being sent.

	stream – (optional) Whether to stream the request content.

	timeout (float or tuple or urllib3 Timeout object) – (optional) How long to wait for the server to send
data before giving up, as a float, or a (connect timeout,
read timeout) tuple.

	verify – (optional) Either a boolean, in which case it controls whether
we verify the server’s TLS certificate, or a string, in which case it
must be a path to a CA bundle to use

	cert – (optional) Any user-provided SSL certificate to be trusted.

	proxies – (optional) The proxies dictionary to apply to the request.

	Return type:

	requests.Response

	
class Connection(credentials, integration_name=None, timeout=None, max_retries=None, proxy_session=None, **pool_kwargs)

	Bases: object

Object that encapsulates the HTTP connection to the CB server.

Initialize the Connection object.

	Parameters:

	
	credentials (object) – The credentials to use for the connection.

	integration_name (str) – The integration name being used.

	timeout (int) – The timeout value to use for HTTP requests on this connection.

	max_retries (int) – The maximum number of times to retry a request.

	proxy_session (requests.Session) –

	**pool_kwargs – Additional arguments to be used to initialize connection pooling.

	Raises:

	
	ApiError – If there’s an internal error initializing the connection.

	ConnectionError – If there’s a problem with the credentials.

	
delete(url, **kwargs)

	Submit a DELETE request on this connection.

	Parameters:

	
	url (str) – The URL to submit the request to.

	**kwargs – Additional arguments for the request.

	Returns:

	Result of the HTTP request.

	Return type:

	object

	
get(url, **kwargs)

	Submit a GET request on this connection.

	Parameters:

	
	url (str) – The URL to submit the request to.

	**kwargs – Additional arguments for the request.

	Returns:

	Result of the HTTP request.

	Return type:

	object

	
http_request(method, url, **kwargs)

	Submit a HTTP request to the server.

	Parameters:

	
	method (str) – The method name to use for the HTTP request.

	url (str) – The URL to submit the request to.

	**kwargs – Additional arguments for the request.

	Returns:

	Result of the HTTP request.

	Return type:

	object

	Raises:

	
	ApiError – An unknown problem was detected.

	ClientError – The server returned an error code in the 4xx range, indicating a problem with the request.

	ConnectionError – A problem was seen with the HTTP connection.

	ObjectNotFoundError – The specified object was not found on the server.

	QuerySyntaxError – The query passed in had invalid syntax.

	ServerError – The server returned an error code in the 5xx range, indicating a problem on the server side.

	TimeoutError – The HTTP request timed out.

	UnauthorizedError – The stored credentials do not permit access to the specified request.

	
post(url, **kwargs)

	Submit a POST request on this connection.

	Parameters:

	
	url (str) – The URL to submit the request to.

	**kwargs – Additional arguments for the request.

	Returns:

	Result of the HTTP request.

	Return type:

	object

	
put(url, **kwargs)

	Submit a PUT request on this connection.

	Parameters:

	
	url (str) – The URL to submit the request to.

	**kwargs – Additional arguments for the request.

	Returns:

	Result of the HTTP request.

	Return type:

	object

	
check_python_tls_compatibility()

	Verify which level of TLS/SSL that this version of the code is compatible with.

	Returns:

	The maximum level of TLS/SSL that this version is compatible with.

	Return type:

	str

	
select_class_instance(cls: str)

	Given a string class name of a model class, returns the corresponding Carbon Black Cloud SDK class.

	Parameters:

	cls (str) – The class name represented in a string.

	Returns:

	The class specified by cls.

	Return type:

	class

	Raises:

	ModelNotFound – The specified class could not be found.

	
try_json(resp)

	Return a parsed JSON representation of the input.

	Parameters:

	resp (Response) – Input to be parsed.

	Returns:

	The parsed JSON result, or an empty dict if the value is not valid JSON.

	Return type:

	object

Credentials Module

Credentials management for the CBC SDK.

	
class CredentialProvider

	Bases: object

The interface implemented by a credential provider.

	
get_credentials(section=None)

	Return a Credentials object containing the configured credentials.

	Parameters:

	section (str) – The credential section to retrieve.

	Returns:

	The credentials retrieved from that source.

	Return type:

	Credentials

	Raises:

	CredentialError – If there is any error retrieving the credentials.

	
class CredentialValue(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: Enum

All possible credential values.

	
requires_boolean_value()

	Return whether or not this credential requires a boolean value.

	Returns:

	True if the credential requires a Boolean value, False if not.

	Return type:

	bool

	
requires_integer_value()

	Return whether or not this credential requires an integer value.

	Returns:

	True if the credential requires an integer value, False if not.

	Return type:

	bool

	
class Credentials(values=None)

	Bases: object

The object that contains credentials retrieved from the credential provider.

Initialize the Credentials object.

	Parameters:

	values (dict) – Dictionary containing values to be set in the credentials.

	Raises:

	CredentialError – If the value is not correct for any credential of boolean type.

	
get_token()

	Get token required to authenticate with VMware Carbon Black Cloud

	Returns:

	Token string for VMware Carbon Black Cloud

	Return type:

	str

	
get_token_type()

	Get token type API_KEY or BEARER

	Returns:

	The token type

	Return type:

	str

	
get_value(key)

	Get the value of a credential.

	Parameters:

	key (CredentialValues) – The credential to be retrieved.

	Returns:

	The credential’s value, or a default value if the value was not explicitly set.

	Return type:

	object

	
to_dict()

	Serializes the credentials into a dictionary.

	Returns:

	Dictionary with the credentials.

	Return type:

	dict

Errors Module

Exceptions that are thrown by CBC SDK operations.

	
exception ApiError(message=None, original_exception=None)

	Bases: Exception

Base class for all CBC SDK errors; also raised for generic internal errors.

Initialize the ApiError.

	Parameters:

	
	message (str) – The actual error message.

	original_exception (Exception) – The exception that caused this one to be raised.

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception ClientError(error_code, message, **kwargs)

	Bases: ApiError

A ClientError is raised when an HTTP 4xx error code is returned from the Carbon Black server.

Initialize the ClientError.

	Parameters:

	
	error_code (int) – The error code that was received from the server.

	message (str) – The actual error message.

	kwargs (dict) – Additional arguments, which may include ‘result’ (server operation result),
‘original_exception’ (exception causing this one to be raised), and ‘uri’ (URI being accessed
when this error was raised).

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception ConnectionError(message=None, original_exception=None)

	Bases: ApiError

There was an error in the connection to the server.

Initialize the ApiError.

	Parameters:

	
	message (str) – The actual error message.

	original_exception (Exception) – The exception that caused this one to be raised.

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception CredentialError(message=None, original_exception=None)

	Bases: ApiError

The credentials had an unspecified error.

Initialize the ApiError.

	Parameters:

	
	message (str) – The actual error message.

	original_exception (Exception) – The exception that caused this one to be raised.

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception FunctionalityDecommissioned(functionality_tag, alternate=None)

	Bases: ApiError

Raised when a piece of decommissioned functionality is used.

Initialize the FunctionalityDecommissioned exception.

	Parameters:

	
	functionality_tag (str) – Should indicate which functionality has been decommissioned.

	alternate (str) – Optional indication of what the replacement for this functionality is.

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception InvalidHashError

	Bases: Exception

An invalid hash value was used.

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception InvalidObjectError(message=None, original_exception=None)

	Bases: ApiError

An invalid object was received by the server.

Initialize the ApiError.

	Parameters:

	
	message (str) – The actual error message.

	original_exception (Exception) – The exception that caused this one to be raised.

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception ModelNotFound

	Bases: Exception

Exception for not finding a model while selecting dynamically.

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception MoreThanOneResultError(message=None, original_exception=None, results=None)

	Bases: ApiError

Only one object was requested, but multiple matches were found in the Carbon Black datastore.

Initialize the MoreThanOneResultError.

	Parameters:

	
	message (str) – The actual error message.

	original_exception (Exception) – The exception that caused this one to be raised.

	results (list) – List of results returned

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception NSXJobError(message=None, original_exception=None)

	Bases: ApiError

NSX remediation jobs were not started

Initialize the ApiError.

	Parameters:

	
	message (str) – The actual error message.

	original_exception (Exception) – The exception that caused this one to be raised.

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception NonQueryableModel(message=None, original_exception=None)

	Bases: ApiError

A model that attempted to be queried which is not queryable

Initialize the ApiError.

	Parameters:

	
	message (str) – The actual error message.

	original_exception (Exception) – The exception that caused this one to be raised.

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception ObjectNotFoundError(uri, message=None, original_exception=None)

	Bases: ApiError

The requested object could not be found in the Carbon Black datastore.

Initialize the ObjectNotFoundError.

	Parameters:

	
	uri (str) – The URI of the action that failed.

	message (str) – The error message.

	original_exception (Exception) – The exception that caused this one to be raised.

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception OperationCancelled(message=None, original_exception=None)

	Bases: ApiError

An operation in the background was canceled.

Initialize the ApiError.

	Parameters:

	
	message (str) – The actual error message.

	original_exception (Exception) – The exception that caused this one to be raised.

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception QuerySyntaxError(uri, message=None, original_exception=None)

	Bases: ApiError

The request contains a query with malformed syntax.

Initialize the QuerySyntaxError.

	Parameters:

	
	uri (str) – The URI of the action that failed.

	message (str) – The error message.

	original_exception (Exception) – The exception that caused this one to be raised.

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception ServerError(error_code, message, **kwargs)

	Bases: ApiError

A ServerError is raised when an HTTP 5xx error code is returned from the Carbon Black server.

Initialize the ServerError.

	Parameters:

	
	error_code (int) – The error code that was received from the server.

	message (str) – The actual error message.

	kwargs (dict) – Additional arguments, which may include ‘result’ (server operation result),
‘original_exception’ (exception causing this one to be raised), and ‘uri’ (URI being accessed
when this error was raised).

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception TimeoutError(uri=None, error_code=None, message=None, original_exception=None)

	Bases: ApiError

A requested operation timed out.

Initialize the TimeoutError.

	Parameters:

	
	uri (str) – The URI of the action that timed out.

	error_code (int) – The error code that was received from the server.

	message (str) – The error message.

	original_exception (Exception) – The exception that caused this one to be raised.

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception UnauthorizedError(uri, message=None, action='read', original_exception=None)

	Bases: ApiError

The action that was attempted was not authorized.

Initialize the UnauthorizedError.

	Parameters:

	
	uri (str) – The URI of the action that was not authorized.

	message (str) – The error message.

	action (str) – The action that was being performed that was not authorized.

	original_exception (Exception) – The exception that caused this one to be raised.

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

Helpers Module

Helper functions which are not strictly part of the SDK API, but which are used by many of the examples.

	
build_cli_parser(description='Cb Example Script')

	Build a basic CLI parser containing the arguments needed to create a CBCloudAPI. Additional arguments may be added.

	Parameters:

	description (str) – Description of the script, for use in help messages.

	Returns:

	The new argument parser.

	Return type:

	ArgumentParser

	
disable_insecure_warnings()

	Disable warnings about insecure URLs.

	
eprint(*args, **kwargs)

	Print to standard error output.

	Parameters:

	
	*args (list) – Arguments to the print function.

	**kwargs (dict) – Keyword arguments to the print function.

	
get_cb_cloud_object(args)

	Based on parsed command line arguments, create and return a CBCloudAPI object.

	Parameters:

	args (Namespace) – Arguments parsed from the command line.

	Returns:

	The CBCloudAPI object.

	Return type:

	CBCloudAPI

	
get_object_by_name_or_id(cb, cls, name_field='name', id=None, name=None)

	Locate an object in the API by either ID or name.

	Parameters:

	
	cb (CBCloudAPI) – Reference to the CBCloudAPI.

	cls (class) – Class of object to be found.

	name_field (str) – Name field to search on.

	id (int) – ID of object to search for. May be None to do name searching.

	name (str) – Object name to search on.

	force_init (bool) – True to force a new object found by ID to be initialized.

	Returns:

	List of objects that match the search criteria.

	Return type:

	list

	
read_iocs(cb, file=<_io.TextIOWrapper name='<stdin>' mode='r' encoding='utf-8'>)

	Read indicators of compromise from standard input.

	Parameters:

	
	cb (CBCloudAPI) – Reference to the CBCloudAPI.

	file – Not used.

	Returns:

	New report ID to be used.
dict: The indicators of compromise that were read in.

	Return type:

	str

Live Response API Module

The Live Response API and associated objects.

	
class CbLRManagerBase(cb, timeout=30, keepalive_sessions=False, thread_pool_count=5)

	Bases: object

Live Response manager object.

Initialize the CbLRManagerBase object.

	Parameters:

	
	cb (BaseAPI) – The CBC SDK object reference.

	timeout (int) – Timeout to use for requests, in seconds.

	keepalive_sessions (bool) – If True, “ping” sessions occasionally to ensure they stay alive.

	thread_pool_count (int) – number of workers for async commands (optional)

	
close_session(device_id, session_id)

	Close the specified Live Response session.

	Parameters:

	
	device_id (int) – ID of the device.

	session_id (int) – ID of the session.

	
request_session(device_id, async_mode=False)

	Initiate a new Live Response session.

	Parameters:

	device_id (int) – The device ID to use.

	Returns:

	The new Live Response session.

	Return type:

	CbLRSessionBase

	
stop_keepalive_thread()

	Stops the keepalive thread.

	
submit_job(job, device)

	Submit a new job to be executed as a Live Response.

	Parameters:

	
	job (func) – The job function to be scheduled.

	device (int) – ID of the device to use for job execution.

	Returns:

	A reference to the running job.

	Return type:

	Future

	
class CbLRSessionBase(cblr_manager, session_id, device_id, session_data=None, thread_pool_count=5)

	Bases: object

A Live Response session that interacts with a remote machine.

Initialize the CbLRSessionBase.

	Parameters:

	
	cblr_manager (CbLRManagerBase) – The Live Response manager governing this session.

	session_id (str) – The ID of this session.

	device_id (int) – The ID of the device (remote machine) we’re connected to.

	session_data (dict) – Additional session data.

	thread_pool_count (int) – number of workers for async commands (optional)

	
cancel_command(command_id)

	Cancel command if it is in status PENDING.

	Parameters:

	command_id (int) – command_id

	
close()

	Close the Live Response session.

	
command_status(command_id)

	Check the status of async command

	Parameters:

	command_id (int) – command_id

	Returns:

	status of the command

	
create_directory(dir_name, async_mode=False)

	Create a directory on the remote machine.

	Parameters:

	
	dir_name (str) – The new directory name.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async

	
create_process(command_string, wait_for_output=True, remote_output_file_name=None, working_directory=None, wait_timeout=30, wait_for_completion=True, async_mode=False)

	Create a new process on the remote machine with the specified command string.

Example

>>> with c.select(Device, 1).lr_session() as lr_session:
... print(lr_session.create_process(r'cmd.exe /c "ping.exe 192.168.1.1"'))
Pinging 192.168.1.1 with 32 bytes of data:
Reply from 192.168.1.1: bytes=32 time<1ms TTL=64

	Parameters:

	
	command_string (str) – Command string used for the create process operation.

	wait_for_output (bool) – True to block on output from the new process (execute in foreground).
This will also set wait_for_completion (below).

	remote_output_file_name (str) – The remote output file name used for process output.

	working_directory (str) – The working directory of the create process operation.

	wait_timeout (int) – Timeout used for this command.

	wait_for_completion (bool) – True to wait until the process is completed before returning.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async
str: The output of the process.

	
create_registry_key(regkey, async_mode=False)

	Create a new registry key on the remote machine.

	Parameters:

	
	regkey (str) – The registry key to create.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async

	
delete_file(filename, async_mode=False)

	Delete the specified file name on the remote machine.

	Parameters:

	
	filename (str) – Name of the file to be deleted.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async

	
delete_registry_key(regkey, async_mode=False)

	Delete a registry key on the remote machine.

	Parameters:

	
	regkey (str) – The registry key to delete.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async

	
delete_registry_value(regkey, async_mode=False)

	Delete a registry value on the remote machine.

	Parameters:

	
	regkey (str) – The registry value to delete.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async

	
get_file(file_name, timeout=None, delay=None, async_mode=False)

	Retrieve contents of the specified file on the remote machine.

	Parameters:

	
	file_name (str) – Name of the file to be retrieved.

	timeout (int) – Timeout for the operation.

	delay (float) – Delay in seconds to wait before command complete.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async
str: Contents of the specified file.

	
get_raw_file(file_name, timeout=None, delay=None, async_mode=False)

	Retrieve contents of the specified file on the remote machine.

	Parameters:

	
	file_name (str) – Name of the file to be retrieved.

	timeout (int) – Timeout for the operation.

	delay (float) – Delay in seconds to wait before command complete.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async
or
object: Contains the data of the file.

	
get_registry_value(regkey, async_mode=False)

	Return the associated value of the specified registry key on the remote machine.

Example

>>> with c.select(Device, 1).lr_session() as lr_session:
>>> pprint.pprint(lr_session.
... get_registry_value('HKLM\\SYSTEM\\CurrentControlSet\\services\\ACPI\\Start'))
{u'value_data': 0, u'value_name': u'Start', u'value_type': u'REG_DWORD'}

	Parameters:

	
	regkey (str) – The registry key to retrieve.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async
or
dict: A dictionary with keys of: value_data, value_name, value_type.

	
kill_process(pid, async_mode=False)

	Terminate a process on the remote machine.

	Parameters:

	
	pid (int) – Process ID to be terminated.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async
bool: True if success, False if failure.

	
list_directory(dir_name, async_mode=False)

	List the contents of a directory on the remote machine.

Example

>>> with c.select(Device, 1).lr_session() as lr_session:
... pprint.pprint(lr_session.list_directory('C:\\\\temp\\\\'))
[{u'attributes': [u'DIRECTORY'],
 u'create_time': 1471897244,
 u'filename': u'.',
 u'last_access_time': 1476390670,
 u'last_write_time': 1476390670,
 u'size': 0},

	{u’attributes’: [u’DIRECTORY’],
	u’create_time’: 1471897244,
u’filename’: u’..’,
u’last_access_time’: 1476390670,
u’last_write_time’: 1476390670,
u’size’: 0},

	{u’attributes’: [u’ARCHIVE’],
	u’create_time’: 1476390668,
u’filename’: u’test.txt’,
u’last_access_time’: 1476390668,
u’last_write_time’: 1476390668,
u’size’: 0}]

	Parameters:

	
	dir_name (str) – Directory to list. This parameter should end with the path separator.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async
or
list: A list of dicts, each one describing a directory entry.

	
list_processes(async_mode=False)

	List currently running processes on the remote machine.

Example

>>> with c.select(Device, 1).lr_session() as lr_session:
... print(lr_session.list_processes()[0])
{u'command_line': u'',
 u'create_time': 1476260500,
 u'parent': 0,
 u'parent_guid': u'00000001-0000-0000-0000-000000000000',
 u'path': u'',
 u'pid': 4,
 u'proc_guid': u'00000001-0000-0004-01d2-2461a85e4546',
 u'sid': u's-1-5-18',
 u'username': u'NT AUTHORITY\\SYSTEM'}

	Parameters:

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async
or
list: A list of dicts describing the processes.

	
list_registry_keys_and_values(regkey, async_mode=False)

	Enumerate subkeys and values of the specified registry key on the remote machine.

Example

>>> with c.select(Device, 1).lr_session() as lr_session:
>>> pprint.pprint(lr_session.
... list_registry_keys_and_values('HKLM\\SYSTEM\\CurrentControlSet\\services\\ACPI'))
{'sub_keys': [u'Parameters', u'Enum'],
'values': [{u'value_data': 0,
 u'value_name': u'Start',
 u'value_type': u'REG_DWORD'},
 {u'value_data': 1,
 u'value_name': u'Type',
 u'value_type': u'REG_DWORD'},
 {u'value_data': 3,
 u'value_name': u'ErrorControl',
 u'value_type': u'REG_DWORD'},
 {u'value_data': u'system32\\drivers\\ACPI.sys',
 u'value_name': u'ImagePath',
 u'value_type': u'REG_EXPAND_SZ'},
 {u'value_data': u'Microsoft ACPI Driver',
 u'value_name': u'DisplayName',
 u'value_type': u'REG_SZ'},
 {u'value_data': u'Boot Bus Extender',
 u'value_name': u'Group',
 u'value_type': u'REG_SZ'},
 {u'value_data': u'acpi.inf_x86_neutral_ddd3c514822f1b21',
 u'value_name': u'DriverPackageId',
 u'value_type': u'REG_SZ'},
 {u'value_data': 1,
 u'value_name': u'Tag',
 u'value_type': u'REG_DWORD'}]}

	Parameters:

	
	regkey (str) – The registry key to enumerate.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async

or

dict: A dictionary with two keys, ‘sub_keys’ (a list of subkey names) and ‘values’ (a list of dicts
containing value data, name, and type).

	
list_registry_values(regkey, async_mode=False)

	Enumerate all registry values from the specified registry key on the remote machine.

	Parameters:

	
	regkey (str) – The registry key to enumerate.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async
or
list: List of values for the registry key.

	
memdump(local_filename, remote_filename=None, compress=False, async_mode=False)

	Perform a memory dump operation on the remote machine.

	Parameters:

	
	local_filename (str) – Name of the file the memory dump will be transferred to on the local machine.

	remote_filename (str) – Name of the file the memory dump will be stored in on the remote machine.

	compress (bool) – True to compress the file on the remote system.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async

	
put_file(infp, remote_filename, async_mode=False)

	Create a new file on the remote machine with the specified data.

Example

>>> with c.select(Device, 1).lr_session() as lr_session:
... lr_session.put_file(open("test.txt", "rb"), r"c:\test.txt")

	Parameters:

	
	infp (object) – Python file-like containing data to upload to the remote endpoint.

	remote_filename (str) – File name to create on the remote endpoint.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async

	
set_registry_value(regkey, value, overwrite=True, value_type=None, async_mode=False)

	Set a registry value on the specified registry key on the remote machine.

Example

>>> with c.select(Device, 1).lr_session() as lr_session:
... lr_session.
... set_registry_value('HKLM\\\\SYSTEM\\\\CurrentControlSet\\\\services\\\\ACPI\\\\testvalue', 1)

	Parameters:

	
	regkey (str) – The registry key to set.

	value (object) – The value data.

	overwrite (bool) – If True, any existing value will be overwritten.

	value_type (str) – The type of value. Examples: REG_DWORD, REG_MULTI_SZ, REG_SZ

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async

	
start_memdump(remote_filename=None, compress=True)

	Start a memory dump operation on the remote machine.

	Parameters:

	
	remote_filename (str) – Name of the file the memory dump will be stored in on the remote machine.

	compress (bool) – True to compress the file on the remote system.

	Returns:

	Controlling object for the memory dump operation.

	Return type:

	LiveResponseMemdump

	
walk(top, topdown=True, onerror=None, followlinks=False)

	Perform a full directory walk with recursion into subdirectories on the remote machine.

Note: walk does not support async_mode due to its behaviour, it can only be invoked synchronously

Example

>>> with c.select(Device, 1).lr_session() as lr_session:
... for entry in lr_session.walk(directory_name):
... print(entry)
('C:\\temp\\', [u'dir1', u'dir2'], [u'file1.txt'])

	Parameters:

	
	top (str) – Directory to recurse on.

	topdown (bool) – If True, start output from top level directory.

	onerror (func) – Callback if an error occurs. This function is called with one argument (the exception
that occurred).

	followlinks (bool) – True to follow symbolic links.

	Returns:

	List of tuples containing directory name, subdirectory names, file names.

	Return type:

	list

	
class CompletionNotification(device_id)

	Bases: object

The notification that an operation is complete.

Initialize the CompletionNotification.

	Parameters:

	device_id (int) – The device ID this notification is for.

	
class GetFileJob(file_name)

	Bases: object

Object that retrieves a file via Live Response.

Initialize the GetFileJob.

	Parameters:

	file_name (str) – The name of the file to be fetched.

	
run(session)

	Execute the file transfer.

	Parameters:

	session (CbLRSessionBase) – The Live Response session being used.

	Returns:

	The contents of the file being retrieved.

	Return type:

	str

	
class JobWorker(cb, device_id, result_queue)

	Bases: Thread

Thread object that executes individual Live Response jobs.

Initialize the JobWorker.

	Parameters:

	
	cb (BaseAPI) – The CBC SDK object reference.

	device_id (int) – The ID of the device being used.

	result_queue (Queue) – The queue where results are placed.

	
property daemon

	A boolean value indicating whether this thread is a daemon thread.

This must be set before start() is called, otherwise RuntimeError is
raised. Its initial value is inherited from the creating thread; the
main thread is not a daemon thread and therefore all threads created in
the main thread default to daemon = False.

The entire Python program exits when only daemon threads are left.

	
getName()

	Return a string used for identification purposes only.

This method is deprecated, use the name attribute instead.

	
property ident

	Thread identifier of this thread or None if it has not been started.

This is a nonzero integer. See the get_ident() function. Thread
identifiers may be recycled when a thread exits and another thread is
created. The identifier is available even after the thread has exited.

	
isDaemon()

	Return whether this thread is a daemon.

This method is deprecated, use the daemon attribute instead.

	
is_alive()

	Return whether the thread is alive.

This method returns True just before the run() method starts until just
after the run() method terminates. See also the module function
enumerate().

	
join(timeout=None)

	Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is
called terminates – either normally or through an unhandled exception
or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof). As join() always returns None, you must call
is_alive() after join() to decide whether a timeout happened – if the
thread is still alive, the join() call timed out.

When the timeout argument is not present or None, the operation will
block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current
thread as that would cause a deadlock. It is also an error to join() a
thread before it has been started and attempts to do so raises the same
exception.

	
property name

	A string used for identification purposes only.

It has no semantics. Multiple threads may be given the same name. The
initial name is set by the constructor.

	
property native_id

	Native integral thread ID of this thread, or None if it has not been started.

This is a non-negative integer. See the get_native_id() function.
This represents the Thread ID as reported by the kernel.

	
run()

	Execute the job worker.

	
run_job(work_item)

	Execute an individual WorkItem.

	Parameters:

	work_item (WorkItem) – The work item to execute.

	
setDaemon(daemonic)

	Set whether this thread is a daemon.

This method is deprecated, use the .daemon property instead.

	
setName(name)

	Set the name string for this thread.

This method is deprecated, use the name attribute instead.

	
start()

	Start the thread’s activity.

It must be called at most once per thread object. It arranges for the
object’s run() method to be invoked in a separate thread of control.

This method will raise a RuntimeError if called more than once on the
same thread object.

	
exception LiveResponseError(details)

	Bases: Exception

Exception raised for errors with Live Response.

Initialize the LiveResponseError.

	Parameters:

	details (object) – Details of the specific error.

	
add_note()

	Exception.add_note(note) –
add a note to the exception

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class LiveResponseJobScheduler(cb, max_workers=10)

	Bases: Thread

Thread that schedules Live Response jobs.

Initialize the LiveResponseJobScheduler.

	Parameters:

	
	cb (BaseAPI) – The CBC SDK object reference.

	max_workers (int) – Maximum number of JobWorker threads to use.

	
getName()

	Return a string used for identification purposes only.

This method is deprecated, use the name attribute instead.

	
property ident

	Thread identifier of this thread or None if it has not been started.

This is a nonzero integer. See the get_ident() function. Thread
identifiers may be recycled when a thread exits and another thread is
created. The identifier is available even after the thread has exited.

	
isDaemon()

	Return whether this thread is a daemon.

This method is deprecated, use the daemon attribute instead.

	
is_alive()

	Return whether the thread is alive.

This method returns True just before the run() method starts until just
after the run() method terminates. See also the module function
enumerate().

	
join(timeout=None)

	Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is
called terminates – either normally or through an unhandled exception
or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof). As join() always returns None, you must call
is_alive() after join() to decide whether a timeout happened – if the
thread is still alive, the join() call timed out.

When the timeout argument is not present or None, the operation will
block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current
thread as that would cause a deadlock. It is also an error to join() a
thread before it has been started and attempts to do so raises the same
exception.

	
property name

	A string used for identification purposes only.

It has no semantics. Multiple threads may be given the same name. The
initial name is set by the constructor.

	
property native_id

	Native integral thread ID of this thread, or None if it has not been started.

This is a non-negative integer. See the get_native_id() function.
This represents the Thread ID as reported by the kernel.

	
run()

	Execute the job scheduler.

	
setDaemon(daemonic)

	Set whether this thread is a daemon.

This method is deprecated, use the .daemon property instead.

	
setName(name)

	Set the name string for this thread.

This method is deprecated, use the name attribute instead.

	
start()

	Start the thread’s activity.

It must be called at most once per thread object. It arranges for the
object’s run() method to be invoked in a separate thread of control.

This method will raise a RuntimeError if called more than once on the
same thread object.

	
submit_job(work_item)

	Submit a new job to be processed.

	Parameters:

	work_item (WorkItem) – New job to be processed.

	
class LiveResponseMemdump(lr_session, memdump_id, remote_filename)

	Bases: object

Object managing a memory dump on a remote machine.

Initialize the LiveResponseMemdump.

	Parameters:

	
	lr_session (Session) – The Live Response session to the machine doing the memory dump.

	memdump_id (str) – The ID of the memory dump being performed.

	remote_filename (str) – The file name the memory dump will be stored in on the remote machine.

	
delete()

	Delete the memory dump file.

	
get(local_filename)

	Retrieve the remote memory dump to a local file.

	Parameters:

	local_filename (str) – Filename locally that will receive the memory dump.

	
wait()

	Wait for the remote memory dump to complete.

	
class LiveResponseSession(cblr_manager, session_id, device_id, session_data=None)

	Bases: CbLRSessionBase

Public face of the Live Response session object.

Initializes the LiveResponseSession.

	Parameters:

	
	cblr_manager (LiveResponseSessionManager) – Reference to the session manager.

	session_id (str) – The ID of this session.

	device_id (int) – The ID of the device (remote machine) we’re connected to.

	session_data (dict) – Additional session data.

	
cancel_command(command_id)

	Cancel command if it is in status PENDING.

	Parameters:

	command_id (int) – command_id

	
close()

	Close the Live Response session.

	
command_status(command_id)

	Check the status of async command

	Parameters:

	command_id (int) – command_id

	Returns:

	status of the command

	
create_directory(dir_name, async_mode=False)

	Create a directory on the remote machine.

	Parameters:

	
	dir_name (str) – The new directory name.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async

	
create_process(command_string, wait_for_output=True, remote_output_file_name=None, working_directory=None, wait_timeout=30, wait_for_completion=True, async_mode=False)

	Create a new process on the remote machine with the specified command string.

Example

>>> with c.select(Device, 1).lr_session() as lr_session:
... print(lr_session.create_process(r'cmd.exe /c "ping.exe 192.168.1.1"'))
Pinging 192.168.1.1 with 32 bytes of data:
Reply from 192.168.1.1: bytes=32 time<1ms TTL=64

	Parameters:

	
	command_string (str) – Command string used for the create process operation.

	wait_for_output (bool) – True to block on output from the new process (execute in foreground).
This will also set wait_for_completion (below).

	remote_output_file_name (str) – The remote output file name used for process output.

	working_directory (str) – The working directory of the create process operation.

	wait_timeout (int) – Timeout used for this command.

	wait_for_completion (bool) – True to wait until the process is completed before returning.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async
str: The output of the process.

	
create_registry_key(regkey, async_mode=False)

	Create a new registry key on the remote machine.

	Parameters:

	
	regkey (str) – The registry key to create.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async

	
delete_file(filename, async_mode=False)

	Delete the specified file name on the remote machine.

	Parameters:

	
	filename (str) – Name of the file to be deleted.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async

	
delete_registry_key(regkey, async_mode=False)

	Delete a registry key on the remote machine.

	Parameters:

	
	regkey (str) – The registry key to delete.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async

	
delete_registry_value(regkey, async_mode=False)

	Delete a registry value on the remote machine.

	Parameters:

	
	regkey (str) – The registry value to delete.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async

	
get_file(file_name, timeout=None, delay=None, async_mode=False)

	Retrieve contents of the specified file on the remote machine.

	Parameters:

	
	file_name (str) – Name of the file to be retrieved.

	timeout (int) – Timeout for the operation.

	delay (float) – Delay in seconds to wait before command complete.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async
str: Contents of the specified file.

	
get_raw_file(file_name, timeout=None, delay=None, async_mode=False)

	Retrieve contents of the specified file on the remote machine.

	Parameters:

	
	file_name (str) – Name of the file to be retrieved.

	timeout (int) – Timeout for the operation.

	delay (float) – Delay in seconds to wait before command complete.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async
or
object: Contains the data of the file.

	
get_registry_value(regkey, async_mode=False)

	Return the associated value of the specified registry key on the remote machine.

Example

>>> with c.select(Device, 1).lr_session() as lr_session:
>>> pprint.pprint(lr_session.
... get_registry_value('HKLM\\SYSTEM\\CurrentControlSet\\services\\ACPI\\Start'))
{u'value_data': 0, u'value_name': u'Start', u'value_type': u'REG_DWORD'}

	Parameters:

	
	regkey (str) – The registry key to retrieve.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async
or
dict: A dictionary with keys of: value_data, value_name, value_type.

	
kill_process(pid, async_mode=False)

	Terminate a process on the remote machine.

	Parameters:

	
	pid (int) – Process ID to be terminated.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async
bool: True if success, False if failure.

	
list_directory(dir_name, async_mode=False)

	List the contents of a directory on the remote machine.

Example

>>> with c.select(Device, 1).lr_session() as lr_session:
... pprint.pprint(lr_session.list_directory('C:\\\\temp\\\\'))
[{u'attributes': [u'DIRECTORY'],
 u'create_time': 1471897244,
 u'filename': u'.',
 u'last_access_time': 1476390670,
 u'last_write_time': 1476390670,
 u'size': 0},

	{u’attributes’: [u’DIRECTORY’],
	u’create_time’: 1471897244,
u’filename’: u’..’,
u’last_access_time’: 1476390670,
u’last_write_time’: 1476390670,
u’size’: 0},

	{u’attributes’: [u’ARCHIVE’],
	u’create_time’: 1476390668,
u’filename’: u’test.txt’,
u’last_access_time’: 1476390668,
u’last_write_time’: 1476390668,
u’size’: 0}]

	Parameters:

	
	dir_name (str) – Directory to list. This parameter should end with the path separator.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async
or
list: A list of dicts, each one describing a directory entry.

	
list_processes(async_mode=False)

	List currently running processes on the remote machine.

Example

>>> with c.select(Device, 1).lr_session() as lr_session:
... print(lr_session.list_processes()[0])
{u'command_line': u'',
 u'create_time': 1476260500,
 u'parent': 0,
 u'parent_guid': u'00000001-0000-0000-0000-000000000000',
 u'path': u'',
 u'pid': 4,
 u'proc_guid': u'00000001-0000-0004-01d2-2461a85e4546',
 u'sid': u's-1-5-18',
 u'username': u'NT AUTHORITY\\SYSTEM'}

	Parameters:

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async
or
list: A list of dicts describing the processes.

	
list_registry_keys_and_values(regkey, async_mode=False)

	Enumerate subkeys and values of the specified registry key on the remote machine.

Example

>>> with c.select(Device, 1).lr_session() as lr_session:
>>> pprint.pprint(lr_session.
... list_registry_keys_and_values('HKLM\\SYSTEM\\CurrentControlSet\\services\\ACPI'))
{'sub_keys': [u'Parameters', u'Enum'],
'values': [{u'value_data': 0,
 u'value_name': u'Start',
 u'value_type': u'REG_DWORD'},
 {u'value_data': 1,
 u'value_name': u'Type',
 u'value_type': u'REG_DWORD'},
 {u'value_data': 3,
 u'value_name': u'ErrorControl',
 u'value_type': u'REG_DWORD'},
 {u'value_data': u'system32\\drivers\\ACPI.sys',
 u'value_name': u'ImagePath',
 u'value_type': u'REG_EXPAND_SZ'},
 {u'value_data': u'Microsoft ACPI Driver',
 u'value_name': u'DisplayName',
 u'value_type': u'REG_SZ'},
 {u'value_data': u'Boot Bus Extender',
 u'value_name': u'Group',
 u'value_type': u'REG_SZ'},
 {u'value_data': u'acpi.inf_x86_neutral_ddd3c514822f1b21',
 u'value_name': u'DriverPackageId',
 u'value_type': u'REG_SZ'},
 {u'value_data': 1,
 u'value_name': u'Tag',
 u'value_type': u'REG_DWORD'}]}

	Parameters:

	
	regkey (str) – The registry key to enumerate.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async

or

dict: A dictionary with two keys, ‘sub_keys’ (a list of subkey names) and ‘values’ (a list of dicts
containing value data, name, and type).

	
list_registry_values(regkey, async_mode=False)

	Enumerate all registry values from the specified registry key on the remote machine.

	Parameters:

	
	regkey (str) – The registry key to enumerate.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async
or
list: List of values for the registry key.

	
memdump(local_filename, remote_filename=None, compress=False, async_mode=False)

	Perform a memory dump operation on the remote machine.

	Parameters:

	
	local_filename (str) – Name of the file the memory dump will be transferred to on the local machine.

	remote_filename (str) – Name of the file the memory dump will be stored in on the remote machine.

	compress (bool) – True to compress the file on the remote system.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async

	
put_file(infp, remote_filename, async_mode=False)

	Create a new file on the remote machine with the specified data.

Example

>>> with c.select(Device, 1).lr_session() as lr_session:
... lr_session.put_file(open("test.txt", "rb"), r"c:\test.txt")

	Parameters:

	
	infp (object) – Python file-like containing data to upload to the remote endpoint.

	remote_filename (str) – File name to create on the remote endpoint.

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async

	
set_registry_value(regkey, value, overwrite=True, value_type=None, async_mode=False)

	Set a registry value on the specified registry key on the remote machine.

Example

>>> with c.select(Device, 1).lr_session() as lr_session:
... lr_session.
... set_registry_value('HKLM\\\\SYSTEM\\\\CurrentControlSet\\\\services\\\\ACPI\\\\testvalue', 1)

	Parameters:

	
	regkey (str) – The registry key to set.

	value (object) – The value data.

	overwrite (bool) – If True, any existing value will be overwritten.

	value_type (str) – The type of value. Examples: REG_DWORD, REG_MULTI_SZ, REG_SZ

	async_mode (bool) – Flag showing whether the command should be executed asynchronously

	Returns:

	command_id, future if ran async

	
start_memdump(remote_filename=None, compress=True)

	Start a memory dump operation on the remote machine.

	Parameters:

	
	remote_filename (str) – Name of the file the memory dump will be stored in on the remote machine.

	compress (bool) – True to compress the file on the remote system.

	Returns:

	Controlling object for the memory dump operation.

	Return type:

	LiveResponseMemdump

	
walk(top, topdown=True, onerror=None, followlinks=False)

	Perform a full directory walk with recursion into subdirectories on the remote machine.

Note: walk does not support async_mode due to its behaviour, it can only be invoked synchronously

Example

>>> with c.select(Device, 1).lr_session() as lr_session:
... for entry in lr_session.walk(directory_name):
... print(entry)
('C:\\temp\\', [u'dir1', u'dir2'], [u'file1.txt'])

	Parameters:

	
	top (str) – Directory to recurse on.

	topdown (bool) – If True, start output from top level directory.

	onerror (func) – Callback if an error occurs. This function is called with one argument (the exception
that occurred).

	followlinks (bool) – True to follow symbolic links.

	Returns:

	List of tuples containing directory name, subdirectory names, file names.

	Return type:

	list

	
class LiveResponseSessionManager(cb, timeout=30, keepalive_sessions=False)

	Bases: CbLRManagerBase

Session manager for Live Response sessions.

Initialize the LiveResponseSessionManager - only needed to format cblr_base

	
cblr_session_cls

	alias of LiveResponseSession

	
close_session(device_id, session_id)

	Close the specified Live Response session.

	Parameters:

	
	device_id (int) – ID of the device.

	session_id (int) – ID of the session.

	
request_session(device_id, async_mode=False)

	Initiate a new Live Response session.

	Parameters:

	device_id (int) – The device ID to use.

	Returns:

	The new Live Response session.

	Return type:

	CbLRSessionBase

	
session_status(session_id)

	Check the status of a lr session

	Parameters:

	session_id (str) – The id of the session.

	Returns:

	Status of the session

	Return type:

	str

	
stop_keepalive_thread()

	Stops the keepalive thread.

	
submit_job(job, device)

	Submit a job for execution by the job scheduler.

	Parameters:

	
	job (func) – The job function to be executed.

	device (object) – The device ID or Device object the job will be executed on.

	Returns:

	A Future that will allow waiting until the job is complete.

	Return type:

	Future

	
class WorkItem(fn, device_id)

	Bases: object

Work item for scheduling.

Initialize the WorkItem.

	Parameters:

	
	fn (func) – The function to be called to do the actual work.

	device_id (object) – The device ID or Device object the work item is directed for.

	
class WorkerStatus(device_id, status='READY', exception=None)

	Bases: object

Holds the status of an individual worker.

Initialize the WorkerStatus.

	Parameters:

	
	device_id (int) – The device ID this status is for.

	status (str) – The current status value.

	exception (Exception) – Any exception that happened.

	
jobrunner(callable, cb, device_id)

	Wrap a callable object with a live response session.

	Parameters:

	
	callable (object) – The object to be wrapped.

	cb (BaseAPI) – The CBC SDK object reference.

	device_id (int) – The device ID to use to get the session.

	Returns:

	The wrapped object.

	Return type:

	object

	
poll_status(cb, url, desired_status='COMPLETE', timeout=None, delay=None)

	Poll the status of a Live Response query.

	Parameters:

	
	cb (BaseAPI) – The CBC SDK object reference.

	url (str) – The URL to poll.

	desired_status (str) – The status we’re looking for.

	timeout (int) – The timeout value in seconds.

	delay (float) – The delay between attempts in seconds.

	Returns:

	The result of the Live Response query that has the desired status.

	Return type:

	object

	Raises:

	LiveResponseError – If an error response was encountered.

Utils Module

Utility functions for use within the CBC SDK.

	
class BackoffHandler(cb, timeout=0, initial=0.1, multiplier=2.0, threshold=2.0)

	Bases: object

Logic for handling exponential backoff of multiple communications requests.

The logic also handles timeouts of operations that go on too long.

Example:

backoff = BackoffHandler(timeout=600000) # 10 minutes = 600 seconds
with backoff as b:
 while operation_continues():
 b.pause()
 do_operation()

Initialize the BackoffHandler.

	Parameters:

	
	cb (BaseAPI) – The API object for the operation.

	timeout (int) – The timeout for the operation, in milliseconds. If this is 0, the default timeout as
configured in the credentials will be used. The default is 0.

	initial (float) – The initial value for the exponential backoff pause, in seconds. The default is 0.1.

	multiplier (float) – The value by which the exponential backoff pause will be multiplied each time
a pause happens. The default is 2.0.

	threshold (float) – The maximum value for the exponential backoff pause, in seconds. The default is 2.0.

	
class BackoffOperation(timeout, initial, multiplier, threshold)

	Bases: object

Handler for a single operation requiring exponential backoff between communication attempts.

This is returned by BackoffHandler as part of the with operation, and is stored in the variable
referred to in its as clause.

Initialize the BackoffOperation.

	Parameters:

	
	timeout (int) – The timeout for the operation, in milliseconds.

	initial (float) – The initial value for the exponential backoff pause, in seconds.

	multiplier (float) – The value by which the exponential backoff pause will be multiplied each time
a pause happens.

	threshold (float) – The maximum value for the exponential backoff pause, in seconds.

	
pause()

	Pauses operation for a determined amount of time.

The method also checks for a timeout and raises TimeoutError if it happens, and computes the amount
of time to pause the next time this method is called.

	Raises:

	TimeoutError – If the timeout value is reached.

	
reset(full=False)

	Resets the state of the operation so that the pause time is reset.

Does not affect the timeout value. This should be used, for instance, after a successful operation to
minimize the pause before the next operation is started.

	Parameters:

	full (bool) – If this is True, the next pause time will be reset to 0. If this is False, the
next pause time will be reset to the initial pause time.

	
property timeout

	Returns the current timeout associated with this handler, in milliseconds.

	
convert_from_cb(s)

	Parse a date and time value into a datetime object.

	Parameters:

	s (str) – The date and time string to parse. If this is None, we use the UNIX epoch timestamp.

	Returns:

	The parsed date and time.

	Return type:

	datetime

	
convert_to_cb(dt)

	Convert a date and time to a string in the Carbon Black format.

	Parameters:

	dt (datetime) – The date and time to be converted.

	Returns:

	The date and time as a string.

	Return type:

	str

WinError Module

Error related constants for win32

Generated by h2py from winerror.h

	
class CommDlgError

	Bases: ErrorBaseClass

Collects all the common dialog error codes.

	
classmethod lookup_error(error_code)

	Look up an error code by value.

	Parameters:

	error_code (int) – The error code to be looked up.

	Returns:

	The error code name.

	Return type:

	str

	
class DirectoryStorageError

	Bases: ErrorBaseClass

Collects all the directory storage error codes.

	
classmethod lookup_error(error_code)

	Look up an error code by value.

	Parameters:

	error_code (int) – The error code to be looked up.

	Returns:

	The error code name.

	Return type:

	str

	
class ErrorBaseClass

	Bases: object

Base class for repositories of error codes.

	
classmethod lookup_error(error_code)

	Look up an error code by value.

	Parameters:

	error_code (int) – The error code to be looked up.

	Returns:

	The error code name.

	Return type:

	str

	
class ErrorMetaClass(name, bases, clsdict)

	Bases: type

Metaclass which establishes an easy means of looking up error codes in a collection.

Creates a new instance of a class, setting up the dict to make it easy to look up error codes.

	Parameters:

	
	name (str) – The name of the class.

	bases (list) – Base classes of the class to be created.

	clsdict (dict) – Elements defined in the new class.

	
mro()

	Return a type’s method resolution order.

	
FAILED(Status)

	Return True iff a HRESULT/SCODE status represents failure.

	
class Facility

	Bases: ErrorBaseClass

Collects all known facility codes.

	
classmethod lookup_error(error_code)

	Look up an error code by value.

	Parameters:

	error_code (int) – The error code to be looked up.

	Returns:

	The error code name.

	Return type:

	str

	
GetScode(hr)

	Turn a HRESULT into a SCODE.

	
HRESULT_CODE(hr)

	Return the error code field of a HRESULT.

	
HRESULT_FACILITY(hr)

	Return the facility field of a HRESULT.

	
HRESULT_FROM_NT(x)

	Turn an NT error code into a HRESULT.

	
HRESULT_FROM_WIN32(scode)

	Return the HRESULT corresponding to a Win32 error code.

	
HRESULT_SEVERITY(hr)

	Return the severity field of a HRESULT.

	
class RawErrorCode

	Bases: ErrorBaseClass

Collects all known error codes defined as raw SCODEs (from COM, OLE, etc.)

	
classmethod lookup_error(error_code)

	Look up an error code by value.

	Parameters:

	error_code (int) – The error code to be looked up.

	Returns:

	The error code name.

	Return type:

	str

	
ResultFromScode(sc)

	Turn a SCODE into a HRESULT.

	
SCODE_CODE(sc)

	Return the error code field of a SCODE.

	
SCODE_FACILITY(sc)

	Return the facility field of a SCODE.

	
SCODE_SEVERITY(sc)

	Return the severity field of a SCODE.

	
SUCCEEDED(Status)

	Return True iff a HRESULT/SCODE status represents success.

	
class Win32Error

	Bases: ErrorBaseClass

Collects all the Win32 error codes.

	
classmethod lookup_error(error_code)

	Look up an error code by value.

	Parameters:

	error_code (int) – The error code to be looked up.

	Returns:

	The error code name.

	Return type:

	str

	
decode_hresult(hresult)

	Look up a Win32 error code based on the error code in a HRESULT.

Audit and Remediation Package

Base Module

Model and Query Classes for Audit and Remediation

	
class DeviceSummary(cb, initial_data)

	Bases: UnrefreshableModel

Represents the summary of results from a single device during a single Audit and Remediation Run.

	Parameters:

	
	id – The result’s unique ID

	total_results – Number of results returned for this particular device

	device – Information associated with the device

	time_received – The time at which this result was received

	status – The result’s status

	device_message – Placeholder

	metrics – Metrics associated with the device

Initialize a DeviceSummary object with initial_data.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the result.

	
class Metrics(cb, initial_data)

	Bases: UnrefreshableModel

Represents the metrics for a result.

Initialize a DeviceSummary Metrics object with initial_data.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
property metrics_

	Returns the reified DeviceSummary.Metrics for this result.

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class DeviceSummaryFacet(cb, initial_data)

	Bases: ResultFacet

Represents the summary of results for a single device summary in an Audit and Remediation Run.

Initialize a DeviceSummaryFacet object with initial_data.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the result.

	
class Values(cb, initial_data)

	Bases: UnrefreshableModel

Represents the values associated with a field.

Initialize a ResultFacet Values object with initial_data.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
property values_

	Returns the reified ResultFacet.Values for this result.

	
class FacetQuery(doc_class, cb)

	Bases: BaseQuery, QueryBuilderSupportMixin, IterableQueryMixin, CriteriaBuilderSupportMixin, AsyncQueryMixin

Represents a query that receives facet information from a LiveQuery run.

Initialize the FacetQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
facet_field(field)

	Sets the facet fields to be received by this query.

	Parameters:

	field (str or [str]) – Field(s) to be received.

	Returns:

	FacetQuery that will receive field(s) facet_field.

	Return type:

	FacetQuery

Example

>>> cb.select(ResultFacet).run_id(my_run).facet_field(["device.policy_name", "device.os"])

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
run_id(run_id)

	Sets the run ID to query results for.

	Parameters:

	run_id (str) – The run ID to retrieve results for.

	Returns:

	FacetQuery object with specified run_id.

	Return type:

	FacetQuery

Example

>>> cb.select(ResultFacet).run_id(my_run)

	
set_device_ids(device_ids)

	Sets the device.id criteria filter.

	Parameters:

	device_ids ([int]) – Device IDs to filter on.

	Returns:

	The FacetQuery with specified device.id.

	Return type:

	FacetQuery

	
set_device_names(device_names)

	Sets the device.name criteria filter.

	Parameters:

	device_names ([str]) – Device names to filter on.

	Returns:

	The FacetQuery with specified device.name.

	Return type:

	FacetQuery

	
set_device_os(device_os)

	Sets the device.os criteria.

	Parameters:

	device_os ([str]) – Device OS’s to filter on.

	Returns:

	The FacetQuery object with specified device_os.

	Return type:

	FacetQuery

Note

Device OS’s can be one or more of [“WINDOWS”, “MAC”, “LINUX”].

	
set_policy_ids(policy_ids)

	Sets the device.policy_id criteria.

	Parameters:

	policy_ids ([int]) – Device policy ID’s to filter on.

	Returns:

	The FacetQuery object with specified policy_ids.

	Return type:

	FacetQuery

	
set_policy_names(policy_names)

	Sets the device.policy_name criteria.

	Parameters:

	policy_names ([str]) – Device policy names to filter on.

	Returns:

	The FacetQuery object with specified policy_names.

	Return type:

	FacetQuery

	
set_statuses(statuses)

	Sets the status criteria.

	Parameters:

	statuses ([str]) – Query statuses to filter on.

	Returns:

	The FacetQuery object with specified statuses.

	Return type:

	FacetQuery

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
MAX_RESULTS_LIMIT = 10000

	Audit and Remediation Models

	
class Result(cb, initial_data)

	Bases: UnrefreshableModel

Represents a single result from an Audit and Remediation Run.

	Parameters:

	
	id – The result’s unique ID

	device – The device associated with the result

	status – The result’s status

	time_received – The time at which this result was received

	device_message – Placeholder

	fields – The fields returned by the backing osquery query

	metrics – Metrics associated with the result’s host

Initialize a Result object with initial_data.

Device, Fields, and Metrics objects are attached using initial_data.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the result.

	
class Device(cb, initial_data)

	Bases: UnrefreshableModel

Represents device information for a result.

Initialize a Device Result object with initial_data.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class Fields(cb, initial_data)

	Bases: UnrefreshableModel

Represents the fields of a result.

Initialize a Result Fields object with initial_data.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class Metrics(cb, initial_data)

	Bases: UnrefreshableModel

Represents the metrics of a result.

Initialize a Result Metrics object with initial_data.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
property device_

	Returns the reified Result.Device for this result.

	
property fields_

	Returns the reified Result.Fields for this result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
property metrics_

	Returns the reified Result.Metrics for this result.

	
query_device_summaries()

	Returns a ResultQuery for a DeviceSummary.

This represents the search for a summary of results from a single device of a Run. The query may be further
augmented with additional criteria prior to enumerating its results.

	Returns:

	The query object returned by this operation.

	Return type:

	ResultQuery

	
query_device_summary_facets()

	Returns a ResultQuery for a DeviceSummaryFacet.

This represents the search for a summary of a single device summary of a Run. The query may be further
augmented with additional criteria prior to enumerating its results.

	Returns:

	The query object returned by this operation.

	Return type:

	ResultQuery

	
query_result_facets()

	Returns a ResultQuery for a ResultFacet.

This represents the search for a summary of results from a single field of a Run. The query may be further
augmented with additional criteria prior to enumerating its results.

	Returns:

	The query object returned by this operation.

	Return type:

	ResultQuery

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The raw json Result.

	Return type:

	dict

	
class ResultFacet(cb, initial_data)

	Bases: UnrefreshableModel

Represents the summary of results for a single field in an Audit and Remediation Run.

	Parameters:

	field – The name of the field being summarized

Initialize a ResultFacet object with initial_data.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the result.

	
class Values(cb, initial_data)

	Bases: UnrefreshableModel

Represents the values associated with a field.

Initialize a ResultFacet Values object with initial_data.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
property values_

	Returns the reified ResultFacet.Values for this result.

	
class ResultQuery(doc_class, cb)

	Bases: BaseQuery, QueryBuilderSupportMixin, IterableQueryMixin, CriteriaBuilderSupportMixin, AsyncQueryMixin

Represents a query that retrieves results from a LiveQuery run.

Initialize the ResultQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
async_export()

	Create an asynchronous job that exports the results from the run.

This is recommended if you are expecting a very large result set. Once the Job is created, wait for it to be
completed, then get the results from the Job using one of the get_output methods on the
cbc_sdk.platform.jobs() object. To wait asynchronously for the results, use the Job object’s
await_completion() method.

	Required Permissions:
	livequery.manage(READ), jobs.status(READ)

	Returns:

	The Job object that represents the asynchronous job.

	Return type:

	Job

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
export_csv_as_file(filename)

	Export the results from the run as CSV, writing the CSV to the named file.

	Required Permissions:
	livequery.manage(READ)

	Parameters:

	filename (str) – Name of the file to write the results to.

	
export_csv_as_lines()

	Export the results from the run as CSV, returning the CSV data as iterated lines.

	Required Permissions:
	livequery.manage(READ)

	Returns:

	An iterable that can be used to get each line of CSV text in turn as a string.

	Return type:

	iterable

	
export_csv_as_stream(output, compressed=False)

	Export the results from the run as CSV, writing the CSV to the given stream.

	Required Permissions:
	livequery.manage(READ)

	Parameters:

	
	output (RawIOBase) – Stream to write the CSV data from the request to.

	compressed (bool) – True to download as a compressed ZIP file, False to download as CSV.

	
export_csv_as_string()

	Export the results from the run as CSV, returning the CSV data as a string.

	Required Permissions:
	livequery.manage(READ)

	Returns:

	The CSV data as one big string.

	Return type:

	str

	
export_zipped_csv(filename)

	Export the results from the run as a zipped CSV, writing the zip data to the named file.

	Required Permissions:
	livequery.manage(READ)

	Parameters:

	filename (str) – Name of the file to write the results to.

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
run_id(run_id)

	Sets the run ID to query results for.

	Parameters:

	run_id (str) – The run ID to retrieve results for.

	Returns:

	ResultQuery object with specified run_id.

	Return type:

	ResultQuery

Example

>>> cb.select(Result).run_id(my_run)

	
scroll(rows=10000)

	Iteratively fetch results across Live Query Runs or paginate all results beyond the 10k search limits.

To fetch the next set of results repeatively call the scroll function until
ResultQuery.num_remaining == 0 or no results are returned.

Note: You must specify either a set_time_received or a set_run_ids on the query before using scroll

	Parameters:

	rows (int) – The number of rows to fetch

	Returns:

	The list of results

	Return type:

	list[Result]

	
set_device_ids(device_ids)

	Sets the device.id criteria filter.

	Parameters:

	device_ids ([int]) – Device IDs to filter on.

	Returns:

	The ResultQuery with specified device.id.

	Return type:

	ResultQuery

	
set_device_names(device_names)

	Sets the device.name criteria filter.

	Parameters:

	device_names ([str]) – Device names to filter on.

	Returns:

	The ResultQuery with specified device.name.

	Return type:

	ResultQuery

	
set_device_os(device_os)

	Sets the device.os criteria.

	Parameters:

	device_os ([str]) – Device OS’s to filter on.

	Returns:

	The ResultQuery object with specified device_os.

	Return type:

	ResultQuery

Note

Device OS’s can be one or more of [“WINDOWS”, “MAC”, “LINUX”].

	
set_policy_ids(policy_ids)

	Sets the device.policy_id criteria.

	Parameters:

	policy_ids ([int]) – Device policy ID’s to filter on.

	Returns:

	The ResultQuery object with specified policy_ids.

	Return type:

	ResultQuery

	
set_policy_names(policy_names)

	Sets the device.policy_name criteria.

	Parameters:

	policy_names ([str]) – Device policy names to filter on.

	Returns:

	The ResultQuery object with specified policy_names.

	Return type:

	ResultQuery

	
set_run_ids(run_ids)

	Sets the run IDs to query results for.

Note

Only supported for scroll

	Parameters:

	run_ids (list[str]) – The run IDs to retrieve results for.

	Returns:

	ResultQuery object with specified run_id.

	Return type:

	ResultQuery

	
set_statuses(statuses)

	Sets the status criteria.

	Parameters:

	statuses ([str]) – Query statuses to filter on.

	Returns:

	The ResultQuery object with specified statuses.

	Return type:

	ResultQuery

	
set_time_received(start=None, end=None, range=None)

	Set the time received to query results for.

Note: If you are using scroll you may only specify range, or start and end. range supports max of 24hrs

	Parameters:

	
	start (str) – Start time in ISO8601 UTC format

	end (str) – End time in ISO8601 UTC format

	range (str) – Relative time window using the following allowed time units y years, w weeks, d days, h hours,
m minutes, s seconds

	Returns:

	ResultQuery object with specified time_received.

	Return type:

	ResultQuery

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	ResultQuery object with specified sorting key and order.

	Return type:

	ResultQuery

Example

>>> cb.select(Result).run_id(my_run).where(username="foobar").sort_by("uid")

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
class Run(cb, model_unique_id=None, initial_data=None)

	Bases: NewBaseModel

Represents an Audit and Remediation run.

	Example:
	>>> run = cb.select(Run, run_id)
>>> print(run.name, run.sql, run.create_time)
>>> print(run.status, run.match_count)
>>> run.refresh()

	Parameters:

	
	org_key – The organization key for this run

	name – The name of the Audit and Remediation run

	id – The run’s unique ID

	sql – The Audit and Remediation query

	created_by – The user or API id that created the run

	create_time – When this run was created

	status_update_time – When the status of this run was last updated

	timeout_time – The time at which the query will stop requesting results from any devices who have not responded

	cancellation_time – The time at which a user or API id cancelled the run

	cancelled_by – The user or API id that cancelled the run

	notify_on_finish – Whether or not to send an email on query completion

	active_org_devices – The number of devices active in the organization

	status – The run status

	device_filter – Any device filter rules associated with the run

	last_result_time – When the most recent result for this run was reported

	total_results – The number of results received

	match_count – The number of devices which received a match to the query

	no_match_count – The number of devices which did not received a match to the query

	error_count – The number of devices which errored

	not_supported_count – The number of devices which do not support a portion of the osquery

	cancelled_count – The number of devices which were cancelled before they ran the query

	not_started_count – The number of devices which have not run the query

	success_count – The number of devices which succeeded in running the query

	in_progress_count – The number of devices which were currently executing the query

	recommended_query_id – The id of a query from the recommendedation route

	template_id – The template that created the run

Initialize a Run object with initial_data.

	Required Permissions:
	livequery.manage(READ)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the query run represented.

	initial_data (dict) – Initial data used to populate the query run.

	
delete()

	Delete a query.

	Required Permissions:
	livequery.manage(DELETE)

	Returns:

	True if the query was deleted successfully, False otherwise.

	Return type:

	bool

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
query_device_summaries()

	Create a DeviceSummary query that searches for all device summaries on this run.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all device summaries for this run.

	Return type:

	ResultQuery

	Raises:

	ApiError – If the query has been deleted.

	
query_facets()

	Create a ResultFacet query that searches for all result facets on this run.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all result facets for this run.

	Return type:

	FacetQuery

	Raises:

	ApiError – If the query has been deleted.

	
query_results()

	Create a Result query that searches for all results on this run.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all results for this run.

	Return type:

	ResultQuery

	Raises:

	ApiError – If the query has been deleted.

	
refresh()

	Reload this object from the server.

	
stop()

	Stop a running query.

	Required Permissions:
	livequery.manage(UPDATE)

	Returns:

	True if query was stopped successfully, False otherwise.

	Return type:

	bool

	Raises:

	ServerError – If the server response cannot be parsed as JSON.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class RunHistory(cb, initial_data=None)

	Bases: Run

Represents a historical Audit and Remediation Run.

Initialize a RunHistory object with initial_data.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the history object.

	
delete()

	Delete a query.

	Required Permissions:
	livequery.manage(DELETE)

	Returns:

	True if the query was deleted successfully, False otherwise.

	Return type:

	bool

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
query_device_summaries()

	Create a DeviceSummary query that searches for all device summaries on this run.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all device summaries for this run.

	Return type:

	ResultQuery

	Raises:

	ApiError – If the query has been deleted.

	
query_facets()

	Create a ResultFacet query that searches for all result facets on this run.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all result facets for this run.

	Return type:

	FacetQuery

	Raises:

	ApiError – If the query has been deleted.

	
query_results()

	Create a Result query that searches for all results on this run.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all results for this run.

	Return type:

	ResultQuery

	Raises:

	ApiError – If the query has been deleted.

	
refresh()

	Reload this object from the server.

	
stop()

	Stop a running query.

	Required Permissions:
	livequery.manage(UPDATE)

	Returns:

	True if query was stopped successfully, False otherwise.

	Return type:

	bool

	Raises:

	ServerError – If the server response cannot be parsed as JSON.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class RunHistoryQuery(doc_class, cb)

	Bases: BaseQuery, QueryBuilderSupportMixin, IterableQueryMixin, CriteriaBuilderSupportMixin, AsyncQueryMixin

Represents a query that retrieves historic LiveQuery runs.

Initialize the RunHistoryQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_template_ids(template_ids)

	Sets the template_id criteria filter.

	Parameters:

	template_ids ([str]) – Template IDs to filter on.

	Returns:

	The RunHistoryQuery with specified template_id.

	Return type:

	RunHistoryQuery

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	RunHistoryQuery object with specified sorting key and order.

	Return type:

	RunHistoryQuery

Example:

>>> cb.select(Result).run_id(my_run).where(username="foobar").sort_by("uid")

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
class RunQuery(doc_class, cb)

	Bases: BaseQuery, AsyncQueryMixin

Represents a query that either creates or retrieves the status of a LiveQuery run.

Initialize the RunQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
device_ids(device_ids)

	Restricts the devices that this Audit and Remediation run is performed on to the given IDs.

	Parameters:

	device_ids ([int]) – Device IDs to perform the Run on.

	Returns:

	The RunQuery with specified device_ids.

	Return type:

	RunQuery

	
device_types(device_types)

	Restricts the devices that this Audit and Remediation run is performed on to the given OS.

	Parameters:

	device_types ([str]) – Device types to perform the Run on.

	Returns:

	The RunQuery object with specified device_types.

	Return type:

	RunQuery

Note

Device type can be one of [“WINDOWS”, “MAC”, “LINUX”].

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
name(name)

	Sets this Audit and Remediation run’s name.

If no name is explicitly set, the run is named after its SQL.

	Parameters:

	name (str) – The name for this Run.

	Returns:

	The RunQuery object with specified name.

	Return type:

	RunQuery

	
notify_on_finish()

	Sets the notify-on-finish flag on this Audit and Remediation run.

	Returns:

	The RunQuery object with notify_on_finish set to True.

	Return type:

	RunQuery

	
policy_id(policy_id)

	Restricts this Audit and Remediation run to the given policy ID.

	Parameters:

	policy_id (int) or (list[int]) – Policy ID to perform the Run on.

	Returns:

	The RunQuery object with specified policy_id.

	Return type:

	RunQuery

	
schedule(rrule, timezone)

	Sets a schedule for the SQL Query to recur

A schedule requires an rrule and a timezone to determine the time to rerun the SQL query. rrule
is defined in RFC 2445 however only a subset of the functionality is supported here. If a Run
is created with a schedule then the Run will contain a template_id to the corresponding template
and a new Run will be created each time the schedule is met.

Example RRule, Daily

	Field

	Values

	BYSECOND

	0

	BYMINUTE

	0 or 30

	BYHOUR

	0 to 23

Daily at 1:30PM

RRULE:FREQ=DAILY;BYHOUR=13;BYMINUTE=30;BYSECOND=0

Example RRule, Weekly

	Field

	Values

	BYSECOND

	0

	BYMINUTE

	0

	BYHOUR

	0 to 23

	BYDAY

	One or more: SU, MO, TU, WE, TH, FR, SA

Monday and Friday of the week at 2:30 AM

RRULE:FREQ=WEEKLY;BYDAY=MO,FR;BYHOUR=13;BYMINUTE=30;BYSECOND=0

Example RRule, Monthly

Note: Either (BYDAY and BYSETPOS) or BYMONTHDAY is required.

	Field

	Values

	BYSECOND

	0

	BYMINUTE

	0 or 30

	BYHOUR

	0 to 23

	BYDAY

	One or more: SU, MO, TU, WE, TH, FR, SA

	BYSETPOS

	-1, 1, 2, 3, 4

	BYMONTHDAY

	One or more: 1 to 28

Last Monday of the Month at 2:30 AM

RRULE:FREQ=MONTHLY;BYDAY=MO;BYSETPOS=-1;BYHOUR=2;BYMINUTE=30;BYSECOND=0

1st and 15th of the Month at 2:30 AM

RRULE:FREQ=DAILY;BYMONTHDAY=1,15;BYHOUR=2;BYMINUTE=30;BYSECOND=0

	Parameters:

	
	rrule (string) – A recurrence rule (RFC 2445) specifying the frequency and time at which the query will recur

	timezone (string) – The timezone database name to use as a base for the rrule

	Returns:

	The RunQuery with a recurrence schedule.

	Return type:

	RunQuery

	
submit()

	Submits this Audit and Remediation run.

	Returns:

	A new Run instance containing the run’s status.

	Return type:

	Run

	Raises:

	ApiError – If the Run does not have SQL set, or if the Run has already been submitted.

	
where(sql)

	Sets this Audit and Remediation run’s underlying SQL.

	Parameters:

	sql (str) – The SQL to execute for the Run.

	Returns:

	The RunQuery object with specified sql.

	Return type:

	RunQuery

	
class Template(cb, model_unique_id=None, initial_data=None)

	Bases: Run

Represents an Audit and Remediation Live Query Template.

	Example:
	>>> template = cb.select(Template, template_id)
>>> print(template.name, template.sql, template.create_time)
>>> print(template.status, template.match_count, template.schedule)
>>> template.refresh()

	Parameters:

	
	org_key – The organization key for this run

	name – The name of the Audit and Remediation run

	id – The run’s unique ID

	sql – The Audit and Remediation query

	created_by – The user or API id that created the run

	create_time – When this run was created

	status_update_time – When the status of this run was last updated

	timeout_time – The time at which the query will stop requesting results from any devices who have not responded

	cancellation_time – The time at which a user or API id cancelled the run

	cancelled_by – The user or API id that cancelled the run

	archive_time – The time at which a user or API id cancelled the run

	archived_by – The user or API id that archived the run

	notify_on_finish – Whether or not to send an email on query completion

	active_org_devices – The number of devices active in the organization

	status – The run status

	device_filter – Any device filter rules associated with the run

	last_result_time – When the most recent result for this run was reported

	total_results – The number of results received

	match_count – The number of devices which received a match to the query

	no_match_count – The number of devices which did not received a match to the query

	error_count – The number of devices which errored

	not_supported_count – The number of devices which do not support a portion of the osquery

	cancelled_count – The number of devices which were cancelled before they ran the query

	not_started_count – The number of devices which have not run the query

	success_count – The number of devices which succeeded in running the query

	in_progress_count – The number of devices which were currently executing the query

	recommended_query_id – The id of a query from the recommendedation route

	template_id – The template that created the run

Initialize a Template object with initial_data.

	Required Permissions:
	livequery.manage(READ)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the query run represented.

	initial_data (dict) – Initial data used to populate the query run.

	
delete()

	Delete a query.

	Required Permissions:
	livequery.manage(DELETE)

	Returns:

	True if the query was deleted successfully, False otherwise.

	Return type:

	bool

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
query_device_summaries()

	Create a DeviceSummary query that searches for all device summaries on this run.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all device summaries for this run.

	Return type:

	ResultQuery

	Raises:

	ApiError – If the query has been deleted.

	
query_facets()

	Create a ResultFacet query that searches for all result facets on this run.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all result facets for this run.

	Return type:

	FacetQuery

	Raises:

	ApiError – If the query has been deleted.

	
query_results()

	Create a Result query that searches for all results on this run.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all results for this run.

	Return type:

	ResultQuery

	Raises:

	ApiError – If the query has been deleted.

	
query_runs()

	Create a RunHistory query that searches for all runs created by this template ID.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all runs based on this template.

	Return type:

	RunHistoryQuery

	
refresh()

	Reload this object from the server.

	
stop()

	Stop a template.

	Required Permissions:
	livequery.manage(UPDATE)

	Returns:

	True if query was stopped successfully, False otherwise.

	Return type:

	bool

	Raises:

	ServerError – If the server response cannot be parsed as JSON.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class TemplateHistory(cb, initial_data=None)

	Bases: Template

Represents a historical Audit and Remediation Template.

Initialize a Template object with initial_data.

	Required Permissions:
	livequery.manage(READ)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the query run.

	
delete()

	Delete a query.

	Required Permissions:
	livequery.manage(DELETE)

	Returns:

	True if the query was deleted successfully, False otherwise.

	Return type:

	bool

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
query_device_summaries()

	Create a DeviceSummary query that searches for all device summaries on this run.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all device summaries for this run.

	Return type:

	ResultQuery

	Raises:

	ApiError – If the query has been deleted.

	
query_facets()

	Create a ResultFacet query that searches for all result facets on this run.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all result facets for this run.

	Return type:

	FacetQuery

	Raises:

	ApiError – If the query has been deleted.

	
query_results()

	Create a Result query that searches for all results on this run.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all results for this run.

	Return type:

	ResultQuery

	Raises:

	ApiError – If the query has been deleted.

	
query_runs()

	Create a RunHistory query that searches for all runs created by this template ID.

The query may be further augmented with additional criteria prior to enumerating its results.

	Returns:

	A query object which will search for all runs based on this template.

	Return type:

	RunHistoryQuery

	
refresh()

	Reload this object from the server.

	
stop()

	Stop a template.

	Required Permissions:
	livequery.manage(UPDATE)

	Returns:

	True if query was stopped successfully, False otherwise.

	Return type:

	bool

	Raises:

	ServerError – If the server response cannot be parsed as JSON.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class TemplateHistoryQuery(doc_class, cb)

	Bases: BaseQuery, QueryBuilderSupportMixin, IterableQueryMixin, CriteriaBuilderSupportMixin, AsyncQueryMixin

Represents a query that retrieves historic LiveQuery templates.

Initialize the TemplateHistoryQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	object with specified sorting key and order.

	Return type:

	TemplateHistoryQuery

Example:

>>> cb.select(Result).run_id(my_run).where(username="foobar").sort_by("uid")

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

Differential Module

Model and Query Classes for Differential Analysis

	
ASYNC_RATE_LIMIT = 100

	Differential Analysis Models

	
class Differential(cb, initial_data=None)

	Bases: NewBaseModel

Represents a Differential Analysis run.

	Example:
	>>> query = cb.select(Differential).newer_run_id(newer_run_id)
>>> run = query.submit()
>>> print(run)
>>> print(run.diff_results)

	Parameters:

	
	newer_run_id – id against which the older run id results will be compared

	newer_run_create_time – Timestamp of the primary run in ISO 8601 UTC format

	older_run_id – This can be optional. If not specified, the previous run as compared to the primary will be chosen. This can be optional if you are comparing reccuring runs only.

	older_run_create_time – Timestamp of the older run in ISO 8601 UTC format

	diff_processed_time – The time it took to process the results in seconds and milliseconds

	newer_run_not_responded_devices – Array of device IDs that have not responded

	older_run_not_responded_devices – Array of device IDs that have not responded

	diff_results – An object containing either count of changes only or count and actual diff results

Initialize a Differential object with initial_data.

	Required Permissions for CBC:
	livequery.manage(READ)

	Required Permissions for CSP:
	_API.Live.Query:livequery.Manage.read

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the query run.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class DifferentialQuery(doc_class, cb)

	Bases: BaseQuery, IterableQueryMixin, CriteriaBuilderSupportMixin

Query used to compare two Live Query runs.

Initialize the DifferentialQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
async_export()

	Create an asynchronous job that exports the results from the run.

This is recommended if you are expecting a very large result set. Once the Job is created, wait for it to be
completed, then get the results from the Job using one of the get_output methods on the
cbc_sdk.platform.jobs object. To wait for the results, use the Job object’s
await_completion() method.

Example

>>> # Get the differential
>>> query = cb.select(Differential).newer_run_id(newer_run_id)
>>> export = query.async_export()
>>> # wait for the export to finish
>>> export.await_completion()
>>> # write the results to a file
>>> export.get_output_as_file("example_data.json")

	Required CBC Permissions:
	livequery.manage(READ), jobs.status(READ)

	Required CSP Permissions:
	_API.Live.Query:livequery.Manage.read, _API.Background_Tasks.jobs.status.read

	Returns:

	The Job object that represents the asynchronous job.

	Return type:

	Job

	
count_only(count_only)

	Return only count of diff results per device or complete diff metadata result.

The default value is true, which means only the count will be returned.

Example

>>> query = cb.select(Differential).newer_run_id(newer_run_id).count_only(True)
>>> run = query.submit()

	Parameters:

	count_only (string) – Boolean that indicates whether to return actual metadata
or return just the count of differances

	Returns:

	This instance.

	Return type:

	DifferentialQuery

	Raises:

	ApiError – If invalid values are passed in the list.

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
newer_run_id(newer_run_id)

	Set the id against which the older_run_id results will be compared.

Example

>>> query = cb.select(Differential).newer_run_id(newer_run_id)
>>> run = query.submit()

	Parameters:

	newer_run_id (string) – id against which the older_run_id results will be compared.

	Returns:

	This instance.

	Return type:

	DifferentialQuery

	Raises:

	ApiError – If invalid values are passed.

	
older_run_id(older_run_id)

	This can be optional.

If not specified, the previous run as compared to the primary will be chosen if
it is a recurring one. If comparing two individual runs, this is required.

Example

>>> query = cb.select(Differential).newer_run_id(newer_run_id).older_run_id(older_run_id)
>>> run = query.submit()

	Parameters:

	older_run_id (string) – id against which the newer_run_id results will be compared.

	Returns:

	This instance.

	Return type:

	DifferentialQuery

	Raises:

	ApiError – If invalid values are passed.

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
set_device_ids(device_ids)

	Restricts the query on to the specified devices only.

Example

>>> query = cb.select(Differential).newer_run_id(newer_run_id).set_device_ids([12345, 56789])
>>> run = query.submit()

	Parameters:

	device_ids (list) – List of device id(s)

	Returns:

	This instance.

	Return type:

	DifferentialQuery

	Raises:

	ApiError – If invalid values are passed in the list.

	
submit()

	Submits this Differential Analysis run.

	Returns:

	A new Differential instance containing the run’s content.

	Return type:

	Run

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

Cache Package

LRU Module

LRU cache based on stucchio’s py-lru-cache module

original copy at https://github.com/stucchio/Python-LRU-cache licensed under MIT

	
class LRUCacheDict(max_size=1024, expiration=900, thread_clear=False, concurrent=True)

	Bases: object

A dictionary-like object, supporting LRU caching semantics.

>>> d = LRUCacheDict(max_size=3, expiration=3)
>>> d['foo'] = 'bar'
>>> d['foo']
'bar'
>>> import time
>>> time.sleep(4) # 4 seconds > 3 second cache expiry of d
>>> d['foo']
Traceback (most recent call last):
 ...
KeyError: 'foo'
>>> d['a'] = 'A'
>>> d['b'] = 'B'
>>> d['c'] = 'C'
>>> d['d'] = 'D'
>>> d['a'] # Should return value error, since we exceeded the max cache size
Traceback (most recent call last):
 ...
KeyError: 'a'

By default, this cache will only expire items whenever you poke it - all methods on
this class will result in a cleanup. If the thread_clear option is specified, a background
thread will clean it up every thread_clear_min_check seconds.

If this class must be used in a multithreaded environment, the option concurrent should be
set to true. Note that the cache will always be concurrent if a background cleanup thread
is used.

Initialize the LRUCacheDict object.

	Parameters:

	
	max_size (int) – Maximum number of elements in the cache.

	expiration (int) – Number of seconds an item can be in the cache before it expires.

	thread_clear (bool) – True if we want to use a background thread to keep the cache clear.

	concurrent (bool) – True to make access to the cache thread-safe.

	
class EmptyCacheThread(cache, peek_duration=60)

	Bases: Thread

Background thread that expires elements out of the cache.

Initialize the EmptyCacheThread.

	Parameters:

	
	cache (LRUCacheDict) – The cache to be monitored.

	peek_duration (int) – The delay between “sweeps” of the cache.

	
getName()

	Return a string used for identification purposes only.

This method is deprecated, use the name attribute instead.

	
property ident

	Thread identifier of this thread or None if it has not been started.

This is a nonzero integer. See the get_ident() function. Thread
identifiers may be recycled when a thread exits and another thread is
created. The identifier is available even after the thread has exited.

	
isDaemon()

	Return whether this thread is a daemon.

This method is deprecated, use the daemon attribute instead.

	
is_alive()

	Return whether the thread is alive.

This method returns True just before the run() method starts until just
after the run() method terminates. See also the module function
enumerate().

	
join(timeout=None)

	Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is
called terminates – either normally or through an unhandled exception
or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof). As join() always returns None, you must call
is_alive() after join() to decide whether a timeout happened – if the
thread is still alive, the join() call timed out.

When the timeout argument is not present or None, the operation will
block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current
thread as that would cause a deadlock. It is also an error to join() a
thread before it has been started and attempts to do so raises the same
exception.

	
property name

	A string used for identification purposes only.

It has no semantics. Multiple threads may be given the same name. The
initial name is set by the constructor.

	
property native_id

	Native integral thread ID of this thread, or None if it has not been started.

This is a non-negative integer. See the get_native_id() function.
This represents the Thread ID as reported by the kernel.

	
run()

	Execute the background cleanup.

	
setDaemon(daemonic)

	Set whether this thread is a daemon.

This method is deprecated, use the .daemon property instead.

	
setName(name)

	Set the name string for this thread.

This method is deprecated, use the name attribute instead.

	
start()

	Start the thread’s activity.

It must be called at most once per thread object. It arranges for the
object’s run() method to be invoked in a separate thread of control.

This method will raise a RuntimeError if called more than once on the
same thread object.

	
class LRUCachedFunction(function, cache=None)

	Bases: object

A memoized function, backed by an LRU cache.

>>> def f(x):
... print "Calling f(" + str(x) + ")"
... return x
>>> f = LRUCachedFunction(f, LRUCacheDict(max_size=3, expiration=3))
>>> f(3)
Calling f(3)
3
>>> f(3)
3
>>> import time
>>> time.sleep(4) #Cache should now be empty, since expiration time is 3.
>>> f(3)
Calling f(3)
3
>>> f(4)
Calling f(4)
4
>>> f(5)
Calling f(5)
5
>>> f(3) #Still in cache, so no print statement. At this point, 4 is the least recently used.
3
>>> f(6)
Calling f(6)
6
>>> f(4) #No longer in cache - 4 is the least recently used, and there are at least 3 others
items in cache [3,4,5,6].
Calling f(4)
4

Initialize the LRUCachedFunction object.

	Parameters:

	
	function (func) – The function to be used to create new items in the cache.

	cache (LRUCacheDict) – The internal cache structure.

	
lru_cache_function(max_size=1024, expiration=900)

	Least recently used cache function

>>> @lru_cache_function(3, 1)
... def f(x):
... print "Calling f(" + str(x) + ")"
... return x
>>> f(3)
Calling f(3)
3
>>> f(3)
3

Credential Providers Package

Default Module

Function which gives us the default credentials handler for use by CBCloudAPI.

	
class DefaultProvider

	Bases: object

Intermediate class defined to allow insertion of a “test point” into default_credential_provider().

	
get_default_provider(credential_file)

	Return the default credential provider that CBCloudAPI should use.

	Parameters:

	credential_file (str) – Credential file as specified to the initialization of the API.

	Returns:

	The default credential provider that CBCloudAPI should use.

	Return type:

	CredentialProvider

	
default_credential_provider(credential_file)

	Return the default credential provider that CBCloudAPI should use.

	Parameters:

	credential_file (str) – Credential file as specified to the initialization of the API.

	Returns:

	The default credential provider that CBCloudAPI should use.

	Return type:

	CredentialProvider

AWS SM Credential Provider Module

Credentials provider that reads the credentials from the AWS Secrets Manager

	
class AWSCredentialProvider(secret_arn, region_name='us-east-2', profile_name=None)

	Bases: CredentialProvider

This credential provider reads from the AWS Secrets Manager

Initialize the AWSCredentialProvider.

	Parameters:

	
	secret_arn (str) – The name of the secret in the AWS Secrets Manager.

	region_name (str) – The region name

	profile_name (str) – The credentials profile

	
get_credentials(section=None)

	Return a Credentials object containing the configured credentials.

	Parameters:

	
	section (None) – Since AWS deosn’t support sections it is left

	CredentialProvider (to satisfy the Signature of) –

	Returns:

	The credentials retrieved from that source.

	Return type:

	Credentials

Environ Credential Provider Module

Credentials provider that reads the credentials from the environment.

	
class EnvironCredentialProvider

	Bases: CredentialProvider

The object which provides credentials based on variables in the environment.

Initializes the EnvironCredentialProvider.

	
get_credentials(section=None)

	Return a Credentials object containing the configured credentials.

	Parameters:

	section (str) – The credential section to retrieve (not used in this provider).

	Returns:

	The credentials retrieved from that source.

	Return type:

	Credentials

	Raises:

	CredentialError – If there is any error retrieving the credentials.

File Credential Provider Module

Credentials provider that reads the credentials from a file.

	
class FileCredentialProvider(credential_file=None)

	Bases: CredentialProvider

The object which provides credentials based on a credential file.

Initialize the FileCredentialProvider.

	Parameters:

	credential_file (object) – A string or path-like object representing the credentials file, or a list
of strings or path-like objects representing the search path for the credentials file.

	
get_credentials(section=None)

	Return a Credentials object containing the configured credentials.

	Parameters:

	section (str) – The credential section to retrieve.

	Returns:

	The credentials retrieved from that source.

	Return type:

	Credentials

	Raises:

	CredentialError – If there is any error retrieving the credentials.

Keychain Credential Provider Module

Credentials provider that reads the credentials from the macOS’s keychain.

	
class KeychainCredentialProvider(keychain_name, keychain_username)

	Bases: CredentialProvider

This credential provider reads from the macOS’s Keychain.

Initialize the KeychainCredentialProvider.

	Parameters:

	
	keychain_name (str) – The name of the entry in the Keychain.

	keychain_username (str) – The username which you’ve set in the Keychain.

	Raises:

	CredentialError – If we attempt to instantiate this provider on a non-macOS system.

	
get_credentials(section=None)

	Return a Credentials object containing the configured credentials.

	Parameters:

	
	section (None) – Since Keychain doesn’t support sections it is left

	CredentialProvider (to satisfy the Signature of) –

	Returns:

	The credentials retrieved from that source.

	Return type:

	Credentials

	Raises:

	CredentialError – If there is any error retrieving the credentials.

Registry Credential Provider Module

Credentials provider that reads the credentials from the environment.

	
OpenKey(base, path)

	Stub to maintain source compatibility

	
QueryValueEx(key, name)

	Stub to maintain source compatibility

	
class RegistryCredentialProvider(keypath=None, userkey=True)

	Bases: CredentialProvider

The credentials provider that reads from the Windows Registry.

Initialize the RegistryCredentialProvider.

	Parameters:

	
	keypath (str) – Path from the selected base key to the key that will contain individual sections.

	userkey (bool) – True if the keypath starts at HKEY_CURRENT_USER, False if at HKEY_LOCAL_MACHINE.

	Raises:

	CredentialError – If we attempt to instantiate this provider on a non-Windows system.

	
get_credentials(section=None)

	Return a Credentials object containing the configured credentials.

	Parameters:

	section (str) – The credential section to retrieve.

	Returns:

	The credentials retrieved from that source.

	Return type:

	Credentials

	Raises:

	CredentialError – If there is any error retrieving the credentials.

Endpoint Standard Package

Base Module

Model and Query Classes for Endpoint Standard

	
class EnrichedEvent(cb, model_unique_id=None, initial_data=None, force_init=False, full_doc=True)

	Bases: UnrefreshableModel

Represents an enriched event retrieved by one of the Enterprise EDR endpoints.

Initialize the EnrichedEvent object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (Any) – The unique ID for this particular instance of the model object.

	initial_data (dict) – The data to use when initializing the model object.

	force_init (bool) – True to force object initialization.

	full_doc (bool) – True to mark the object as fully initialized.

	
approve_process_sha256(description='')

	Approves the application by adding the process_sha256 to the WHITE_LIST

	Parameters:

	description – The justification for why the application was added to the WHITE_LIST

	Returns:

	
	ReputationOverride object
	created in the Carbon Black Cloud

	Return type:

	ReputationOverride (cbc_sdk.platform.ReputationOverride)

	
ban_process_sha256(description='')

	Bans the application by adding the process_sha256 to the BLACK_LIST

	Parameters:

	description – The justification for why the application was added to the BLACK_LIST

	Returns:

	
	ReputationOverride object
	created in the Carbon Black Cloud

	Return type:

	ReputationOverride (cbc_sdk.platform.ReputationOverride)

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_details(timeout=0, async_mode=False)

	Requests detailed results.

	Parameters:

	
	timeout (int) – Event details request timeout in milliseconds. This value can never be greater than
the configured default timeout. If this value is 0, the configured default timeout is used.

	async_mode (bool) – True to request details in an asynchronous manner.

Note

	When using asynchronous mode, this method returns a python future.
You can call result() on the future object to wait for completion and get the results.

	
property process_sha256

	Returns a string representation of the SHA256 hash for this process.

	Returns:

	SHA256 hash of the process.

	Return type:

	hash (str)

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class EnrichedEventFacet(cb, model_unique_id, initial_data)

	Bases: UnrefreshableModel

Represents an enriched event retrieved by one of the Enterprise EDR endpoints.

	Parameters:

	
	job_id – The Job ID assigned to this query

	terms – Contains the Enriched Event Facet search results

	ranges – Groupings for search result properties that are ISO 8601 timestamps or numbers

	contacted – The number of searchers contacted for this query

	completed – The number of searchers that have reported their results

Initialize the Terms object with initial data.

	
class Ranges(cb, initial_data)

	Bases: UnrefreshableModel

Represents the range (bucketed) facet fields and values associated with an Enriched Event Facet query.

Initialize an EnrichedEventFacet Ranges object with initial_data.

	
property facets

	Returns the reified EnrichedEventFacet.Terms._facets for this result.

	
property fields

	Returns the ranges fields for this result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class Terms(cb, initial_data)

	Bases: UnrefreshableModel

Represents the facet fields and values associated with an Enriched Event Facet query.

Initialize an EnrichedEventFacet Terms object with initial_data.

	
property facets

	Returns the terms’ facets for this result.

	
property fields

	Returns the terms facets’ fields for this result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
property ranges_

	Returns the reified EnrichedEventFacet.Ranges for this result.

	
refresh()

	Reload this object from the server.

	
property terms_

	Returns the reified EnrichedEventFacet.Terms for this result.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class EnrichedEventQuery(doc_class, cb)

	Bases: Query

Represents the query logic for an Enriched Event query.

This class specializes Query to handle the particulars of enriched events querying.

Initialize the EnrichedEventQuery object.

	Parameters:

	
	doc_class (class) – The class of the model this query returns.

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
add_exclusions(key, newlist)

	Add to the exclusions on this query with a custom exclusions key.

Will overwrite any existing exclusion for the specified key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).add_exclusions("type", ["WATCHLIST"])
>>> query = api.select(Alert).add_exclusions("type", "WATCHLIST")

	
aggregation(field)

	Performs an aggregation search where results are grouped by an aggregation field

	Parameters:

	field (str) – The aggregation field, either ‘process_sha256’ or ‘device_id’

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
batch_size(new_batch_size)

	Set the batch size of the paginated query.

	Parameters:

	new_batch_size (int) – The new batch size.

	Returns:

	A new query with the updated batch size.

	Return type:

	PaginatedQuery

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(**kwargs)

	or_() criteria are explicitly provided to EnrichedEvent queries.

This method overrides the base class in order to provide or_() functionality rather than raising an exception.

	
set_fields(fields)

	Sets the fields to be returned with the response.

	Parameters:

	fields (str or list[str]) – Field or list of fields to be returned.

	
set_rows(rows)

	Sets the ‘rows’ query body parameter to the ‘start search’ API call, determining how many rows to request.

	Parameters:

	rows (int) – How many rows to request.

	
set_start(start)

	Sets the ‘start’ query body parameter, determining where to begin retrieving results from.

	Parameters:

	start (int) – Where to start results from.

	
set_time_range(start=None, end=None, window=None)

	Sets the ‘time_range’ query body parameter, determining a time window based on ‘device_timestamp’.

	Parameters:

	
	start (str in ISO 8601 timestamp) – When to start the result search.

	end (str in ISO 8601 timestamp) – When to end the result search.

	window (str) – Time window to execute the result search, ending on the current time.
Should be in the form “-2w”, where y=year, w=week, d=day, h=hour, m=minute, s=second.

Note

	window will take precendent over start and end if provided.

Examples

>>> query = api.select(Process).set_time_range(start="2020-10-20T20:34:07Z").where("query is required")
>>> second_query = api.select(Process).
... set_time_range(start="2020-10-20T20:34:07Z", end="2020-10-30T20:34:07Z").where("query is required")
>>> third_query = api.select(Process).set_time_range(window='-3d').where("query is required")

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	The query with sorting parameters.

	Return type:

	Query

Example

>>> cb.select(Process).where(process_name="cmd.exe").sort_by("device_timestamp")

	
timeout(msecs)

	Sets the timeout on a event query.

	Parameters:

	msecs (int) – Timeout duration, in milliseconds. This value can cever be greater than the configured
default timeout. If this value is 0, the configured default timeout is used.

	Returns:

	The Query object with new milliseconds parameter.

	Return type:

	Query (EnrichedEventQuery)

Example

>>> cb.select(EnrichedEvent).where(process_name="foo.exe").timeout(5000)

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
update_exclusions(key, newlist)

	Update the exclusion on this query with a custom exclusion key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (list) – List of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).update_exclusions("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
class Event(cb, model_unique_id, initial_data=None)

	Bases: object

Represents an Endpoint Standard Event.

This functionality has been decommissioned. Please use EnrichedEvent instead. More information may be found
here:
https://community.carbonblack.com/t5/Developer-Relations/Migration-Guide-Carbon-Black-Cloud-Events-API/m-p/95915/thread-id/2519

This functionality has been decommissioned. Do not use.

	Parameters:

	
	cb (BaseAPI) – Unused.

	model_unique_id (int) – Unused.

	initial_data (dict) – Unused.

	Raises:

	FunctionalityDecommissioned – Always.

	
log = <Logger cbc_sdk.endpoint_standard.base (WARNING)>

	Endpoint Standard Models

Standard Recommendation Module

Model and query APIs for Recommendations

	
class Recommendation(cb, model_unique_id, initial_data=None)

	Bases: NewBaseModel

Represents a recommended proposed policy change for the organization.

	Parameters:

	
	changed_by – Who made the last update to the workflow

	create_time – The time the recommendation was created

	ref_id – Reference id for an accepted Recommendation which is the id of the created Reputation Override

	status – Status of the recommendation

	update_time – The last time the recommendation was updated

	comment – A comment added when the recommendation was updated

Initialize the Recommendation object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the recommendation represented.

	initial_data (dict) – Initial data used to populate the recommendation.

	
class RecommendationApplication(cb, model_unique_id, initial_data=None)

	Bases: UnrefreshableModel

Represents the rule application of a proposed change to an organization’s policies.

	Parameters:

	
	type – Application type

	value – Application value

Initialize the RecommendationApplication object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – Should be None.

	initial_data (dict) – Initial data used to populate the object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class RecommendationImpact(cb, model_unique_id, initial_data=None)

	Bases: UnrefreshableModel

Represents metadata about a recommendation to be used in the decision to accept or reject it.

	Parameters:

	
	event_count – Number of alerts encountered for recommendation

	impact_score – Impact score

	impacted_devices – Number of devices impacted by the recommendation

	org_adoption – Priority for adoption of this recommendation

	update_time – The last time this impact was updated

Initialize the RecommendationImpact object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – Should be None.

	initial_data (dict) – Initial data used to populate the object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class RecommendationNewRule(cb, model_unique_id, initial_data=None)

	Bases: UnrefreshableModel

Represents the proposed change to an organization’s policies from a recommendation.

	Parameters:

	
	action – Rule action

	application – Rule application

	certificate_authority – Certificate authority

	filename – File name

	include_child_processes – Include child processes

	operation – Operation

	override_list – Override list

	override_type – Override type

	path – File path

	sha256_hash – SHA256 hash

	signed_by – Signed by

Initialize the RecommendationNewRule object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – Should be None.

	initial_data (dict) – Initial data used to populate the object.

	
property application_

	Return the object representing the rule application of a proposed change to an organization’s policies.

	Returns:

	The object representing the rule application of a proposed change.

	Return type:

	RecommendationApplication

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class RecommendationWorkflow(cb, model_unique_id, initial_data=None)

	Bases: UnrefreshableModel

Represents the lifecycle state of a recommendation.

	Parameters:

	
	changed_by – Who made the last update to the workflow

	create_time – The time the recommendation was created

	ref_id – Reference id for an accepted Recommendation which is the id of the created Reputation Override

	status – Status of the recommendation

	update_time – The last time the recommendation was updated

	comment – A comment added when the recommendation was updated

Initialize the RecommendationWorkflow object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – Should be None.

	initial_data (dict) – Initial data used to populate the object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
accept(comment=None)

	Accept this recommendation, converting it into a reputation override.

	Parameters:

	comment (str) – Optional comment associated with the action.

	Returns:

	True if we successfully refreshed this Recommendation’s state, False if not.

	Return type:

	bool

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
property impact_

	Return the object representing metadata about the recommendation.

	Returns:

	The object representing metadata about the recommendation.

	Return type:

	RecommendationImpact

	
property new_rule_

	Return the object representing the proposed change to an organization’s policies from the recommendation.

	Returns:

	The object representing the proposed change to an organization’s policies.

	Return type:

	RecommendationNewRule

	
refresh()

	Reload this object from the server.

	
reject(comment=None)

	Reject this recommendation.

	Parameters:

	comment (str) – Optional comment associated with the action.

	Returns:

	True if we successfully refreshed this Recommendation’s state, False if not.

	Return type:

	bool

	
reputation_override()

	Returns the reputation override associated with the recommendation (if the recommendation was accepted).

	Returns:

	The associated reputation override, or None if there is none.

	Return type:

	ReputationOverride

	
reset(comment=None)

	Reset the recommendation, undoing any created reputation override and setting it back to NEW state.

	Parameters:

	comment (str) – Optional comment associated with the action.

	Returns:

	True if we successfully refreshed this Recommendation’s state, False if not.

	Return type:

	bool

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
property workflow_

	Returns the object representing the lifecycle state of the recommendation.

	Returns:

	The object representing the lifecycle state of the recommendation.

	Return type:

	RecommendationWorkflow

	
class RecommendationQuery(doc_class, cb)

	Bases: BaseQuery, CriteriaBuilderSupportMixin, IterableQueryMixin, AsyncQueryMixin

Query used to locate Recommendation objects.

Initialize the RecommendationQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
set_hashes(hashes)

	Restricts the recommendations that this query is performed on to the specified hashes.

	Parameters:

	hashes (list) – List of hashes to restrict the search to.

	Returns:

	This instance.

	Return type:

	RecommendationQuery

	Raises:

	ApiError – If invalid values are passed in the list.

	
set_policy_types(policy_types)

	Restricts the recommendations that this query is performed on to the specified policy types.

	Parameters:

	policy_types (list) – List of policy types to restrict the search to.

	Returns:

	This instance.

	Return type:

	RecommendationQuery

	Raises:

	ApiError – If invalid values are passed in the list.

	
set_statuses(statuses)

	Restricts the recommendations that this query is performed on to the specified status values.

	Parameters:

	statuses (list) – List of status values to restrict the search to. If no statuses are specified, the search
defaults to NEW only.

	Returns:

	This instance.

	Return type:

	RecommendationQuery

	Raises:

	ApiError – If invalid values are passed in the list.

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(USBDevice).sort_by("product_name")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	This instance.

	Return type:

	USBDeviceQuery

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
log = <Logger cbc_sdk.endpoint_standard.recommendation (WARNING)>

	Recommendation models

USB Device Control Module

Model and Query Classes for USB Device Control

	
class USBDevice(cb, model_unique_id, initial_data=None)

	Bases: NewBaseModel

Represents a USB device.

	Parameters:

	
	created_at – the UTC date the external USB device configuration was created in ISO 8601 format

	device_friendly_name – human readable name for the external USB device

	device_name – name of the external USB device

	device_type – type of external USB device

	endpoint_count – number of endpoints that the external USB device has connected to

	first_seen – first timestamp that the external USB device was seen

	id – the id for this external USB device

	interface_type – type of interface used by external USB device

	last_endpoint_id – ID of the last endpoint the device accessed

	last_endpoint_name – name of the last endpoint the device accessed

	last_policy_id – ID of the last policy associated with the device

	last_seen – last timestamp that the external USB device was seen

	org_key – unique org key of the organization that the external USB device was connected to

	product_id – product ID of the external USB device in decimal form

	product_name – product name of the external USB device

	serial_number – serial number of external device

	status – Calculated status of device

	updated_at – the UTC date the external USB device configuration was updated in ISO 8601 format

	vendor_id – ID of the Vendor for the external USB device in decimal form

	vendor_name – vendor name of the external USB device

Initialize the USBDevice object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
approve(approval_name, notes)

	Creates and saves an approval for this USB device, allowing it to be treated as approved from now on.

	Required Permissions:
	external-device.manage (CREATE)

	Parameters:

	
	approval_name (str) – The name for this new approval.

	notes (str) – Notes to be added to this approval.

	Returns:

	The new approval.

	Return type:

	USBDeviceApproval

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_endpoints()

	Returns the information about endpoints associated with this USB device.

	Required Permissions:
	external-device.manage (READ)

	Returns:

	List of information about USB endpoints, each item specified as a dict.

	Return type:

	list

	
classmethod get_vendors_and_products_seen(cb)

	Returns all vendors and products that have been seen for the organization.

	Required Permissions:
	external-device.manage (READ)

	Parameters:

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	Returns:

	A list of vendors and products seen for the organization, each vendor being represented by a dict.

	Return type:

	list

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class USBDeviceApproval(cb, model_unique_id, initial_data=None)

	Bases: MutableBaseModel

Represents a USB device approval.

	Parameters:

	
	approval_name – the name of the approval

	created_at – the UTC date the approval was created in ISO 8601 format

	id – the id for this approval

	notes – the notes for the approval

	product_id – product ID of the approval’s external USB device in hex form

	product_name – product name of the approval’s external USB device

	serial_number – serial number of the approval’s external device

	updated_at – the UTC date the approval was updated in ISO 8601 format

	updated_by – the user who updated the record last

	vendor_id – ID of the Vendor for the approval’s external USB device in hex form

	vendor_name – vendor name of the approval’s external USB device

Initialize the USBDeviceApproval object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
classmethod bulk_create(cb, approvals)

	Creates multiple approvals and returns the USBDeviceApproval objects. Data is supplied as a list of dicts.

	Required Permissions:
	external-device.manage (CREATE)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	approvals (list) – List of dicts containing approval data to be created, formatted as shown below.

Example

>>> [
 {
 "approval_name": "string",
 "notes": "string",
 "product_id": "string",
 "serial_number": "string",
 "vendor_id": "string"
 }
]

	Returns:

	A list of USBDeviceApproval objects representing the approvals that were created.

	Return type:

	list

	
classmethod bulk_create_csv(cb, approval_data)

	Creates multiple approvals and returns the USBDeviceApproval objects. Data is supplied as text in CSV format.

	Required Permissions:
	external-device.manage (CREATE)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	approval_data (str) – CSV data for the approvals to be created. Header line MUST be included
as shown below.

Example

vendor_id,product_id,serial_number,approval_name,notes

string,string,string,string,string

	Returns:

	A list of USBDeviceApproval objects representing the approvals that were created.

	Return type:

	list

	
classmethod create_from_usb_device(usb_device)

	Creates a new, unsaved approval object from a USBDeviceObject, filling in its basic fields.

	Parameters:

	usb_device (USBDevice) – The USB device to create the approval from.

	Returns:

	The new approval object.

	Return type:

	USBDeviceApproval

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
refresh()

	Reload this object from the server.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this object.

	Returns:

	True if the object is validated.

	Return type:

	bool

	Raises:

	InvalidObjectError – If the object has missing fields.

	
class USBDeviceApprovalQuery(doc_class, cb)

	Bases: BaseQuery, QueryBuilderSupportMixin, CriteriaBuilderSupportMixin, IterableQueryMixin, AsyncQueryMixin

Represents a query that is used to locate USBDeviceApproval objects.

Initialize the USBDeviceApprovalQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
export(export_format)

	Starts the process of exporting USB device approval data from the organization in a specified format.

	Required Permissions:
	external-device.manage (READ)

	Parameters:

	export_format (str) – The format to export USB device approval data in. Must be either “CSV” or “JSON”.

	Returns:

	The asynchronous job that will provide the export output when the server has prepared it.

	Return type:

	Job

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_device_ids(device_ids)

	Restricts the device approvals that this query is performed on to the specified device IDs.

	Parameters:

	device_ids (list) – List of string device IDs.

	Returns:

	This instance.

	Return type:

	USBDeviceApprovalQuery

	
set_product_names(product_names)

	Restricts the device approvals that this query is performed on to the specified product names.

	Parameters:

	product_names (list) – List of string product names.

	Returns:

	This instance.

	Return type:

	USBDeviceApprovalQuery

	
set_vendor_names(vendor_names)

	Restricts the device approvals that this query is performed on to the specified vendor names.

	Parameters:

	vendor_names (list) – List of string vendor names.

	Returns:

	This instance.

	Return type:

	USBDeviceApprovalQuery

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
class USBDeviceBlock(cb, model_unique_id, initial_data=None)

	Bases: NewBaseModel

Represents a USB device block.

	Parameters:

	
	created_at – the UTC date the block was created in ISO 8601 format

	id – the id for this block

	policy_id – policy id which is blocked

	updated_at – the UTC date the block was updated in ISO 8601 format

Initialize the USBDeviceBlock object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
classmethod bulk_create(cb, policy_ids)

	Creates multiple blocks and returns the USBDeviceBlocks that were created.

	Required Permissions:
	org.policies (UPDATE), external-device.enforce (UPDATE)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	policy_ids (list) – List of policy IDs to have blocks created for.

	Returns:

	A list of USBDeviceBlock objects representing the approvals that were created.

	Return type:

	list

	
classmethod create(cb, policy_id)

	Creates a USBDeviceBlock for a given policy ID.

	Required Permissions:
	org.policies (UPDATE), external-device.enforce (UPDATE)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	policy_id (str/int) – Policy ID to create a USBDeviceBlock for.

	Returns:

	New USBDeviceBlock object representing the block.

	Return type:

	USBDeviceBlock

	
delete()

	Delete this object.

	Required Permissions:
	org.policies (DELETE), external-device.enforce (UPDATE)

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class USBDeviceBlockQuery(doc_class, cb)

	Bases: BaseQuery, IterableQueryMixin, AsyncQueryMixin

Represents a query that is used to locate USBDeviceBlock objects.

Initialize the USBDeviceBlockQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
class USBDeviceQuery(doc_class, cb)

	Bases: BaseQuery, QueryBuilderSupportMixin, CriteriaBuilderSupportMixin, IterableQueryMixin, AsyncQueryMixin

Represents a query that is used to locate USBDevice objects.

Initialize the USBDeviceQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
export(export_format)

	Starts the process of exporting USB device data from the organization in a specified format.

	Required Permissions:
	external-device.manage (READ)

	Parameters:

	export_format (str) – The format to export USB device data in. Must be either “CSV” or “JSON”.

	Returns:

	The asynchronous job that will provide the export output when the server has prepared it.

	Return type:

	Job

	
facets(fieldlist, max_rows=0)

	Return information about the facets for all known USB devices, using the defined criteria.

	Required Permissions:
	external-device.manage (READ)

	Parameters:

	
	fieldlist (list) – List of facet field names. Valid names are “vendor_name”, “product_name”,
“endpoint.endpoint_name”, and “status”.

	max_rows (int) – The maximum number of rows to return. 0 means return all rows.

	Returns:

	A list of facet information specified as dicts.

	Return type:

	list

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_endpoint_names(endpoint_names)

	Restricts the devices that this query is performed on to the specified endpoint names.

	Parameters:

	endpoint_names (list) – List of string endpoint names.

	Returns:

	This instance.

	Return type:

	USBDeviceQuery

	
set_max_rows(max_rows)

	Sets the max number of usb devices to fetch in a singular query

	Parameters:

	max_rows (integer) – Max number of usb devices

	Returns:

	This instance.

	Return type:

	USBDeviceQuery

	Raises:

	ApiError – If rows is negative or greater than 10000

	
set_product_names(product_names)

	Restricts the devices that this query is performed on to the specified product names.

	Parameters:

	product_names (list) – List of string product names.

	Returns:

	This instance.

	Return type:

	USBDeviceQuery

	
set_serial_numbers(serial_numbers)

	Restricts the devices that this query is performed on to the specified serial numbers.

	Parameters:

	serial_numbers (list) – List of string serial numbers.

	Returns:

	This instance.

	Return type:

	USBDeviceQuery

	
set_statuses(statuses)

	Restricts the devices that this query is performed on to the specified status values.

	Parameters:

	statuses (list) – List of string status values. Valid values are APPROVED and UNAPPROVED.

	Returns:

	This instance.

	Return type:

	USBDeviceQuery

	
set_vendor_names(vendor_names)

	Restricts the devices that this query is performed on to the specified vendor names.

	Parameters:

	vendor_names (list) – List of string vendor names.

	Returns:

	This instance.

	Return type:

	USBDeviceQuery

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(USBDevice).sort_by("product_name")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	This instance.

	Return type:

	USBDeviceQuery

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
log = <Logger cbc_sdk.endpoint_standard.usb_device_control (WARNING)>

	USB Device Control models

Enterprise EDR Package

Auth Events Module

Model and Query Classes for Auth Events

	
class AuthEvent(cb, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: NewBaseModel

Represents an AuthEvent

Initialize the AuthEvent object.

	Required RBAC Permissions:
	org.search.events (CREATE, READ)

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (Any) – The unique ID for this particular instance of the model object.

	initial_data (dict) – The data to use when initializing the model object.

	force_init (bool) – True to force object initialization.

	full_doc (bool) – False to mark the object as not fully initialized.

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> events = cb.select(AuthEvent).where("auth_username:SYSTEM")
>>> print(*events)

	
static bulk_get_details(cb, alert_id=None, event_ids=None, timeout=0)

	Bulk get details

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	alert_id (str) – An alert id to fetch associated events

	event_ids (list) – A list of event ids to fetch

	timeout (int) – AuthEvent details request timeout in milliseconds. This can never be greater than the
configured default timeout. If this value is 0, the configured default timeout is used.

	Returns:

	list of Auth Events

	Return type:

	list

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> bulk_details = AuthEvent.bulk_get_details(cb, event_ids=['example-value'])
>>> print(bulk_details)

	Raises:

	ApiError – if cb is not instance of CBCloudAPI

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
static get_auth_events_descriptions(cb)

	Returns descriptions and status messages of Auth Events.

	Parameters:

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	Returns:

	Descriptions and status messages of Auth Events as dict objects.

	Return type:

	dict

	Raises:

	ApiError – if cb is not instance of CBCloudAPI

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> descriptions = AuthEvent.get_auth_events_descriptions(cb)
>>> print(descriptions)

	
get_details(timeout=0, async_mode=False)

	Requests detailed results.

	Parameters:

	
	timeout (int) – AuthEvent details request timeout in milliseconds. This can never be greater than the
configured default timeout. If this is 0, the configured default timeout is used.

	async_mode (bool) – True to request details in an asynchronous manner.

	Returns:

	Auth Events object enriched with the details fields

	Return type:

	AuthEvent

Note

	When using asynchronous mode, this method returns a python future.
You can call result() on the future object to wait for completion and get the results.

Examples

>>> cb = CBCloudAPI(profile="example_profile")

>>> events = cb.select(AuthEvent).where(process_pid=2000)
>>> print(events[0].get_details())

	
refresh()

	Reload this object from the server.

	
static search_suggestions(cb, query, count=None)

	Returns suggestions for keys and field values that can be used in a search.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	query (str) – A search query to use.

	count (int) – (optional) Number of suggestions to be returned

	Returns:

	A list of search suggestions expressed as dict objects.

	Return type:

	list

	Raises:

	ApiError – if cb is not instance of CBCloudAPI

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> suggestions = AuthEvent.search_suggestions(cb, 'auth')
>>> print(suggestions)

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class AuthEventFacet(cb, model_unique_id, initial_data)

	Bases: UnrefreshableModel

Represents an AuthEvent facet retrieved.

	Example:
	>>> cb = CBCloudAPI(profile="example_profile")
>>> events_facet = cb.select(AuthEventFacet).where("auth_username:SYSTEM").add_facet_field("process_name")
>>> print(events_facet.results)

	Parameters:

	
	terms – Contains the Auth Event Facet search results

	ranges – Groupings for search result properties that are ISO 8601 timestamps or numbers

	contacted – The number of searchers contacted for this query

	completed – The number of searchers that have reported their results

Initialize the Terms object with initial data.

	
class Ranges(cb, initial_data)

	Bases: UnrefreshableModel

Represents the range (bucketed) facet fields and values associated with an AuthEvent Facet query.

Initialize an AuthEventFacet Ranges object with initial_data.

	
property facets

	Returns the reified AuthEventFacet.Terms._facets for this result.

	
property fields

	Returns the ranges fields for this result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class Terms(cb, initial_data)

	Bases: UnrefreshableModel

Represents the facet fields and values associated with an AuthEvent Facet query.

Initialize an AuthEventFacet Terms object with initial_data.

	
property facets

	Returns the terms’ facets for this result.

	
property fields

	Returns the terms facets’ fields for this result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
property ranges_

	Returns the reified AuthEventFacet.Ranges for this result.

	
refresh()

	Reload this object from the server.

	
property terms_

	Returns the reified AuthEventFacet.Terms for this result.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class AuthEventGroup(cb, initial_data=None)

	Bases: object

Represents AuthEventGroup

Initialize AuthEventGroup object

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	initial_data (dict) – The data to use when initializing the model object.

Notes

The constructed object will have the following data:
- group_start_timestamp
- group_end_timestamp
- group_key
- group_value

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> groups = set(cb.select(AuthEvent).where(process_pid=2000).group_results("device_name"))
>>> for group in groups:
>>> print(group._info)

	
class AuthEventQuery(doc_class, cb)

	Bases: Query

Represents the query logic for an AuthEvent query.

This class specializes Query to handle the particulars of Auth Events querying.

Initialize the AuthEventQuery object.

	Parameters:

	
	doc_class (class) – The class of the model this query returns.

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> events = cb.select(AuthEvent).where("auth_username:SYSTEM")
>>> print(*events)

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
add_exclusions(key, newlist)

	Add to the exclusions on this query with a custom exclusions key.

Will overwrite any existing exclusion for the specified key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).add_exclusions("type", ["WATCHLIST"])
>>> query = api.select(Alert).add_exclusions("type", "WATCHLIST")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
batch_size(new_batch_size)

	Set the batch size of the paginated query.

	Parameters:

	new_batch_size (int) – The new batch size.

	Returns:

	A new query with the updated batch size.

	Return type:

	PaginatedQuery

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
group_results(fields, max_events_per_group=None, rows=500, start=None, range_duration=None, range_field=None, range_method=None)

	Get group results grouped by provided fields.

	Parameters:

	
	fields (str / list) – field or fields by which to perform the grouping

	max_events_per_group (int) – Maximum number of events in a group, if not provided all events will be returned

	rows (int) – Number of rows to request, can be paginated

	start (int) – First row to use for pagination

	ranges (dict) – dict with information about duration, field, method

	Returns:

	grouped results

	Return type:

	dict

Examples

>>> cb = CBCloudAPI(profile="example_profile")
>>> groups = set(cb.select(AuthEvent).where(process_pid=2000).group_results("device_name"))
>>> for group in groups:
>>> print(group._info)

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(**kwargs)

	or_() criteria are explicitly provided to AuthEvent queries.

This method overrides the base class in order to provide or_() functionality rather than raising an exception.

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> events = cb.select(AuthEvent).where(process_name="chrome.exe").or_(process_name="firefox.exe")
>>> print(*events)

	
set_fields(fields)

	Sets the fields to be returned with the response.

	Parameters:

	fields (str or list[str]) – Field or list of fields to be returned.

	
set_rows(rows)

	Sets the ‘rows’ query body parameter to the ‘start search’ API call, determining how many rows to request.

	Parameters:

	rows (int) – How many rows to request.

	Returns:

	AuthEventQuery object

	Return type:

	Query

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> events = cb.select(AuthEvent).where(process_name="chrome.exe").set_rows(5)
>>> print(*events)

	
set_start(start)

	Sets the ‘start’ query body parameter, determining where to begin retrieving results from.

	Parameters:

	start (int) – Where to start results from.

	
set_time_range(start=None, end=None, window=None)

	Sets the ‘time_range’ query body parameter, determining a time window based on ‘device_timestamp’.

	Parameters:

	
	start (str in ISO 8601 timestamp) – When to start the result search.

	end (str in ISO 8601 timestamp) – When to end the result search.

	window (str) – Time window to execute the result search, ending on the current time.
Should be in the form “-2w”, where y=year, w=week, d=day, h=hour, m=minute, s=second.

Note

	window will take precendent over start and end if provided.

Examples

>>> query = api.select(Process).set_time_range(start="2020-10-20T20:34:07Z").where("query is required")
>>> second_query = api.select(Process).
... set_time_range(start="2020-10-20T20:34:07Z", end="2020-10-30T20:34:07Z").where("query is required")
>>> third_query = api.select(Process).set_time_range(window='-3d').where("query is required")

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	The query with sorting parameters.

	Return type:

	Query

Example

>>> cb.select(Process).where(process_name="cmd.exe").sort_by("device_timestamp")

	
timeout(msecs)

	Sets the timeout on a Auth Event query.

	Parameters:

	msecs (int) – Timeout duration, in milliseconds. This value can never be greater than the configured
default timeout. If this value is 0, the configured default timeout is used.

	Returns:

	The Query object with new milliseconds parameter.

	Return type:

	Query (AuthEventQuery)

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> events = cb.select(AuthEvent).where(process_name="chrome.exe").timeout(5000)
>>> print(*events)

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
update_exclusions(key, newlist)

	Update the exclusion on this query with a custom exclusion key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (list) – List of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).update_exclusions("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

Threat Intelligence Module

Model Classes for Enterprise Endpoint Detection and Response

	
class Feed(cb, model_unique_id=None, initial_data=None)

	Bases: FeedModel

Represents an Enterprise EDR feed’s metadata.

	Parameters:

	
	name – A human-friendly name for this feed

	owner – The feed owner’s connector ID

	provider_url – A URL supplied by the feed’s provider

	summary – A human-friendly summary for the feed

	category – The feed’s category

	source_label – The feed’s source label

	access – The feed’s access (public or private)

	id – The feed’s unique ID

Initialize the Feed object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (str) – The unique ID of the feed.

	initial_data (dict) – The initial data for the object.

	
class FeedBuilder(cb, info)

	Bases: object

Helper class allowing Feeds to be assembled.

Creates a new FeedBuilder object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	info (dict) – The initial information for the new feed.

	
add_reports(reports)

	Adds new reports to the new feed.

	Parameters:

	reports (list[Report]) – New reports to be added to the feed.

	Returns:

	This object.

	Return type:

	FeedBuilder

	
build()

	Builds the new Feed.

	Returns:

	The new Feed.

	Return type:

	Feed

	
set_alertable(alertable)

	Sets the alertable for the new feed. Defaults to true if not specified.

	Parameters:

	alertable (bool) – Indicator whether the feed supports alerting.

	Returns:

	This object.

	Return type:

	FeedBuilder

	
set_category(category)

	Sets the category for the new feed.

	Parameters:

	category (str) – New category for the feed.

	Returns:

	This object.

	Return type:

	FeedBuilder

	
set_name(name)

	Sets the name for the new feed.

	Parameters:

	name (str) – New name for the feed.

	Returns:

	This object.

	Return type:

	FeedBuilder

	
set_provider_url(provider_url)

	Sets the provider URL for the new feed.

	Parameters:

	provider_url (str) – New provider URL for the feed.

	Returns:

	This object.

	Return type:

	FeedBuilder

	
set_source_label(source_label)

	Sets the source label for the new feed.

	Parameters:

	source_label (str) – New source label for the feed.

	Returns:

	This object.

	Return type:

	FeedBuilder

	
set_summary(summary)

	Sets the summary for the new feed.

	Parameters:

	summary (str) – New summary for the feed.

	Returns:

	This object.

	Return type:

	FeedBuilder

	
append_reports(reports)

	Append the given Reports to this Feed’s current Reports.

	Parameters:

	reports ([Report]) – List of Reports to append to Feed.

	Raises:

	InvalidObjectError – If id is missing.

	
append_reports_rawdata(report_data)

	Append the given report data, formatted as per the API documentation for reports, to this Feed’s Reports.

	Parameters:

	report_data (list[dict]) –

	Raises:

	InvalidObjectError – If id is missing or validation of the data fails.

	
classmethod create(cb, name, provider_url, summary, category, alertable=True)

	Begins creating a new feed by making a FeedBuilder to hold the new feed data.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	name (str) – Name for the new feed.

	provider_url (str) – Provider URL for the new feed.

	summary (str) – Summary for the new feed.

	category (str) – Category for the new feed.

	Returns:

	The new FeedBuilder object to be used to create the feed.

	Return type:

	FeedBuilder

	
delete()

	Deletes this feed from the Enterprise EDR server.

	Raises:

	InvalidObjectError – If id is missing.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
refresh()

	Reload this object from the server.

	
replace_reports(reports)

	Replace this Feed’s Reports with the given Reports.

	Parameters:

	reports ([Report]) – List of Reports to replace existing Reports with.

	Raises:

	InvalidObjectError – If id is missing.

	
replace_reports_rawdata(report_data)

	Replace this Feed’s Reports with the given reports, specified as raw data.

	Parameters:

	report_data (list[dict]) –

	Raises:

	InvalidObjectError – If id is missing or validation of the data fails.

	
property reports

	Returns a list of Reports associated with this feed.

	Returns:

	List of Reports in this Feed.

	Return type:

	Reports ([Report])

	
reset()

	Undo any changes made to this object’s fields.

	
save(public=False)

	Saves this feed on the Enterprise EDR server.

	Parameters:

	public (bool) – Whether to make the feed publicly available.

	Returns:

	The saved Feed.

	Return type:

	Feed (Feed)

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
update(**kwargs)

	Update this feed’s metadata with the given arguments.

	Parameters:

	**kwargs (dict(str, str)) – The fields to update.

	Raises:

	
	InvalidObjectError – If id is missing or Feed.validate() fails.

	ApiError – If an invalid field is specified.

Example

>>> feed.update(access="private")

	
validate()

	Checks to ensure this feed contains valid data.

	Raises:

	InvalidObjectError – If the feed contains invalid data.

	
class FeedModel(cb, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: UnrefreshableModel, CreatableModelMixin, MutableBaseModel

A common base class for models used by the Feed and Watchlist APIs.

Initialize the NewBaseModel object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (Any) – The unique ID for this particular instance of the model object.

	initial_data (dict) – The data to use when initializing the model object.

	force_init (bool) – True to force object initialization.

	full_doc (bool) – True to mark the object as fully initialized.

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
refresh()

	Reload this object from the server.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this object.

	Returns:

	True if the object is validated.

	Return type:

	bool

	Raises:

	InvalidObjectError – If the object has missing fields.

	
class FeedQuery(doc_class, cb)

	Bases: SimpleQuery

Represents the logic for a Feed query.

>>> cb.select(Feed)
>>> cb.select(Feed, id)
>>> cb.select(Feed).where(include_public=True)

Initialize the FeedQuery object.

	Parameters:

	
	doc_class (class) – The class of the model this query returns.

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(new_query)

	Add an additional “where” clause to this query.

	Parameters:

	new_query (object) – The additional “where” clause, as a string or solrq.Q object.

	Returns:

	A new query with the extra “where” clause specified.

	Return type:

	SimpleQuery

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
property results

	Return a list of Feed objects matching self._args parameters.

	
sort(new_sort)

	Set the sorting for this query.

	Parameters:

	new_sort (object) – The new sort criteria for this query.

	Returns:

	A new query with the sort parameter specified.

	Return type:

	SimpleQuery

	
where(**kwargs)

	Add kwargs to self._args dictionary.

	
class IOC(cb, model_unique_id=None, initial_data=None, report_id=None)

	Bases: FeedModel

Represents a collection of categorized IOCs. These objects are officially deprecated and replaced by IOC_V2.

	Parameters:

	
	md5 – A list of MD5 checksums

	ipv4 – A list of IPv4 addresses

	ipv6 – A list of IPv6 addresses

	dns – A list of domain names

	query – A list of dicts, each containing an IOC query

Creates a new IOC instance.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – Unique ID of this IOC.

	initial_data (dict) – Initial data used to populate the IOC.

	report_id (str) – ID of the report this IOC belongs to (if this is a watchlist IOC).

	Raises:

	ApiError – If initial_data is None.

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
refresh()

	Reload this object from the server.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Checks to ensure this IOC contains valid data.

	Raises:

	InvalidObjectError – If the IOC contains invalid data.

	
class IOC_V2(cb, model_unique_id=None, initial_data=None, report_id=None)

	Bases: FeedModel

Represents a collection of IOCs of a particular type, plus matching criteria and metadata.

	Parameters:

	
	id – The IOC_V2’s unique ID

	match_type – How IOCs in this IOC_V2 are matched

	values – A list of IOCs

	field – The kind of IOCs contained in this IOC_V2

	link – A URL for some reference for this IOC_V2

Creates a new IOC_V2 instance.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (Any) – Unused.

	initial_data (dict) – Initial data used to populate the IOC.

	report_id (str) – ID of the report this IOC belongs to (if this is a watchlist IOC).

	Raises:

	ApiError – If initial_data is None.

	
classmethod create_equality(cb, iocid, field, *values)

	Creates a new “equality” IOC.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	iocid (str) – ID for the new IOC. If this is None, a UUID will be generated for the IOC.

	field (str) – Name of the field to be matched by this IOC.

	*values (list(str)) – String values to match against the value of the specified field.

	Returns:

	New IOC data structure.

	Return type:

	IOC_V2

	Raises:

	ApiError – If there is not at least one value to match against.

	
classmethod create_query(cb, iocid, query)

	Creates a new “query” IOC.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	iocid (str) – ID for the new IOC. If this is None, a UUID will be generated for the IOC.

	query (str) – Query to be incorporated in this IOC.

	Returns:

	New IOC data structure.

	Return type:

	IOC_V2

	Raises:

	ApiError – If the query string is not present.

	
classmethod create_regex(cb, iocid, field, *values)

	Creates a new “regex” IOC.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	iocid (str) – ID for the new IOC. If this is None, a UUID will be generated for the IOC.

	field (str) – Name of the field to be matched by this IOC.

	*values (list(str)) – Regular expression values to match against the value of the specified field.

	Returns:

	New IOC data structure.

	Return type:

	IOC_V2

	Raises:

	ApiError – If there is not at least one regular expression to match against.

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
ignore()

	Sets the ignore status on this IOC.

Only watchlist IOCs have an ignore status.

	Raises:

	InvalidObjectError – If id is missing or this IOC is not from a Watchlist.

	
property ignored

	Returns whether or not this IOC is ignored.

Only watchlist IOCs have an ignore status.

	Returns:

	True if the IOC is ignored, False otherwise.

	Return type:

	bool

	Raises:

	InvalidObjectError – If this IOC is missing an id or is not a Watchlist IOC.

Example

>>> if ioc.ignored:
... ioc.unignore()

	
classmethod ipv6_equality_format(input)

	Turns a canonically-formatted IPv6 address into a string suitable for use in an equality IOC.

	Parameters:

	input (str) – The IPv6 address to be translated.

	Returns:

	The translated form of IPv6 address.

	Return type:

	str

	Raises:

	ApiError – If the string is not in valid format.

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
refresh()

	Reload this object from the server.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
unignore()

	Removes the ignore status on this IOC.

Only watchlist IOCs have an ignore status.

	Raises:

	InvalidObjectError – If id is missing or this IOC is not from a Watchlist.

	
validate()

	Checks to ensure this IOC contains valid FQDN.

	Raises:

	InvalidObjectError – If the IOC contains invalid data.

	
class Report(cb, model_unique_id=None, initial_data=None, feed_id=None, from_watchlist=False)

	Bases: FeedModel

Represents reports retrieved from an Enterprise EDR feed.

	Parameters:

	
	id – The report’s unique ID

	timestamp – When this report was created

	title – A human-friendly title for this report

	description – A human-friendly description for this report

	severity – The severity of the IOCs within this report

	link – A URL for some reference for this report

	tags – A list of tags for this report

	iocs_v2 – A list of IOC_V2 dicts associated with this report

	visibility – The visibility of this report

Initialize the ReportSeverity object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (str) – The ID of the Report (only works for Reports in
Watchlists).

	initial_data (dict) – The initial data for the object.

	feed_id (str) – The ID of the feed this report is for.

	from_watchlist (bool) – If the report is in a watchlist

	
class ReportBuilder(cb, report_body)

	Bases: object

Helper class allowing Reports to be assembled.

Initialize a new ReportBuilder.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	report_body (dict) – Partial report body which should be filled in with all “required” fields.

	
add_ioc(ioc)

	Adds an IOC to the new report.

	Parameters:

	ioc (IOC_V2) – The IOC to be added to the report.

	Returns:

	This object.

	Return type:

	ReportBuilder

	
add_tag(tag)

	Adds a tag value to the new report.

	Parameters:

	tag (str) – The new tag for the object.

	Returns:

	This object.

	Return type:

	ReportBuilder

	
build()

	Builds the actual Report from the internal data of the ReportBuilder.

	Returns:

	The new Report.

	Return type:

	Report

	
set_description(description)

	Set the description for the new report.

	Parameters:

	description (str) – New description for the report.

	Returns:

	This object.

	Return type:

	ReportBuilder

	
set_link(link)

	Set the link for the new report.

	Parameters:

	link (str) – New link for the report.

	Returns:

	This object.

	Return type:

	ReportBuilder

	
set_severity(severity)

	Set the severity for the new report.

	Parameters:

	severity (int) – New severity for the report.

	Returns:

	This object.

	Return type:

	ReportBuilder

	
set_timestamp(timestamp)

	Set the timestamp for the new report.

	Parameters:

	timestamp (int) – New timestamp for the report.

	Returns:

	This object.

	Return type:

	ReportBuilder

	
set_title(title)

	Set the title for the new report.

	Parameters:

	title (str) – New title for the report.

	Returns:

	This object.

	Return type:

	ReportBuilder

	
set_visibility(visibility)

	Set the visibility for the new report.

	Parameters:

	visibility (str) – New visibility for the report.

	Returns:

	This object.

	Return type:

	ReportBuilder

	
append_iocs(iocs)

	Append a list of IOCs to this Report.

	Parameters:

	iocs (list[IOC_V2]) – List of IOCs to be added.

	
classmethod create(cb, title, description, severity, timestamp=None, tags=None)

	Begin creating a new Report by returning a ReportBuilder.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	title (str) – Title for the new report.

	description (str) – Description for the new report.

	severity (int) – Severity value for the new report.

	timestamp (int) – UNIX-epoch timestamp for the new report. If omitted, current time will be used.

	tags (list[str]) – Tags to be added to the report. If omitted, there will be none.

	Returns:

	Reference to the ReportBuilder object.

	Return type:

	ReportBuilder

	
property custom_severity

	Returns the custom severity for this report.

	Returns:

	
	The custom severity for this Report,
	if it exists.

	Return type:

	ReportSeverity (ReportSeverity)

	Raises:

	InvalidObjectError – If id ismissing or this Report is from a Watchlist.

	
delete()

	Deletes this report from the Enterprise EDR server.

	Raises:

	InvalidObjectError – If id is missing, or feed_id is missing
 and this report is a Feed Report.

Example

>>> report.delete()

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
ignore()

	Sets the ignore status on this report.

	Raises:

	InvalidObjectError – If id is missing or feed ID is missing.

	
property ignored

	Returns the ignore status for this report.

	Returns:

	True if this Report is ignored, False otherwise.

	Return type:

	(bool)

	Raises:

	InvalidObjectError – If id is missing or feed ID is missing.

Example

>>> if report.ignored:
... report.unignore()

	
property iocs_

	Returns a list of IOC_V2’s associated with this report.

	Returns:

	List of IOC_V2’s for associated with the Report.

	Return type:

	IOC_V2 ([IOC_V2])

Example

>>> for ioc in report.iocs_:
... print(ioc.values)

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
refresh()

	Reload this object from the server.

	
remove_iocs(iocs)

	Remove a list of IOCs from this Report.

	Parameters:

	iocs (list[IOC_V2]) – List of IOCs to be removed.

	
remove_iocs_by_id(ids_list)

	Remove IOCs from this report by specifying their IDs.

	Parameters:

	ids_list (list[str]) – List of IDs of the IOCs to be removed.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
save_watchlist()

	Saves this report as a watchlist report.

Note

This method cannot be used to save a feed report. To save feed reports, create them with cb.create
and use Feed.replace.

This method cannot be used to save a report that is already part of a watchlist. Use the update()
method instead.

	Raises:

	InvalidObjectError – If Report.validate() fails.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
unignore()

	Removes the ignore status on this report.

	Raises:

	InvalidObjectError – If id is missing or feed ID is missing.

	
update(**kwargs)

	Update this Report with the given arguments.

	Parameters:

	**kwargs (dict(str, str)) – The Report fields to update.

	Returns:

	The updated Report.

	Return type:

	Report (Report)

	Raises:

	InvalidObjectError – If id is missing, or feed_id is missing
 and this report is a Feed Report, or Report.validate() fails.

Note

The report’s timestamp is always updated, regardless of whether passed explicitly.

>>> report.update(title="My new report title")

	
validate()

	Checks to ensure this report contains valid data.

	Raises:

	InvalidObjectError – If the report contains invalid data.

	
class ReportQuery(doc_class, cb)

	Bases: SimpleQuery

Represents the logic for a Report query.

Example

>>> cb.select(Report).where(feed_id=id)
>>> cb.select(Report, id)
>>> cb.select(Report, id, from_watchlist=True)

Initialize the ReportQuery object.

	Parameters:

	
	doc_class (class) – The class of the model this query returns.

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(new_query)

	Add an additional “where” clause to this query.

	Parameters:

	new_query (object) – The additional “where” clause, as a string or solrq.Q object.

	Returns:

	A new query with the extra “where” clause specified.

	Return type:

	SimpleQuery

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
property results

	Return a list of Report objects

	
sort(new_sort)

	Set the sorting for this query.

	Parameters:

	new_sort (object) – The new sort criteria for this query.

	Returns:

	A new query with the sort parameter specified.

	Return type:

	SimpleQuery

	
where(**kwargs)

	Add kwargs to self._args dictionary.

	
class ReportSeverity(cb, initial_data=None)

	Bases: FeedModel

Represents severity information for a Watchlist Report.

	Parameters:

	
	report_id – The unique ID for the corresponding report

	severity – The severity level

Initialize the ReportSeverity object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	initial_data (dict) – The initial data for the object.

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
refresh()

	Reload this object from the server.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this object.

	Returns:

	True if the object is validated.

	Return type:

	bool

	Raises:

	InvalidObjectError – If the object has missing fields.

	
class Watchlist(cb, model_unique_id=None, initial_data=None)

	Bases: FeedModel

Represents an Enterprise EDR watchlist.

	Parameters:

	
	name – A human-friendly name for the watchlist

	description – A short description of the watchlist

	id – The watchlist’s unique id

	tags_enabled – Whether tags are currently enabled

	alerts_enabled – Whether alerts are currently enabled

	create_timestamp – When this watchlist was created

	last_update_timestamp – Report IDs associated with this watchlist

	report_ids – Report IDs associated with this watchlist

	classifier – A key, value pair specifying an associated feed

Initialize the Watchlist object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (str) – The unique ID of the watch list.

	initial_data (dict) – The initial data for the object.

	
class WatchlistBuilder(cb, name)

	Bases: object

Helper class allowing Watchlists to be assembled.

Creates a new WatchlistBuilder object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	name (str) – Name for the new watchlist.

	
add_report_ids(report_ids)

	Adds report IDs to the watchlist.

	Parameters:

	report_ids (list[str]) – List of report IDs to add to the watchlist.

	Returns:

	This object.

	Return type:

	WatchlistBuilder

	
add_reports(reports)

	Adds reports to the watchlist.

	Parameters:

	reports (list[Report]) – List of reports to be added to the watchlist.

	Returns:

	This object.

	Return type:

	WatchlistBuilder

	
build()

	Builds the new Watchlist using information in the builder. The new watchlist must still be saved.

	Returns:

	The new Watchlist.

	Return type:

	Watchlist

	
set_alerts_enabled(flag)

	Sets whether alerts will be enabled on the new watchlist.

	Parameters:

	flag (bool) – True to enable alerts, False to disable them. Default is False.

	Returns:

	This object.

	Return type:

	WatchlistBuilder

	
set_description(description)

	Sets the description for the new watchlist.

	Parameters:

	description (str) – New description for the watchlist.

	Returns:

	This object.

	Return type:

	WatchlistBuilder

	
set_name(name)

	Sets the name for the new watchlist.

	Parameters:

	name (str) – New name for the watchlist.

	Returns:

	This object.

	Return type:

	WatchlistBuilder

	
set_tags_enabled(flag)

	Sets whether tags will be enabled on the new watchlist.

	Parameters:

	flag (bool) – True to enable tags, False to disable them. Default is True.

	Returns:

	This object.

	Return type:

	WatchlistBuilder

	
add_report_ids(report_ids)

	Adds new report IDs to the watchlist.

	Parameters:

	report_ids (list[str]) – List of report IDs to be added to the watchlist.

	
add_reports(reports)

	Adds new reports to the watchlist.

	Parameters:

	reports (list[Report]) – List of reports to be added to the watchlist.

	
property classifier_

	Returns the classifier key and value, if any, for this watchlist.

	Returns:

	Watchlist’s classifier key and value.
None: If there is no classifier key and value.

	Return type:

	tuple(str, str)

	
classmethod create(cb, name)

	Starts creating a new Watchlist by returning a WatchlistBuilder that can be used to set attributes.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	name (str) – Name for the new watchlist.

	Returns:

	The builder for the new watchlist. Call build() to create the actual Watchlist.

	Return type:

	WatchlistBuilder

	
classmethod create_from_feed(feed, name=None, description=None, enable_alerts=False, enable_tags=True)

	Creates a new Watchlist that encapsulates a Feed.

	Parameters:

	
	feed (Feed) – The feed to be encapsulated by this Watchlist.

	name (str) – Name for the new watchlist. The default is to use the Feed name.

	description (str) – Description for the new watchlist. The default is to use the Feed summary.

	enable_alerts (bool) –

	enable_tags (bool) –

	Returns:

	A new Watchlist object, which must be saved to the server.

	Return type:

	Watchlist

	
delete()

	Deletes this watchlist from the Enterprise EDR server.

	Raises:

	InvalidObjectError – If id is missing.

	
disable_alerts()

	Disable alerts for this watchlist.

	Raises:

	InvalidObjectError – If id is missing.

	
disable_tags()

	Disable tagging for this watchlist.

	Raises:

	InvalidObjectError – if id is missing.

	
enable_alerts()

	Enable alerts for this watchlist. Alerts are not retroactive.

	Raises:

	InvalidObjectError – If id is missing.

	
enable_tags()

	Enable tagging for this watchlist.

	Raises:

	InvalidObjectError – If id is missing.

	
property feed

	Returns the Feed linked to this Watchlist, if there is one.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
refresh()

	Reload this object from the server.

	
property reports

	Returns a list of Report objects associated with this watchlist.

	Returns:

	List of Reports associated with the watchlist.

	Return type:

	Reports ([Report])

Note

If this Watchlist is a classifier (i.e. feed-linked) Watchlist,
reports will be empty. To get the reports associated with the linked
Feed, use feed like:

>>> for report in watchlist.feed.reports:
... print(report.title)

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Saves this watchlist on the Enterprise EDR server.

	Returns:

	The saved Watchlist.

	Return type:

	Watchlist (Watchlist)

	Raises:

	InvalidObjectError – If Watchlist.validate() fails.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
update(**kwargs)

	Updates this watchlist with the given arguments.

	Parameters:

	**kwargs (dict(str, str)) – The fields to update.

	Raises:

	
	InvalidObjectError – If id is missing or Watchlist.validate() fails.

	ApiError – If report_ids is given and is empty.

Example

>>> watchlist.update(name="New Name")

	
validate()

	Checks to ensure this watchlist contains valid data.

	Raises:

	InvalidObjectError – If the watchlist contains invalid data.

	
class WatchlistQuery(doc_class, cb)

	Bases: SimpleQuery

Represents the logic for a Watchlist query.

>>> cb.select(Watchlist)

Initialize the WatchlistQuery object.

	Parameters:

	
	doc_class (class) – The class of the model this query returns.

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(new_query)

	Add an additional “where” clause to this query.

	Parameters:

	new_query (object) – The additional “where” clause, as a string or solrq.Q object.

	Returns:

	A new query with the extra “where” clause specified.

	Return type:

	SimpleQuery

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
property results

	Return a list of all Watchlist objects.

	
sort(new_sort)

	Set the sorting for this query.

	Parameters:

	new_sort (object) – The new sort criteria for this query.

	Returns:

	A new query with the sort parameter specified.

	Return type:

	SimpleQuery

	
where(new_query)

	Add a “where” clause to this query.

	Parameters:

	new_query (object) – The “where” clause, as a string or solrq.Q object.

	Returns:

	A new query with the “where” clause specified.

	Return type:

	SimpleQuery

	
log = <Logger cbc_sdk.enterprise_edr.threat_intelligence (WARNING)>

	Models

UBS Module

Model Classes for Enterprise Endpoint Detection and Response

	
class Binary(cb, model_unique_id)

	Bases: UnrefreshableModel

Represents a retrievable binary.

	Parameters:

	
	sha256 – The SHA-256 hash of the file

	md5 – The MD5 hash of the file

	file_available – If true, the file is available for download

	available_file_size – The size of the file available for download

	file_size – The size of the actual file (represented by the hash)

	os_type – The OS that this file is designed for

	architecture – The set of architectures that this file was compiled for

	lang_id – The Language ID value for the Windows VERSIONINFO resource

	charset_id – The Character set ID value for the Windows VERSIONINFO resource

	internal_name – The internal name from FileVersionInformation

	product_name – The product name from FileVersionInformation

	company_name – The company name from FileVersionInformation

	trademark – The trademark from FileVersionInformation

	file_description – The file description from FileVersionInformation

	file_version – The file version from FileVersionInformation

	comments – Comments from FileVersionInformation

	original_filename – The original filename from FileVersionInformation

	product_description – The product description from FileVersionInformation

	product_version – The product version from FileVersionInformation

	private_build – The private build from FileVersionInformation

	special_build – The special build from FileVersionInformation

Initialize the Binary object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (str) – The SHA-256 of the binary being retrieved.

	
class Summary(cb, model_unique_id)

	Bases: UnrefreshableModel

Represents a summary of organization-specific information for a retrievable binary.

Initialize the Summary object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (str) – The SHA-256 of the binary being retrieved.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
download_url(expiration_seconds=3600)

	Returns a URL that can be used to download the file for this binary. Returns None if no download found.

	Parameters:

	expiration_seconds (int) – How long the download should be valid for.

	Returns:

	A pre-signed AWS download URL.
None: If no download is found.

	Return type:

	URL (str)

	Raises:

	InvalidObjectError – If the URL retrieval should be retried.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
property summary

	Returns organization-specific information about this binary.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class Downloads(cb, shas, expiration_seconds=3600)

	Bases: UnrefreshableModel

Represents download information for a list of process hashes.

Initialize the Downloads object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	shas (list) – A list of SHA hash values for binaries.

	expiration_seconds (int) – Number of seconds until this request expires.

	
class FoundItem(cb, item)

	Bases: UnrefreshableModel

Represents the download URL and process hash for a successfully located binary.

Initialize the FoundItem object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	item (dict) – The values for a successfully-retrieved item.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
property found

	Returns a list of Downloads.FoundItem, one for each binary found in the binary store.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

Platform Package

Base Module

Model and Query Classes for Platform

	
class PlatformModel(cb, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: NewBaseModel

Represents the base of all Platform API model classes.

Initialize the PlatformModel object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (Any) – The unique ID for this particular instance of the model object.

	initial_data (dict) – The data to use when initializing the model object.

	force_init (bool) – True to force object initialization.

	full_doc (bool) – True to mark the object as fully initialized.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
log = <Logger cbc_sdk.platform.base (WARNING)>

	Platform Models

Submodules

Alerts Module

The model and query classes for supporting alerts and alert workflows.

Alerts indicate suspicious behavior and known threats in the monitored environment. They should be regularly
reviewed to determine whether action must be taken or policies should be modified. The Carbon Black Cloud Python
SDK may be used to retrieve alerts, as well as manage the workflow by modifying alert status or closing alerts.

The Carbon Black Cloud Python SDK currently implements the Alerts v7 API, as documented on
the Developer Network [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alerts-api/].
It works with any Carbon Black Cloud product, although certain alert types are only generated by specific products.

Typical usage example:

assume "cb" is an instance of CBCloudAPI
query = cb.select(Alert).add_criteria("device_os", ["WINDOWS"]).set_minimum_severity(3)
query.set_time_range(range="-1d").set_rows(1000).add_exclusions("type", ["WATCHLIST"])
for alert in query:
 print(f"Alert ID {alert.id} with severity {alert.severity} at {alert.detection_timestamp}")

	
class Alert(cb, model_unique_id, initial_data=None)

	Bases: PlatformModel

Represents a basic alert within the Carbon Black Cloud.

Alert objects are typically located through a search (using AlertSearchQuery) before they can be
operated on.

The complete list of alert fields is too large to be reproduced here; please see the list of available fields
for each alert type on the Developer Network [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alert-search-fields].

Initialize the Alert object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
class Note(cb, alert, model_unique_id, threat_note=False, initial_data=None)

	Bases: PlatformModel

Represents a note placed on an alert.

	Parameters:

	
	author – User who created the note

	create_timestamp – Time the note was created

	last_update_timestamp – Time the note was created

	id – Unique ID for this note

	note – Note contents

	parent_id – ID for this note of this notes parent if is a thread

Initialize the Note object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	alert (Alert) – The alert where the note is saved.

	model_unique_id (str) – ID of the note represented.

	threat_note (bool) – True if the note is a threat note, False if the note is an alert note.``

	initial_data (dict) – Initial data used to populate the note.

	
delete()

	Deletes a note from an alert.

	Required Permissions:
	org.alerts.notes (DELETE)

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
add_threat_tags(tags)

	Adds tags to the threat.

	Required Permissions:
	org.alerts.tags (CREATE)

	Parameters:

	tags (list[str]) – List of tags to add to the threat.

	Raises:

	ApiError – If tags is not a list of strings.

	Returns:

	The list of current tags.

	Return type:

	list[str]

	
close(closure_reason=None, determination=None, note=None)

	Closes this alert.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”, “RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”, “FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.close("RESOLVED", "FALSE_POSITIVE", "Normal behavior")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
create_note(note, threat_note=False)

	Creates a new note for this alert.

	Required Permissions:
	org.alerts.notes (CREATE)

	Parameters:

	
	note (str) – Note content to add.

	threat_note (bool) – True to add this alert to the treat, False to add this note to the alert.

	Returns:

	The newly-added note.

	Return type:

	Note

	
delete_threat_tag(tag)

	Delete a threat tag.

	Required Permissions:
	org.alerts.tags (DELETE)

	Parameters:

	tag (str) – The tag to delete.

	Returns:

	The list of current tags.

	Return type:

	(list[str])

	
deobfuscate_cmdline()

	Deobfuscates the command line of the process pointed to by the alert and returns the deobfuscated result.

	Required Permissions:
	script.deobfuscation (EXECUTE)

	Returns:

	
	A dict containing information about the obfuscated command line, including the
	deobfuscated result.

	Return type:

	dict

	
dismiss_threat(remediation=None, comment=None)

	Dismisses all future alerts assigned to the threat_id.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to dismiss all past and current open alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).close(...)

	
get(item, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	item (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_history(threat=False)

	Get the actions taken on an Alert such as ``Note``s added and workflow state changes.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	threat (bool) – If True, the threat history is returned; if False, the alert history is returned.

	Returns:

	The ``dict``s of each determination, note or workflow change.

	Return type:

	list

	
get_observations(timeout=0)

	Requests observations that are associated with the Alert.

Uses Observation.bulk_get_details.

	Required Permissions:
	org.search.events (READ, CREATE)

	Returns:

	Observations associated with the Alert.

	Return type:

	list[Observation]

	
get_process(async_mode=False)

	Gets the process corresponding with the alert.

	Required Permissions:
	org.search.events (CREATE. READ)

	Parameters:

	async_mode – True to request process in an asynchronous manner.

	Returns:

	The process corresponding to the alert.

	Return type:

	Process

Note

	When using asynchronous mode, this method returns a Python Future.
You can call result() on the Future object to wait for completion and get the results.

	
get_threat_tags()

	Gets the threat’s tags.

	Required Permissions:
	org.alerts.tags (READ)

	Returns:

	The list of current tags

	Return type:

	list[str]

	
notes_(threat_note=False)

	Retrieves all notes for this alert.

	Required Permissions:
	org.alerts.notes (READ)

	Parameters:

	threat_note (bool) – True to retrieve threat notes, False to retrieve alert notes.

	Returns:

	The list of notes for the alert.

	Return type:

	list[Note]

	
refresh()

	Reload this object from the server.

	
static search_suggestions(cb, query)

	Returns suggestions for keys and field values that can be used in a search.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	query (str) – A search query to use.

	Returns:

	A list of search suggestions expressed as dict objects.

	Return type:

	list

	Raises:

	ApiError – if cb is not instance of CBCloudAPI

	
to_json(version='v7')

	Return a json object of the response.

	Parameters:

	version (str) – version of json to return. Either v6 or v7. DEFAULT v7

	Returns:

	The returned attribute value.

	Return type:

	Any

	
update(status, closure_reason=None, determination=None, note=None)

	Update the Alert with optional closure_reason, determination, note, or status.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	status (str) – The status to set for this alert, either “OPEN”, “IN_PROGRESS”, or “CLOSED”.

	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”,
“RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”,
“FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.update("IN_PROGESS", "NO_REASON", "NONE", "Starting Investigation")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
update_threat(remediation=None, comment=None)

	Updates all future alerts assigned to the threat_id to the OPEN state.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to update all past and current alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).update(...)

	
property workflow_

	Returns the workflow associated with this alert.

	Returns:

	The workflow associated with this alert.

	Return type:

	dict

	
class AlertSearchQuery(doc_class, cb)

	Bases: BaseQuery, QueryBuilderSupportMixin, IterableQueryMixin, LegacyAlertSearchQueryCriterionMixin, CriteriaBuilderSupportMixin, ExclusionBuilderSupportMixin

Query object that is used to locate Alert objects.

The AlertSearchQuery is constructed via SDK functions like the select() method on CBCloudAPI.
The user would then add a query and/or criteria to it before iterating over the results.

Initialize the AlertSearchQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
add_exclusions(key, newlist)

	Add to the exclusions on this query with a custom exclusions key.

Will overwrite any existing exclusion for the specified key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).add_exclusions("type", ["WATCHLIST"])
>>> query = api.select(Alert).add_exclusions("type", "WATCHLIST")

	
add_time_criteria(key, **kwargs)

	Restricts the alerts that this query is performed on to the specified time range for a given key.

The time may either be specified as a start and end point or as a range.

	Parameters:

	
	key (str) – The key to use for criteria one of create_time, first_event_time, last_event_time,
backend_update_timestamp, or last_update_time

	**kwargs (dict) – Used to specify:

	start= for start time

	end= for end time

	range= for range

	excludes= to set this as an exclusion rather than criteria. Defaults to False.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

Examples

>>> query = api.select(Alert).
... add_time_criteria("detection_timestamp", start="2020-10-20T20:34:07Z", end="2020-10-30T20:34:07Z")
>>> second_query = api.select(Alert).add_time_criteria("detection_timestamp", range='-3d')
>>> third_query_legacy = api.select(Alert).set_time_range("create_time", range='-3d')
>>> exclusions_query = api.add_time_criteria("detection_timestamp", range="-2h", exclude=True)

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
close(closure_reason=None, determination=None, note=None)

	Close all alerts matching the given query. The alerts will be left in a CLOSED state after this request.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”, “RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”, “FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the bulk workflow action.

	Return type:

	Job

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the Future object
to wait for completion and get the results.

Example

>>> alert_query = cb.select(Alert).add_criteria("threat_id", ["19261158DBBF00775959F8AA7F7551A1"])
>>> job = alert_query.close("RESOLVED", "FALSE_POSITIVE", "Normal behavior")
>>> completed_job = job.await_completion().result()

	
facets(fieldlist, max_rows=0)

	Return information about the facets for this alert by search, using the defined criteria.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	
	fieldlist (list) – List of facet field names.

	max_rows (int) – The maximum number of rows to return. 0 means return all rows.

	Returns:

	A list of facet information specified as dicts.
error: invalid enum

	Return type:

	list

	Raises:

	
	FunctionalityDecommissioned – If the requested attribute is no longer available.

	ApiError – If the facet field is not valid

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_alert_ids(alert_ids)

	Restricts the alerts that this query is performed on to the specified alert IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	alert_ids (list) – List of string alert IDs.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_alert_notes_present(is_present, exclude=False)

	Restricts the alerts that this query is performed on to those with or without notes.

	Parameters:

	
	is_present (bool) – If true, returns alerts that have a note attached

	exclude (bool) – If true, will set is_present in the exclusions. Otherwise adds to criteria

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_blocked_threat_categories(categories)

	The field blocked_threat_category was deprecated and not included in v7. This method has been removed.

See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

Args:
categories (list): List of threat categories to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_categories(categories)

	The field categories was deprecated and not included in v7. This method has been removed.

In Alerts v7, only records with the type THREAT are returned.
Records that in v6 had the category MONITORED (Observed) are now Observations
See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

	Parameters:

	categories (list) – List of categories to be restricted to.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_cluster_names(names)

	Restricts the alerts that this query is performed on to the specified Kubernetes cluster names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of Kubernetes cluster names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_create_time(*args, **kwargs)

	Restricts the alerts that this query is performed on to the specified creation time.

The time may either be specified as a start and end point or as a range.
In SDK 1.5.0 to align with Alerts v7 API, create_time is set as time_range outside of criteria.

	Deprecated:
	Use add_time_criteria(field_name, start, end, range) instead.

	Parameters:

	
	*args (list) – Not used.

	**kwargs (dict) – Used to specify start= for start time, end= for end time, and range= for range.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_ids(device_ids)

	Restricts the alerts that this query is performed on to the specified device IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	device_ids (list) – List of integer device IDs.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_locations(locations)

	Restricts the alerts that this query is performed on to the specified device locations.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	locations (list) – List of device locations to look for. Valid values are “ONSITE”, “OFFSITE”,
and “UNKNOWN”.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_device_names(device_names)

	Restricts the alerts that this query is performed on to the specified device names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	device_names (list) – List of string device names.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_os(device_os)

	Restricts the alerts that this query is performed on to the specified device operating systems.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	device_os (list) – List of string operating systems. Valid values are “WINDOWS”, “ANDROID”,
“MAC”, “IOS”, “LINUX”, and “OTHER.”

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_os_versions(device_os_versions)

	Restricts the alerts that this query is performed on to the specified device operating system versions.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	device_os_versions (list) – List of string operating system versions.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_username(users)

	Restricts the alerts that this query is performed on to the specified user names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	users (list) – List of string user names.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_egress_group_ids(ids)

	Restricts the alerts that this query is performed on to the specified egress group IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of egress group IDs to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_egress_group_names(names)

	Restricts the alerts that this query is performed on to the specified egress group names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of egress group names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_external_device_friendly_names(names)

	Restricts the alerts that this query is performed on to the specified external device friendly names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of external device friendly names to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_external_device_ids(ids)

	Restricts the alerts that this query is performed on to the specified external device IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of external device IDs to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_group_by(field)

	Converts the AlertSearchQuery to a GroupAlertSearchQuery grouped by the argument.

	Parameters:

	field (string) – The field to group by, defaults to “threat_id.”

	Returns:

	New query instance.

	Return type:

	GroupedAlertSearchQuery

Note

Does not preserve sort criterion

	
set_group_results(do_group)

	The field group_results was deprecated and not included in v7. This method has been removed.

It previously specified whether to group the results of the query.
Use the Grouped Alerts Operations [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alerts-api/]
#grouped-alerts-operations) instead.
See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

	Parameters:

	do_group (bool) – True to group the results, False to not do so.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_ip_reputations(reputations)

	Restricts the alerts that this query is performed on to the specified IP reputation values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	reputations (list) – List of IP reputation values to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_kill_chain_statuses(statuses)

	The field kill_chain_status was deprecated and not included in v7. This method has been removed.

See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

Args:
statuses (list): List of kill chain statuses to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_legacy_alert_ids(alert_ids)

	Restricts the alerts that this query is performed on to the specified legacy alert IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	alert_ids (list) – List of string legacy alert IDs.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_minimum_severity(severity)

	Restricts the alerts that this query is performed on to the specified minimum severity level.

	Parameters:

	severity (int) – The minimum severity level for alerts.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_namespaces(namespaces)

	Restricts the alerts that this query is performed on to the specified Kubernetes namespaces.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	namespaces (list) – List of Kubernetes namespaces to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_not_blocked_threat_categories(categories)

	The field not_blocked_threat_category was deprecated and not included in v7. This method has been removed.

See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

Args:
categories (list): List of threat categories to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_policy_applied(applied_statuses)

	Restricts the alerts that this query is performed on to the specified policy status values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	applied_statuses (list) – List of status values to look for. Valid values are “APPLIED” and “NOT_APPLIED”.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_policy_ids(policy_ids)

	Restricts the alerts that this query is performed on to the specified policy IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	policy_ids (list) – List of integer policy IDs.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_policy_names(policy_names)

	Restricts the alerts that this query is performed on to the specified policy names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	policy_names (list) – List of string policy names.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_ports(ports)

	Restricts the alerts that this query is performed on to the specified netconn_local_ports.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

Note that in SDK 1.5.0, to align with Alerts API v7, the search field was updated from
port to netconn_local_port. It is possible to search on either netconn_local_port
or netconn_remote_port using the `add_criteria(fieldname, [field values]) method.

	Parameters:

	ports (list) – List of netconn_local_ports to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_process_names(process_names)

	Restricts the alerts that this query is performed on to the specified process names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	process_names (list) – List of string process names.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_process_sha256(shas)

	Restricts the alerts that this query is performed on to the specified process SHA-256 hash values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	shas (list) – List of string process SHA-256 hash values.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_product_ids(ids)

	Restricts the alerts that this query is performed on to the specified product IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of product IDs to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_product_names(names)

	Restricts the alerts that this query is performed on to the specified product names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of product names to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_protocols(protocols)

	Restricts the alerts that this query is performed on to the specified protocols.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	protocols (list) – List of protocols to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_reason_code(reason)

	Restricts the alerts that this query is performed on to the specified reason codes (enum values).

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	reason (list) – List of string reason codes to look for.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_remote_domains(domains)

	Restricts the alerts that this query is performed on to the specified remote domains.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	domains (list) – List of remote domains to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_remote_ips(addrs)

	Restricts the alerts that this query is performed on to the specified remote IP addresses.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	addrs (list) – List of remote IP addresses to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_remote_is_private(is_private, exclude=False)

	Restricts the alerts that this query is performed on based on matching the remote_is_private field.

This field is only present on CONTAINER_RUNTIME alerts and so filtering will be ignored on other alert types.

	Parameters:

	
	is_private (boolean) – Whether the remote information is private: true or false

	exclude (bool) – If true, will set is_present in the exclusions. Otherwise adds to criteria

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_replica_ids(ids)

	Restricts the alerts that this query is performed on to the specified pod names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of pod names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_reputations(reps)

	Restricts the alerts that this query is performed on to the specified reputation values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	reps (list) – List of string reputation values. Valid values are “KNOWN_MALWARE”, “SUSPECT_MALWARE”,
“PUP”, “NOT_LISTED”, “ADAPTIVE_WHITE_LIST”, “COMMON_WHITE_LIST”, “TRUSTED_WHITE_LIST”,
and “COMPANY_BLACK_LIST”.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_rows(rows)

	Sets the ‘rows’ query body parameter, determining how many rows of results to request.

	Parameters:

	rows (int) – How many rows to request.

	
set_rule_ids(ids)

	Restricts the alerts that this query is performed on to the specified Kubernetes policy rule IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

In SDK prior to 1.5.0 this was only supported for Container Runtime Alerts so will
convert to k8s_rule_id in criteria. In SDK 1.5.0 and later, aligned to Alert v7 API, use add_criteria()
should be used for both k8s_rule_id and for other alert types, rule_id.

	Parameters:

	ids (list) – List of Kubernetes policy rule IDs to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_rule_names(names)

	Restricts the alerts that this query is performed on to the specified Kubernetes policy rule names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of Kubernetes policy rule names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_run_states(states)

	Restricts the alerts that this query is performed on to the specified run states.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	states (list) – List of run states to look for. Valid values are “DID_NOT_RUN”, “RAN”, and “UNKNOWN”.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_sensor_actions(actions)

	Restricts the alerts that this query is performed on to the specified sensor actions.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	actions (list) – List of sensor actions to look for. Valid values are “POLICY_NOT_APPLIED”, “ALLOW”,
“ALLOW_AND_LOG”, “TERMINATE”, and “DENY”.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_serial_numbers(serial_numbers)

	Restricts the alerts that this query is performed on to the specified serial numbers.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	serial_numbers (list) – List of serial numbers to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_tags(tags)

	Restricts the alerts that this query is performed on to the specified tag values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	tags (list) – List of string tag values.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_target_priorities(priorities)

	Restricts the alerts that this query is performed on to the specified target priority values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	priorities (list) – List of string target priority values. Valid values are “LOW”, “MEDIUM”,
“HIGH”, and “MISSION_CRITICAL”.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_threat_cause_vectors(vectors)

	The field threat_cause_vector was deprecated and not included in v7. This method has been removed.

See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

	Parameters:

	vectors (list) – List of threat cause vectors to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_threat_ids(threats)

	Restricts the alerts that this query is performed on to the specified threat ID values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	threats (list) – List of string threat ID values.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_threat_notes_present(is_present, exclude=False)

	Restricts the alerts that this query is performed on to those with or without threat_notes.

	Parameters:

	
	is_present (bool) – If true, returns alerts that have a note attached to the threat_id

	exclude (bool) – If true, will set is_present in the exclusions. Otherwise adds to criteria

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_time_range(*args, **kwargs)

	For v7 Alerts:

Sets the ‘time_range’ query body parameter, determining a time range based on ‘backend_timestamp’.

	Parameters:

	
	*args – not used

	**kwargs (dict) – Used to specify the period to search within

	start= either timestamp ISO 8601 strings or datetime objects

	end= either timestamp ISO 8601 strings or datetime objects

	range= the period on which to execute the result search, ending on the current time.

Range must be in the format “-<quantity><units>” where quantity is an integer, and units is one of:

	M: month(s)

	w: week(s)

	d: day(s)

	h: hour(s)

	m: minute(s)

	s: second(s)

For v6 Alerts (backwards compatibility):

Restricts the alerts that this query is performed on to the specified time range for a given key. Will set
the ‘time_range’ as in the v7 usage if key is create_time and set a criteria value for any other valid key.

	Parameters:

	
	key (str) – The key to use for criteria one of create_time, first_event_time, last_event_time
or last_update_time. i.e. legacy field names from the Alert v6 API.

	**kwargs (dict) – Used to specify the period to search within

	start= either timestamp ISO 8601 strings or datetime objects

	end= either timestamp ISO 8601 strings or datetime objects

	range= the period on which to execute the result search, ending on the current time.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

Examples

>>> query_specify_start_and_end = api.select(Alert).
... set_time_range(start="2020-10-20T20:34:07Z", end="2020-10-30T20:34:07Z")
>>> query_specify_range = api.select(Alert).set_time_range(range='-3d')
>>> query_legacy_use = api.select(Alert).set_time_range("create_time", range='-3d')

	
set_types(alerttypes)

	Restricts the alerts that this query is performed on to the specified alert type values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	alerttypes (list) – List of string alert type values. Valid values are “CB_ANALYTICS”,
“WATCHLIST”, “DEVICE_CONTROL”, and “CONTAINER_RUNTIME”. In SDK 1.5.0,
to align with Alert API v7, more alert types are available but the add_criteria
method must be used.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

Note: - When filtering by fields that take a list parameter, an empty list will be treated as a wildcard and
match everything.

	
set_vendor_ids(ids)

	Restricts the alerts that this query is performed on to the specified vendor IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of vendor IDs to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_vendor_names(names)

	Restricts the alerts that this query is performed on to the specified vendor names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of vendor names to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_watchlist_ids(ids)

	Restricts the alerts that this query is performed on to the specified watchlist ID values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of string watchlist ID values.

	Returns:

	This instance.

	Return type:

	WatchlistAlertSearchQuery

	
set_watchlist_names(names)

	Restricts the alerts that this query is performed on to the specified watchlist name values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of string watchlist name values.

	Returns:

	This instance.

	Return type:

	WatchlistAlertSearchQuery

	
set_workflows(workflow_vals)

	Restricts the alerts that this query is performed on to the specified workflow status values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	workflow_vals (list) – List of string alert type values. Valid values are “OPEN” and “DISMISSED”.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_workload_ids(ids)

	The field workload_id was deprecated and not included in v7. This method has been removed.

Use workload_name instead. See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

	Parameters:

	ids (list) – List of workload IDs to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_workload_kinds(kinds)

	Restricts the alerts that this query is performed on to the specified workload types.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	kinds (list) – List of workload types to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_workload_names(names)

	Restricts the alerts that this query is performed on to the specified workload names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of workload names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(Alert).sort_by("name")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
update(status, closure_reason=None, determination=None, note=None)

	Update all alerts matching the given query.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	status (str) – The status to set for this alert, either “OPEN”, “IN_PROGRESS”, or “CLOSED”.

	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”, “RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”, “FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the bulk workflow action.

	Return type:

	Job

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the Future object
to wait for completion and get the results.

Example

>>> alert_query = cb.select(Alert).add_criteria("threat_id", ["19261158DBBF00775959F8AA7F7551A1"])
>>> job = alert_query.update("IN_PROGESS", "NO_REASON", "NONE", "Starting Investigation")
>>> completed_job = job.await_completion().result()

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
update_exclusions(key, newlist)

	Update the exclusion on this query with a custom exclusion key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (list) – List of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).update_exclusions("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
class CBAnalyticsAlert(cb, model_unique_id, initial_data=None)

	Bases: Alert

A specialization of the base Alert class that represents a CB Analytics alert.

The complete list of alert fields is too large to be reproduced here; please see the list of available fields
for each alert type on the Developer Network [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alert-search-fields].

Initialize the Alert object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
class Note(cb, alert, model_unique_id, threat_note=False, initial_data=None)

	Bases: PlatformModel

Represents a note placed on an alert.

	Parameters:

	
	author – User who created the note

	create_timestamp – Time the note was created

	last_update_timestamp – Time the note was created

	id – Unique ID for this note

	note – Note contents

	parent_id – ID for this note of this notes parent if is a thread

Initialize the Note object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	alert (Alert) – The alert where the note is saved.

	model_unique_id (str) – ID of the note represented.

	threat_note (bool) – True if the note is a threat note, False if the note is an alert note.``

	initial_data (dict) – Initial data used to populate the note.

	
delete()

	Deletes a note from an alert.

	Required Permissions:
	org.alerts.notes (DELETE)

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
add_threat_tags(tags)

	Adds tags to the threat.

	Required Permissions:
	org.alerts.tags (CREATE)

	Parameters:

	tags (list[str]) – List of tags to add to the threat.

	Raises:

	ApiError – If tags is not a list of strings.

	Returns:

	The list of current tags.

	Return type:

	list[str]

	
close(closure_reason=None, determination=None, note=None)

	Closes this alert.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”, “RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”, “FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.close("RESOLVED", "FALSE_POSITIVE", "Normal behavior")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
create_note(note, threat_note=False)

	Creates a new note for this alert.

	Required Permissions:
	org.alerts.notes (CREATE)

	Parameters:

	
	note (str) – Note content to add.

	threat_note (bool) – True to add this alert to the treat, False to add this note to the alert.

	Returns:

	The newly-added note.

	Return type:

	Note

	
delete_threat_tag(tag)

	Delete a threat tag.

	Required Permissions:
	org.alerts.tags (DELETE)

	Parameters:

	tag (str) – The tag to delete.

	Returns:

	The list of current tags.

	Return type:

	(list[str])

	
deobfuscate_cmdline()

	Deobfuscates the command line of the process pointed to by the alert and returns the deobfuscated result.

	Required Permissions:
	script.deobfuscation (EXECUTE)

	Returns:

	
	A dict containing information about the obfuscated command line, including the
	deobfuscated result.

	Return type:

	dict

	
dismiss_threat(remediation=None, comment=None)

	Dismisses all future alerts assigned to the threat_id.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to dismiss all past and current open alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).close(...)

	
get(item, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	item (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_events(timeout=0, async_mode=False)

	Removed in CBC SDK 1.5.0 because Enriched Events are deprecated.

Previously requested enriched events detailed results. Update to use get_observations() instead.
See Developer Network Observations Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/observations-migration]
for more details.

	Parameters:

	
	timeout (int) – Event details request timeout in milliseconds.

	async_mode (bool) – True to request details in an asynchronous manner.

	Returns:

	EnrichedEvents matching the legacy_alert_id

	Return type:

	list

Note

	When using asynchronous mode, this method returns a python future.
You can call result() on the future object to wait for completion and get the results.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
get_history(threat=False)

	Get the actions taken on an Alert such as ``Note``s added and workflow state changes.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	threat (bool) – If True, the threat history is returned; if False, the alert history is returned.

	Returns:

	The ``dict``s of each determination, note or workflow change.

	Return type:

	list

	
get_observations(timeout=0)

	Requests observations that are associated with the Alert.

Uses Observation.bulk_get_details.

	Required Permissions:
	org.search.events (READ, CREATE)

	Returns:

	Observations associated with the Alert.

	Return type:

	list[Observation]

	
get_process(async_mode=False)

	Gets the process corresponding with the alert.

	Required Permissions:
	org.search.events (CREATE. READ)

	Parameters:

	async_mode – True to request process in an asynchronous manner.

	Returns:

	The process corresponding to the alert.

	Return type:

	Process

Note

	When using asynchronous mode, this method returns a Python Future.
You can call result() on the Future object to wait for completion and get the results.

	
get_threat_tags()

	Gets the threat’s tags.

	Required Permissions:
	org.alerts.tags (READ)

	Returns:

	The list of current tags

	Return type:

	list[str]

	
notes_(threat_note=False)

	Retrieves all notes for this alert.

	Required Permissions:
	org.alerts.notes (READ)

	Parameters:

	threat_note (bool) – True to retrieve threat notes, False to retrieve alert notes.

	Returns:

	The list of notes for the alert.

	Return type:

	list[Note]

	
refresh()

	Reload this object from the server.

	
static search_suggestions(cb, query)

	Returns suggestions for keys and field values that can be used in a search.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	query (str) – A search query to use.

	Returns:

	A list of search suggestions expressed as dict objects.

	Return type:

	list

	Raises:

	ApiError – if cb is not instance of CBCloudAPI

	
to_json(version='v7')

	Return a json object of the response.

	Parameters:

	version (str) – version of json to return. Either v6 or v7. DEFAULT v7

	Returns:

	The returned attribute value.

	Return type:

	Any

	
update(status, closure_reason=None, determination=None, note=None)

	Update the Alert with optional closure_reason, determination, note, or status.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	status (str) – The status to set for this alert, either “OPEN”, “IN_PROGRESS”, or “CLOSED”.

	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”,
“RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”,
“FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.update("IN_PROGESS", "NO_REASON", "NONE", "Starting Investigation")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
update_threat(remediation=None, comment=None)

	Updates all future alerts assigned to the threat_id to the OPEN state.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to update all past and current alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).update(...)

	
property workflow_

	Returns the workflow associated with this alert.

	Returns:

	The workflow associated with this alert.

	Return type:

	dict

	
class ContainerRuntimeAlert(cb, model_unique_id, initial_data=None)

	Bases: Alert

A specialization of the base Alert class that represents a Container Runtime alert.

The complete list of alert fields is too large to be reproduced here; please see the list of available fields
for each alert type on the Developer Network [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alert-search-fields].

Initialize the Alert object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
class Note(cb, alert, model_unique_id, threat_note=False, initial_data=None)

	Bases: PlatformModel

Represents a note placed on an alert.

	Parameters:

	
	author – User who created the note

	create_timestamp – Time the note was created

	last_update_timestamp – Time the note was created

	id – Unique ID for this note

	note – Note contents

	parent_id – ID for this note of this notes parent if is a thread

Initialize the Note object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	alert (Alert) – The alert where the note is saved.

	model_unique_id (str) – ID of the note represented.

	threat_note (bool) – True if the note is a threat note, False if the note is an alert note.``

	initial_data (dict) – Initial data used to populate the note.

	
delete()

	Deletes a note from an alert.

	Required Permissions:
	org.alerts.notes (DELETE)

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
add_threat_tags(tags)

	Adds tags to the threat.

	Required Permissions:
	org.alerts.tags (CREATE)

	Parameters:

	tags (list[str]) – List of tags to add to the threat.

	Raises:

	ApiError – If tags is not a list of strings.

	Returns:

	The list of current tags.

	Return type:

	list[str]

	
close(closure_reason=None, determination=None, note=None)

	Closes this alert.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”, “RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”, “FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.close("RESOLVED", "FALSE_POSITIVE", "Normal behavior")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
create_note(note, threat_note=False)

	Creates a new note for this alert.

	Required Permissions:
	org.alerts.notes (CREATE)

	Parameters:

	
	note (str) – Note content to add.

	threat_note (bool) – True to add this alert to the treat, False to add this note to the alert.

	Returns:

	The newly-added note.

	Return type:

	Note

	
delete_threat_tag(tag)

	Delete a threat tag.

	Required Permissions:
	org.alerts.tags (DELETE)

	Parameters:

	tag (str) – The tag to delete.

	Returns:

	The list of current tags.

	Return type:

	(list[str])

	
deobfuscate_cmdline()

	Deobfuscates the command line of the process pointed to by the alert and returns the deobfuscated result.

	Required Permissions:
	script.deobfuscation (EXECUTE)

	Returns:

	
	A dict containing information about the obfuscated command line, including the
	deobfuscated result.

	Return type:

	dict

	
dismiss_threat(remediation=None, comment=None)

	Dismisses all future alerts assigned to the threat_id.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to dismiss all past and current open alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).close(...)

	
get(item, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	item (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_history(threat=False)

	Get the actions taken on an Alert such as ``Note``s added and workflow state changes.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	threat (bool) – If True, the threat history is returned; if False, the alert history is returned.

	Returns:

	The ``dict``s of each determination, note or workflow change.

	Return type:

	list

	
get_observations(timeout=0)

	Requests observations that are associated with the Alert.

Uses Observation.bulk_get_details.

	Required Permissions:
	org.search.events (READ, CREATE)

	Returns:

	Observations associated with the Alert.

	Return type:

	list[Observation]

	
get_process(async_mode=False)

	Gets the process corresponding with the alert.

	Required Permissions:
	org.search.events (CREATE. READ)

	Parameters:

	async_mode – True to request process in an asynchronous manner.

	Returns:

	The process corresponding to the alert.

	Return type:

	Process

Note

	When using asynchronous mode, this method returns a Python Future.
You can call result() on the Future object to wait for completion and get the results.

	
get_threat_tags()

	Gets the threat’s tags.

	Required Permissions:
	org.alerts.tags (READ)

	Returns:

	The list of current tags

	Return type:

	list[str]

	
notes_(threat_note=False)

	Retrieves all notes for this alert.

	Required Permissions:
	org.alerts.notes (READ)

	Parameters:

	threat_note (bool) – True to retrieve threat notes, False to retrieve alert notes.

	Returns:

	The list of notes for the alert.

	Return type:

	list[Note]

	
refresh()

	Reload this object from the server.

	
static search_suggestions(cb, query)

	Returns suggestions for keys and field values that can be used in a search.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	query (str) – A search query to use.

	Returns:

	A list of search suggestions expressed as dict objects.

	Return type:

	list

	Raises:

	ApiError – if cb is not instance of CBCloudAPI

	
to_json(version='v7')

	Return a json object of the response.

	Parameters:

	version (str) – version of json to return. Either v6 or v7. DEFAULT v7

	Returns:

	The returned attribute value.

	Return type:

	Any

	
update(status, closure_reason=None, determination=None, note=None)

	Update the Alert with optional closure_reason, determination, note, or status.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	status (str) – The status to set for this alert, either “OPEN”, “IN_PROGRESS”, or “CLOSED”.

	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”,
“RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”,
“FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.update("IN_PROGESS", "NO_REASON", "NONE", "Starting Investigation")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
update_threat(remediation=None, comment=None)

	Updates all future alerts assigned to the threat_id to the OPEN state.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to update all past and current alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).update(...)

	
property workflow_

	Returns the workflow associated with this alert.

	Returns:

	The workflow associated with this alert.

	Return type:

	dict

	
class DeviceControlAlert(cb, model_unique_id, initial_data=None)

	Bases: Alert

A specialization of the base Alert class that represents a Device Control alert.

The complete list of alert fields is too large to be reproduced here; please see the list of available fields
for each alert type on the Developer Network [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alert-search-fields].

Initialize the Alert object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
class Note(cb, alert, model_unique_id, threat_note=False, initial_data=None)

	Bases: PlatformModel

Represents a note placed on an alert.

	Parameters:

	
	author – User who created the note

	create_timestamp – Time the note was created

	last_update_timestamp – Time the note was created

	id – Unique ID for this note

	note – Note contents

	parent_id – ID for this note of this notes parent if is a thread

Initialize the Note object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	alert (Alert) – The alert where the note is saved.

	model_unique_id (str) – ID of the note represented.

	threat_note (bool) – True if the note is a threat note, False if the note is an alert note.``

	initial_data (dict) – Initial data used to populate the note.

	
delete()

	Deletes a note from an alert.

	Required Permissions:
	org.alerts.notes (DELETE)

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
add_threat_tags(tags)

	Adds tags to the threat.

	Required Permissions:
	org.alerts.tags (CREATE)

	Parameters:

	tags (list[str]) – List of tags to add to the threat.

	Raises:

	ApiError – If tags is not a list of strings.

	Returns:

	The list of current tags.

	Return type:

	list[str]

	
close(closure_reason=None, determination=None, note=None)

	Closes this alert.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”, “RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”, “FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.close("RESOLVED", "FALSE_POSITIVE", "Normal behavior")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
create_note(note, threat_note=False)

	Creates a new note for this alert.

	Required Permissions:
	org.alerts.notes (CREATE)

	Parameters:

	
	note (str) – Note content to add.

	threat_note (bool) – True to add this alert to the treat, False to add this note to the alert.

	Returns:

	The newly-added note.

	Return type:

	Note

	
delete_threat_tag(tag)

	Delete a threat tag.

	Required Permissions:
	org.alerts.tags (DELETE)

	Parameters:

	tag (str) – The tag to delete.

	Returns:

	The list of current tags.

	Return type:

	(list[str])

	
deobfuscate_cmdline()

	Deobfuscates the command line of the process pointed to by the alert and returns the deobfuscated result.

	Required Permissions:
	script.deobfuscation (EXECUTE)

	Returns:

	
	A dict containing information about the obfuscated command line, including the
	deobfuscated result.

	Return type:

	dict

	
dismiss_threat(remediation=None, comment=None)

	Dismisses all future alerts assigned to the threat_id.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to dismiss all past and current open alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).close(...)

	
get(item, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	item (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_history(threat=False)

	Get the actions taken on an Alert such as ``Note``s added and workflow state changes.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	threat (bool) – If True, the threat history is returned; if False, the alert history is returned.

	Returns:

	The ``dict``s of each determination, note or workflow change.

	Return type:

	list

	
get_observations(timeout=0)

	Requests observations that are associated with the Alert.

Uses Observation.bulk_get_details.

	Required Permissions:
	org.search.events (READ, CREATE)

	Returns:

	Observations associated with the Alert.

	Return type:

	list[Observation]

	
get_process(async_mode=False)

	Gets the process corresponding with the alert.

	Required Permissions:
	org.search.events (CREATE. READ)

	Parameters:

	async_mode – True to request process in an asynchronous manner.

	Returns:

	The process corresponding to the alert.

	Return type:

	Process

Note

	When using asynchronous mode, this method returns a Python Future.
You can call result() on the Future object to wait for completion and get the results.

	
get_threat_tags()

	Gets the threat’s tags.

	Required Permissions:
	org.alerts.tags (READ)

	Returns:

	The list of current tags

	Return type:

	list[str]

	
notes_(threat_note=False)

	Retrieves all notes for this alert.

	Required Permissions:
	org.alerts.notes (READ)

	Parameters:

	threat_note (bool) – True to retrieve threat notes, False to retrieve alert notes.

	Returns:

	The list of notes for the alert.

	Return type:

	list[Note]

	
refresh()

	Reload this object from the server.

	
static search_suggestions(cb, query)

	Returns suggestions for keys and field values that can be used in a search.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	query (str) – A search query to use.

	Returns:

	A list of search suggestions expressed as dict objects.

	Return type:

	list

	Raises:

	ApiError – if cb is not instance of CBCloudAPI

	
to_json(version='v7')

	Return a json object of the response.

	Parameters:

	version (str) – version of json to return. Either v6 or v7. DEFAULT v7

	Returns:

	The returned attribute value.

	Return type:

	Any

	
update(status, closure_reason=None, determination=None, note=None)

	Update the Alert with optional closure_reason, determination, note, or status.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	status (str) – The status to set for this alert, either “OPEN”, “IN_PROGRESS”, or “CLOSED”.

	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”,
“RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”,
“FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.update("IN_PROGESS", "NO_REASON", "NONE", "Starting Investigation")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
update_threat(remediation=None, comment=None)

	Updates all future alerts assigned to the threat_id to the OPEN state.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to update all past and current alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).update(...)

	
property workflow_

	Returns the workflow associated with this alert.

	Returns:

	The workflow associated with this alert.

	Return type:

	dict

	
class GroupedAlert(cb, model_unique_id, initial_data=None)

	Bases: PlatformModel

Represents alerts that have been grouped together based on a common characteristic.

This allows viewing of similar alerts across multiple endpoints.

	Parameters:

	
	count – Count of individual alerts that are a part of the group

	determination_values – Map of determination (TRUE_POSITIVE, FALSE_POSITIVE, NONE) to the number of individual alerts in the group with that determination. Determinations with no alerts are omitted.

	ml_classification_final_verdicts – Map of ML classification (ANOMALOUS, NOT_ANOMALOUS, NO_PREDICTION) to the number of individual alerts in the group with that classification. Classifications with no alerts are omitted.

	workflow_states – Map of workflow state (OPEN, IN_PROGRESS, CLOSED) to the number of individual alerts in the group in that state. States with no alerts are omitted.

	device_count – Count of unique devices where this alert can be found

	first_alert_timestamp – Timestamp of the first (oldest) alert in the group

	highest_severity – Highest severity score of all alerts in the group

	last_alert_timestamp – Timestamp of the last (newest) alert in the group

	most_recent_alert – The most recent alert in the group. Follows the Alerts Schema and returns an Alert object. Specific fields vary between alert instances

	policy_applied – APPLIED, when any of the alerts in the group had actions blocked by the sensor due to a policy. NOT_APPLIED otherwise.

	tags – List of tags that have been applied to the threat ID

	threat_notes_present – Whether there are threat-level notes available on this threat ID

	workload_count – Count of unique Kubernetes workloads where this alert can be found

Initialize the Grouped Alert object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_alert_search_query()

	Returns the Alert Search Query needed to pull all alerts for a given Group Alert.

	Returns:

	for all alerts associated with the calling group alert.

	Return type:

	AlertSearchQuery

Note

Does not preserve sort criterion

	
get_alerts()

	Returns the all alerts for a given Group Alert.

	Returns:

	alerts associated with the calling group alert.

	Return type:

	list

	
property most_recent_alert_

	Returns the most recent alert for a given group alert.

	Returns:

	the most recent alert in the Group Alert.

	Return type:

	Alert

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class GroupedAlertSearchQuery(*args, **kwargs)

	Bases: AlertSearchQuery

Query object that is used to locate Alert objects.

This query is constructed by using the select() method on CBCloudAPI to create an AlertSearchQuery,
then using that query’s set_group_by() method to specify grouping.

Initialize the GroupAlertSearchQuery.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
add_exclusions(key, newlist)

	Add to the exclusions on this query with a custom exclusions key.

Will overwrite any existing exclusion for the specified key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).add_exclusions("type", ["WATCHLIST"])
>>> query = api.select(Alert).add_exclusions("type", "WATCHLIST")

	
add_time_criteria(key, **kwargs)

	Restricts the alerts that this query is performed on to the specified time range for a given key.

The time may either be specified as a start and end point or as a range.

	Parameters:

	
	key (str) – The key to use for criteria one of create_time, first_event_time, last_event_time,
backend_update_timestamp, or last_update_time

	**kwargs (dict) – Used to specify:

	start= for start time

	end= for end time

	range= for range

	excludes= to set this as an exclusion rather than criteria. Defaults to False.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

Examples

>>> query = api.select(Alert).
... add_time_criteria("detection_timestamp", start="2020-10-20T20:34:07Z", end="2020-10-30T20:34:07Z")
>>> second_query = api.select(Alert).add_time_criteria("detection_timestamp", range='-3d')
>>> third_query_legacy = api.select(Alert).set_time_range("create_time", range='-3d')
>>> exclusions_query = api.add_time_criteria("detection_timestamp", range="-2h", exclude=True)

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
close(closure_reason=None, determination=None, note=None)

	Closing all alerts matching a grouped alert query is not implemented.

Note

	Closing all alerts in all groups returned by a GroupedAlertSearchQuery can be done by

getting the AlertSearchQuery and using close() on it as shown in the following example.

Example

>>> alert_query = grouped_alert_query.get_alert_search_query()
>>> alert_query.close(closure_reason, determination, note)

	
facets(fieldlist, max_rows=0, filter_values=False)

	Return information about the facets for this alert by search, using the defined criteria.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	
	fieldlist (list) – List of facet field names.

	max_rows (int) – The maximum number of rows to return. 0 means return all rows.

	filter_values (boolean) – A flag to indicate whether any filters on a term should be applied to facet
calculation. When False (default), a filter on the term is ignored while calculating facets.

	Returns:

	A list of facet information specified as ``dict``s.

	Return type:

	list

	Raises:

	
	FunctionalityDecommissioned – If the requested attribute is no longer available.

	ApiError – If the facet field is not valid

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
get_alert_search_query()

	Converts the GroupedAlertSearchQuery into a nongrouped AlertSearchQuery.

	Returns:

	New query instance.

	Return type:

	AlertSearchQuery

Note

Does not preserve sort criterion.

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_alert_ids(alert_ids)

	Restricts the alerts that this query is performed on to the specified alert IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	alert_ids (list) – List of string alert IDs.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_alert_notes_present(is_present, exclude=False)

	Restricts the alerts that this query is performed on to those with or without notes.

	Parameters:

	
	is_present (bool) – If true, returns alerts that have a note attached

	exclude (bool) – If true, will set is_present in the exclusions. Otherwise adds to criteria

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_blocked_threat_categories(categories)

	The field blocked_threat_category was deprecated and not included in v7. This method has been removed.

See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

Args:
categories (list): List of threat categories to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_categories(categories)

	The field categories was deprecated and not included in v7. This method has been removed.

In Alerts v7, only records with the type THREAT are returned.
Records that in v6 had the category MONITORED (Observed) are now Observations
See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

	Parameters:

	categories (list) – List of categories to be restricted to.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_cluster_names(names)

	Restricts the alerts that this query is performed on to the specified Kubernetes cluster names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of Kubernetes cluster names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_create_time(*args, **kwargs)

	Restricts the alerts that this query is performed on to the specified creation time.

The time may either be specified as a start and end point or as a range.
In SDK 1.5.0 to align with Alerts v7 API, create_time is set as time_range outside of criteria.

	Deprecated:
	Use add_time_criteria(field_name, start, end, range) instead.

	Parameters:

	
	*args (list) – Not used.

	**kwargs (dict) – Used to specify start= for start time, end= for end time, and range= for range.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_ids(device_ids)

	Restricts the alerts that this query is performed on to the specified device IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	device_ids (list) – List of integer device IDs.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_locations(locations)

	Restricts the alerts that this query is performed on to the specified device locations.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	locations (list) – List of device locations to look for. Valid values are “ONSITE”, “OFFSITE”,
and “UNKNOWN”.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_device_names(device_names)

	Restricts the alerts that this query is performed on to the specified device names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	device_names (list) – List of string device names.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_os(device_os)

	Restricts the alerts that this query is performed on to the specified device operating systems.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	device_os (list) – List of string operating systems. Valid values are “WINDOWS”, “ANDROID”,
“MAC”, “IOS”, “LINUX”, and “OTHER.”

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_os_versions(device_os_versions)

	Restricts the alerts that this query is performed on to the specified device operating system versions.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	device_os_versions (list) – List of string operating system versions.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_username(users)

	Restricts the alerts that this query is performed on to the specified user names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	users (list) – List of string user names.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_egress_group_ids(ids)

	Restricts the alerts that this query is performed on to the specified egress group IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of egress group IDs to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_egress_group_names(names)

	Restricts the alerts that this query is performed on to the specified egress group names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of egress group names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_external_device_friendly_names(names)

	Restricts the alerts that this query is performed on to the specified external device friendly names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of external device friendly names to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_external_device_ids(ids)

	Restricts the alerts that this query is performed on to the specified external device IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of external device IDs to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_group_by(field)

	Sets the ‘group_by’ query body parameter, determining which field to group the alerts by.

	Parameters:

	field (string) – The field to group by

	
set_group_results(do_group)

	The field group_results was deprecated and not included in v7. This method has been removed.

It previously specified whether to group the results of the query.
Use the Grouped Alerts Operations [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alerts-api/]
#grouped-alerts-operations) instead.
See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

	Parameters:

	do_group (bool) – True to group the results, False to not do so.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_ip_reputations(reputations)

	Restricts the alerts that this query is performed on to the specified IP reputation values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	reputations (list) – List of IP reputation values to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_kill_chain_statuses(statuses)

	The field kill_chain_status was deprecated and not included in v7. This method has been removed.

See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

Args:
statuses (list): List of kill chain statuses to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_legacy_alert_ids(alert_ids)

	Restricts the alerts that this query is performed on to the specified legacy alert IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	alert_ids (list) – List of string legacy alert IDs.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_minimum_severity(severity)

	Restricts the alerts that this query is performed on to the specified minimum severity level.

	Parameters:

	severity (int) – The minimum severity level for alerts.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_namespaces(namespaces)

	Restricts the alerts that this query is performed on to the specified Kubernetes namespaces.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	namespaces (list) – List of Kubernetes namespaces to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_not_blocked_threat_categories(categories)

	The field not_blocked_threat_category was deprecated and not included in v7. This method has been removed.

See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

Args:
categories (list): List of threat categories to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_policy_applied(applied_statuses)

	Restricts the alerts that this query is performed on to the specified policy status values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	applied_statuses (list) – List of status values to look for. Valid values are “APPLIED” and “NOT_APPLIED”.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_policy_ids(policy_ids)

	Restricts the alerts that this query is performed on to the specified policy IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	policy_ids (list) – List of integer policy IDs.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_policy_names(policy_names)

	Restricts the alerts that this query is performed on to the specified policy names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	policy_names (list) – List of string policy names.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_ports(ports)

	Restricts the alerts that this query is performed on to the specified netconn_local_ports.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

Note that in SDK 1.5.0, to align with Alerts API v7, the search field was updated from
port to netconn_local_port. It is possible to search on either netconn_local_port
or netconn_remote_port using the `add_criteria(fieldname, [field values]) method.

	Parameters:

	ports (list) – List of netconn_local_ports to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_process_names(process_names)

	Restricts the alerts that this query is performed on to the specified process names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	process_names (list) – List of string process names.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_process_sha256(shas)

	Restricts the alerts that this query is performed on to the specified process SHA-256 hash values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	shas (list) – List of string process SHA-256 hash values.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_product_ids(ids)

	Restricts the alerts that this query is performed on to the specified product IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of product IDs to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_product_names(names)

	Restricts the alerts that this query is performed on to the specified product names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of product names to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_protocols(protocols)

	Restricts the alerts that this query is performed on to the specified protocols.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	protocols (list) – List of protocols to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_reason_code(reason)

	Restricts the alerts that this query is performed on to the specified reason codes (enum values).

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	reason (list) – List of string reason codes to look for.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_remote_domains(domains)

	Restricts the alerts that this query is performed on to the specified remote domains.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	domains (list) – List of remote domains to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_remote_ips(addrs)

	Restricts the alerts that this query is performed on to the specified remote IP addresses.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	addrs (list) – List of remote IP addresses to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_remote_is_private(is_private, exclude=False)

	Restricts the alerts that this query is performed on based on matching the remote_is_private field.

This field is only present on CONTAINER_RUNTIME alerts and so filtering will be ignored on other alert types.

	Parameters:

	
	is_private (boolean) – Whether the remote information is private: true or false

	exclude (bool) – If true, will set is_present in the exclusions. Otherwise adds to criteria

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_replica_ids(ids)

	Restricts the alerts that this query is performed on to the specified pod names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of pod names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_reputations(reps)

	Restricts the alerts that this query is performed on to the specified reputation values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	reps (list) – List of string reputation values. Valid values are “KNOWN_MALWARE”, “SUSPECT_MALWARE”,
“PUP”, “NOT_LISTED”, “ADAPTIVE_WHITE_LIST”, “COMMON_WHITE_LIST”, “TRUSTED_WHITE_LIST”,
and “COMPANY_BLACK_LIST”.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_rows(rows)

	Sets the ‘rows’ query body parameter, determining how many rows of results to request.

	Parameters:

	rows (int) – How many rows to request.

	
set_rule_ids(ids)

	Restricts the alerts that this query is performed on to the specified Kubernetes policy rule IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

In SDK prior to 1.5.0 this was only supported for Container Runtime Alerts so will
convert to k8s_rule_id in criteria. In SDK 1.5.0 and later, aligned to Alert v7 API, use add_criteria()
should be used for both k8s_rule_id and for other alert types, rule_id.

	Parameters:

	ids (list) – List of Kubernetes policy rule IDs to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_rule_names(names)

	Restricts the alerts that this query is performed on to the specified Kubernetes policy rule names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of Kubernetes policy rule names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_run_states(states)

	Restricts the alerts that this query is performed on to the specified run states.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	states (list) – List of run states to look for. Valid values are “DID_NOT_RUN”, “RAN”, and “UNKNOWN”.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_sensor_actions(actions)

	Restricts the alerts that this query is performed on to the specified sensor actions.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	actions (list) – List of sensor actions to look for. Valid values are “POLICY_NOT_APPLIED”, “ALLOW”,
“ALLOW_AND_LOG”, “TERMINATE”, and “DENY”.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_serial_numbers(serial_numbers)

	Restricts the alerts that this query is performed on to the specified serial numbers.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	serial_numbers (list) – List of serial numbers to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_tags(tags)

	Restricts the alerts that this query is performed on to the specified tag values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	tags (list) – List of string tag values.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_target_priorities(priorities)

	Restricts the alerts that this query is performed on to the specified target priority values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	priorities (list) – List of string target priority values. Valid values are “LOW”, “MEDIUM”,
“HIGH”, and “MISSION_CRITICAL”.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_threat_cause_vectors(vectors)

	The field threat_cause_vector was deprecated and not included in v7. This method has been removed.

See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

	Parameters:

	vectors (list) – List of threat cause vectors to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_threat_ids(threats)

	Restricts the alerts that this query is performed on to the specified threat ID values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	threats (list) – List of string threat ID values.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_threat_notes_present(is_present, exclude=False)

	Restricts the alerts that this query is performed on to those with or without threat_notes.

	Parameters:

	
	is_present (bool) – If true, returns alerts that have a note attached to the threat_id

	exclude (bool) – If true, will set is_present in the exclusions. Otherwise adds to criteria

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_time_range(*args, **kwargs)

	For v7 Alerts:

Sets the ‘time_range’ query body parameter, determining a time range based on ‘backend_timestamp’.

	Parameters:

	
	*args – not used

	**kwargs (dict) – Used to specify the period to search within

	start= either timestamp ISO 8601 strings or datetime objects

	end= either timestamp ISO 8601 strings or datetime objects

	range= the period on which to execute the result search, ending on the current time.

Range must be in the format “-<quantity><units>” where quantity is an integer, and units is one of:

	M: month(s)

	w: week(s)

	d: day(s)

	h: hour(s)

	m: minute(s)

	s: second(s)

For v6 Alerts (backwards compatibility):

Restricts the alerts that this query is performed on to the specified time range for a given key. Will set
the ‘time_range’ as in the v7 usage if key is create_time and set a criteria value for any other valid key.

	Parameters:

	
	key (str) – The key to use for criteria one of create_time, first_event_time, last_event_time
or last_update_time. i.e. legacy field names from the Alert v6 API.

	**kwargs (dict) – Used to specify the period to search within

	start= either timestamp ISO 8601 strings or datetime objects

	end= either timestamp ISO 8601 strings or datetime objects

	range= the period on which to execute the result search, ending on the current time.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

Examples

>>> query_specify_start_and_end = api.select(Alert).
... set_time_range(start="2020-10-20T20:34:07Z", end="2020-10-30T20:34:07Z")
>>> query_specify_range = api.select(Alert).set_time_range(range='-3d')
>>> query_legacy_use = api.select(Alert).set_time_range("create_time", range='-3d')

	
set_types(alerttypes)

	Restricts the alerts that this query is performed on to the specified alert type values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	alerttypes (list) – List of string alert type values. Valid values are “CB_ANALYTICS”,
“WATCHLIST”, “DEVICE_CONTROL”, and “CONTAINER_RUNTIME”. In SDK 1.5.0,
to align with Alert API v7, more alert types are available but the add_criteria
method must be used.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

Note: - When filtering by fields that take a list parameter, an empty list will be treated as a wildcard and
match everything.

	
set_vendor_ids(ids)

	Restricts the alerts that this query is performed on to the specified vendor IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of vendor IDs to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_vendor_names(names)

	Restricts the alerts that this query is performed on to the specified vendor names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of vendor names to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_watchlist_ids(ids)

	Restricts the alerts that this query is performed on to the specified watchlist ID values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of string watchlist ID values.

	Returns:

	This instance.

	Return type:

	WatchlistAlertSearchQuery

	
set_watchlist_names(names)

	Restricts the alerts that this query is performed on to the specified watchlist name values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of string watchlist name values.

	Returns:

	This instance.

	Return type:

	WatchlistAlertSearchQuery

	
set_workflows(workflow_vals)

	Restricts the alerts that this query is performed on to the specified workflow status values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	workflow_vals (list) – List of string alert type values. Valid values are “OPEN” and “DISMISSED”.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_workload_ids(ids)

	The field workload_id was deprecated and not included in v7. This method has been removed.

Use workload_name instead. See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

	Parameters:

	ids (list) – List of workload IDs to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_workload_kinds(kinds)

	Restricts the alerts that this query is performed on to the specified workload types.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	kinds (list) – List of workload types to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_workload_names(names)

	Restricts the alerts that this query is performed on to the specified workload names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of workload names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(Alert).sort_by("name")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
update(status, closure_reason=None, determination=None, note=None)

	Updating all alerts matching a grouped alert query is not implemented.

Note

	Updating all alerts in all groups returned by a GroupedAlertSearchQuery can be done by

getting the AlertSearchQuery and using update() on it as shown in the following example.

Example

>>> alert_query = grouped_alert_query.get_alert_search_query()
>>> job = alert_query.update("IN_PROGESS", "NO_REASON", "NONE", "Starting Investigation")
>>> completed_job = job.await_completion().result()

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
update_exclusions(key, newlist)

	Update the exclusion on this query with a custom exclusion key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (list) – List of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).update_exclusions("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
class HostBasedFirewallAlert(cb, model_unique_id, initial_data=None)

	Bases: Alert

A specialization of the base Alert class that represents a host-based firewall alert.

The complete list of alert fields is too large to be reproduced here; please see the list of available fields
for each alert type on the Developer Network [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alert-search-fields].

Initialize the Alert object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
class Note(cb, alert, model_unique_id, threat_note=False, initial_data=None)

	Bases: PlatformModel

Represents a note placed on an alert.

	Parameters:

	
	author – User who created the note

	create_timestamp – Time the note was created

	last_update_timestamp – Time the note was created

	id – Unique ID for this note

	note – Note contents

	parent_id – ID for this note of this notes parent if is a thread

Initialize the Note object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	alert (Alert) – The alert where the note is saved.

	model_unique_id (str) – ID of the note represented.

	threat_note (bool) – True if the note is a threat note, False if the note is an alert note.``

	initial_data (dict) – Initial data used to populate the note.

	
delete()

	Deletes a note from an alert.

	Required Permissions:
	org.alerts.notes (DELETE)

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
add_threat_tags(tags)

	Adds tags to the threat.

	Required Permissions:
	org.alerts.tags (CREATE)

	Parameters:

	tags (list[str]) – List of tags to add to the threat.

	Raises:

	ApiError – If tags is not a list of strings.

	Returns:

	The list of current tags.

	Return type:

	list[str]

	
close(closure_reason=None, determination=None, note=None)

	Closes this alert.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”, “RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”, “FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.close("RESOLVED", "FALSE_POSITIVE", "Normal behavior")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
create_note(note, threat_note=False)

	Creates a new note for this alert.

	Required Permissions:
	org.alerts.notes (CREATE)

	Parameters:

	
	note (str) – Note content to add.

	threat_note (bool) – True to add this alert to the treat, False to add this note to the alert.

	Returns:

	The newly-added note.

	Return type:

	Note

	
delete_threat_tag(tag)

	Delete a threat tag.

	Required Permissions:
	org.alerts.tags (DELETE)

	Parameters:

	tag (str) – The tag to delete.

	Returns:

	The list of current tags.

	Return type:

	(list[str])

	
deobfuscate_cmdline()

	Deobfuscates the command line of the process pointed to by the alert and returns the deobfuscated result.

	Required Permissions:
	script.deobfuscation (EXECUTE)

	Returns:

	
	A dict containing information about the obfuscated command line, including the
	deobfuscated result.

	Return type:

	dict

	
dismiss_threat(remediation=None, comment=None)

	Dismisses all future alerts assigned to the threat_id.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to dismiss all past and current open alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).close(...)

	
get(item, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	item (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_history(threat=False)

	Get the actions taken on an Alert such as ``Note``s added and workflow state changes.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	threat (bool) – If True, the threat history is returned; if False, the alert history is returned.

	Returns:

	The ``dict``s of each determination, note or workflow change.

	Return type:

	list

	
get_observations(timeout=0)

	Requests observations that are associated with the Alert.

Uses Observation.bulk_get_details.

	Required Permissions:
	org.search.events (READ, CREATE)

	Returns:

	Observations associated with the Alert.

	Return type:

	list[Observation]

	
get_process(async_mode=False)

	Gets the process corresponding with the alert.

	Required Permissions:
	org.search.events (CREATE. READ)

	Parameters:

	async_mode – True to request process in an asynchronous manner.

	Returns:

	The process corresponding to the alert.

	Return type:

	Process

Note

	When using asynchronous mode, this method returns a Python Future.
You can call result() on the Future object to wait for completion and get the results.

	
get_threat_tags()

	Gets the threat’s tags.

	Required Permissions:
	org.alerts.tags (READ)

	Returns:

	The list of current tags

	Return type:

	list[str]

	
notes_(threat_note=False)

	Retrieves all notes for this alert.

	Required Permissions:
	org.alerts.notes (READ)

	Parameters:

	threat_note (bool) – True to retrieve threat notes, False to retrieve alert notes.

	Returns:

	The list of notes for the alert.

	Return type:

	list[Note]

	
refresh()

	Reload this object from the server.

	
static search_suggestions(cb, query)

	Returns suggestions for keys and field values that can be used in a search.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	query (str) – A search query to use.

	Returns:

	A list of search suggestions expressed as dict objects.

	Return type:

	list

	Raises:

	ApiError – if cb is not instance of CBCloudAPI

	
to_json(version='v7')

	Return a json object of the response.

	Parameters:

	version (str) – version of json to return. Either v6 or v7. DEFAULT v7

	Returns:

	The returned attribute value.

	Return type:

	Any

	
update(status, closure_reason=None, determination=None, note=None)

	Update the Alert with optional closure_reason, determination, note, or status.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	status (str) – The status to set for this alert, either “OPEN”, “IN_PROGRESS”, or “CLOSED”.

	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”,
“RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”,
“FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.update("IN_PROGESS", "NO_REASON", "NONE", "Starting Investigation")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
update_threat(remediation=None, comment=None)

	Updates all future alerts assigned to the threat_id to the OPEN state.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to update all past and current alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).update(...)

	
property workflow_

	Returns the workflow associated with this alert.

	Returns:

	The workflow associated with this alert.

	Return type:

	dict

	
class IntrusionDetectionSystemAlert(cb, model_unique_id, initial_data=None)

	Bases: Alert

A specialization of the base Alert class that represents an intrusion detection system alert.

The complete list of alert fields is too large to be reproduced here; please see the list of available fields
for each alert type on the Developer Network [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alert-search-fields].

Initialize the Alert object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
class Note(cb, alert, model_unique_id, threat_note=False, initial_data=None)

	Bases: PlatformModel

Represents a note placed on an alert.

	Parameters:

	
	author – User who created the note

	create_timestamp – Time the note was created

	last_update_timestamp – Time the note was created

	id – Unique ID for this note

	note – Note contents

	parent_id – ID for this note of this notes parent if is a thread

Initialize the Note object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	alert (Alert) – The alert where the note is saved.

	model_unique_id (str) – ID of the note represented.

	threat_note (bool) – True if the note is a threat note, False if the note is an alert note.``

	initial_data (dict) – Initial data used to populate the note.

	
delete()

	Deletes a note from an alert.

	Required Permissions:
	org.alerts.notes (DELETE)

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
add_threat_tags(tags)

	Adds tags to the threat.

	Required Permissions:
	org.alerts.tags (CREATE)

	Parameters:

	tags (list[str]) – List of tags to add to the threat.

	Raises:

	ApiError – If tags is not a list of strings.

	Returns:

	The list of current tags.

	Return type:

	list[str]

	
close(closure_reason=None, determination=None, note=None)

	Closes this alert.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”, “RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”, “FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.close("RESOLVED", "FALSE_POSITIVE", "Normal behavior")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
create_note(note, threat_note=False)

	Creates a new note for this alert.

	Required Permissions:
	org.alerts.notes (CREATE)

	Parameters:

	
	note (str) – Note content to add.

	threat_note (bool) – True to add this alert to the treat, False to add this note to the alert.

	Returns:

	The newly-added note.

	Return type:

	Note

	
delete_threat_tag(tag)

	Delete a threat tag.

	Required Permissions:
	org.alerts.tags (DELETE)

	Parameters:

	tag (str) – The tag to delete.

	Returns:

	The list of current tags.

	Return type:

	(list[str])

	
deobfuscate_cmdline()

	Deobfuscates the command line of the process pointed to by the alert and returns the deobfuscated result.

	Required Permissions:
	script.deobfuscation (EXECUTE)

	Returns:

	
	A dict containing information about the obfuscated command line, including the
	deobfuscated result.

	Return type:

	dict

	
dismiss_threat(remediation=None, comment=None)

	Dismisses all future alerts assigned to the threat_id.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to dismiss all past and current open alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).close(...)

	
get(item, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	item (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_history(threat=False)

	Get the actions taken on an Alert such as ``Note``s added and workflow state changes.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	threat (bool) – If True, the threat history is returned; if False, the alert history is returned.

	Returns:

	The ``dict``s of each determination, note or workflow change.

	Return type:

	list

	
get_network_threat_metadata()

	Retrun the NetworkThreatMetadata associated with this IDS alert if it exists.

Example

>>> alert_threat_metadata = ids_alert.get_network_threat_metadata()

	Returns:

	The NetworkThreatMetadata associated with this IDS alert.

	Return type:

	NetworkThreatMetadata

	
get_observations(timeout=0)

	Requests observations that are associated with the Alert.

Uses Observation.bulk_get_details.

	Required Permissions:
	org.search.events (READ, CREATE)

	Returns:

	Observations associated with the Alert.

	Return type:

	list[Observation]

	
get_process(async_mode=False)

	Gets the process corresponding with the alert.

	Required Permissions:
	org.search.events (CREATE. READ)

	Parameters:

	async_mode – True to request process in an asynchronous manner.

	Returns:

	The process corresponding to the alert.

	Return type:

	Process

Note

	When using asynchronous mode, this method returns a Python Future.
You can call result() on the Future object to wait for completion and get the results.

	
get_threat_tags()

	Gets the threat’s tags.

	Required Permissions:
	org.alerts.tags (READ)

	Returns:

	The list of current tags

	Return type:

	list[str]

	
notes_(threat_note=False)

	Retrieves all notes for this alert.

	Required Permissions:
	org.alerts.notes (READ)

	Parameters:

	threat_note (bool) – True to retrieve threat notes, False to retrieve alert notes.

	Returns:

	The list of notes for the alert.

	Return type:

	list[Note]

	
refresh()

	Reload this object from the server.

	
static search_suggestions(cb, query)

	Returns suggestions for keys and field values that can be used in a search.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	query (str) – A search query to use.

	Returns:

	A list of search suggestions expressed as dict objects.

	Return type:

	list

	Raises:

	ApiError – if cb is not instance of CBCloudAPI

	
to_json(version='v7')

	Return a json object of the response.

	Parameters:

	version (str) – version of json to return. Either v6 or v7. DEFAULT v7

	Returns:

	The returned attribute value.

	Return type:

	Any

	
update(status, closure_reason=None, determination=None, note=None)

	Update the Alert with optional closure_reason, determination, note, or status.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	status (str) – The status to set for this alert, either “OPEN”, “IN_PROGRESS”, or “CLOSED”.

	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”,
“RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”,
“FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.update("IN_PROGESS", "NO_REASON", "NONE", "Starting Investigation")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
update_threat(remediation=None, comment=None)

	Updates all future alerts assigned to the threat_id to the OPEN state.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to update all past and current alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).update(...)

	
property workflow_

	Returns the workflow associated with this alert.

	Returns:

	The workflow associated with this alert.

	Return type:

	dict

	
class WatchlistAlert(cb, model_unique_id, initial_data=None)

	Bases: Alert

A specialization of the base Alert class that represents a watchlist alert.

The complete list of alert fields is too large to be reproduced here; please see the list of available fields
for each alert type on the Developer Network [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alert-search-fields].

Initialize the Alert object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
class Note(cb, alert, model_unique_id, threat_note=False, initial_data=None)

	Bases: PlatformModel

Represents a note placed on an alert.

	Parameters:

	
	author – User who created the note

	create_timestamp – Time the note was created

	last_update_timestamp – Time the note was created

	id – Unique ID for this note

	note – Note contents

	parent_id – ID for this note of this notes parent if is a thread

Initialize the Note object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	alert (Alert) – The alert where the note is saved.

	model_unique_id (str) – ID of the note represented.

	threat_note (bool) – True if the note is a threat note, False if the note is an alert note.``

	initial_data (dict) – Initial data used to populate the note.

	
delete()

	Deletes a note from an alert.

	Required Permissions:
	org.alerts.notes (DELETE)

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
add_threat_tags(tags)

	Adds tags to the threat.

	Required Permissions:
	org.alerts.tags (CREATE)

	Parameters:

	tags (list[str]) – List of tags to add to the threat.

	Raises:

	ApiError – If tags is not a list of strings.

	Returns:

	The list of current tags.

	Return type:

	list[str]

	
close(closure_reason=None, determination=None, note=None)

	Closes this alert.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”, “RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”, “FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.close("RESOLVED", "FALSE_POSITIVE", "Normal behavior")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
create_note(note, threat_note=False)

	Creates a new note for this alert.

	Required Permissions:
	org.alerts.notes (CREATE)

	Parameters:

	
	note (str) – Note content to add.

	threat_note (bool) – True to add this alert to the treat, False to add this note to the alert.

	Returns:

	The newly-added note.

	Return type:

	Note

	
delete_threat_tag(tag)

	Delete a threat tag.

	Required Permissions:
	org.alerts.tags (DELETE)

	Parameters:

	tag (str) – The tag to delete.

	Returns:

	The list of current tags.

	Return type:

	(list[str])

	
deobfuscate_cmdline()

	Deobfuscates the command line of the process pointed to by the alert and returns the deobfuscated result.

	Required Permissions:
	script.deobfuscation (EXECUTE)

	Returns:

	
	A dict containing information about the obfuscated command line, including the
	deobfuscated result.

	Return type:

	dict

	
dismiss_threat(remediation=None, comment=None)

	Dismisses all future alerts assigned to the threat_id.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to dismiss all past and current open alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).close(...)

	
get(item, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	item (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_history(threat=False)

	Get the actions taken on an Alert such as ``Note``s added and workflow state changes.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	threat (bool) – If True, the threat history is returned; if False, the alert history is returned.

	Returns:

	The ``dict``s of each determination, note or workflow change.

	Return type:

	list

	
get_observations(timeout=0)

	Requests observations that are associated with the Alert.

Uses Observation.bulk_get_details.

	Required Permissions:
	org.search.events (READ, CREATE)

	Returns:

	Observations associated with the Alert.

	Return type:

	list[Observation]

	
get_process(async_mode=False)

	Gets the process corresponding with the alert.

	Required Permissions:
	org.search.events (CREATE. READ)

	Parameters:

	async_mode – True to request process in an asynchronous manner.

	Returns:

	The process corresponding to the alert.

	Return type:

	Process

Note

	When using asynchronous mode, this method returns a Python Future.
You can call result() on the Future object to wait for completion and get the results.

	
get_threat_tags()

	Gets the threat’s tags.

	Required Permissions:
	org.alerts.tags (READ)

	Returns:

	The list of current tags

	Return type:

	list[str]

	
get_watchlist_objects()

	Returns the list of associated watchlist objects for the associated watchlist alert.

Example

>>> watchlist_alert = cb.select(Alert, "f643d11f-59ab-478f-92c3-4198ca9b8230")
>>> watchlist_objects = watchlist_alert.get_watchlist_objects()

	Returns:

	A list of Watchlist objects.

	Return type:

	list[Watchlist]

	
notes_(threat_note=False)

	Retrieves all notes for this alert.

	Required Permissions:
	org.alerts.notes (READ)

	Parameters:

	threat_note (bool) – True to retrieve threat notes, False to retrieve alert notes.

	Returns:

	The list of notes for the alert.

	Return type:

	list[Note]

	
refresh()

	Reload this object from the server.

	
static search_suggestions(cb, query)

	Returns suggestions for keys and field values that can be used in a search.

	Required Permissions:
	org.alerts (READ)

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	query (str) – A search query to use.

	Returns:

	A list of search suggestions expressed as dict objects.

	Return type:

	list

	Raises:

	ApiError – if cb is not instance of CBCloudAPI

	
to_json(version='v7')

	Return a json object of the response.

	Parameters:

	version (str) – version of json to return. Either v6 or v7. DEFAULT v7

	Returns:

	The returned attribute value.

	Return type:

	Any

	
update(status, closure_reason=None, determination=None, note=None)

	Update the Alert with optional closure_reason, determination, note, or status.

Note

	This is an asynchronous call that returns a Job. If you want to wait and block on the results
you can call await_completion() to get a Future then result() on the future object
to wait for completion and get the results.

	Required Permissions:
	org.alerts.close (EXECUTE), jobs.status (READ)

	Parameters:

	
	status (str) – The status to set for this alert, either “OPEN”, “IN_PROGRESS”, or “CLOSED”.

	closure_reason (str) – the closure reason for this alert, either “NO_REASON”, “RESOLVED”,
“RESOLVED_BENIGN_KNOWN_GOOD”, “DUPLICATE_CLEANUP”, “OTHER”

	determination (str) – The determination status to set for the alert, either “TRUE_POSITIVE”,
“FALSE_POSITIVE”, or “NONE”

	note (str) – The comment to set for the alert.

	Returns:

	The Job object for the alert workflow action.

	Return type:

	Job

Example

>>> alert = cb.select(Alert, "708d7dbf-2020-42d4-9cbc-0cddd0ffa31a")
>>> job = alert.update("IN_PROGESS", "NO_REASON", "NONE", "Starting Investigation")
>>> completed_job = job.await_completion().result()
>>> alert.refresh()

	
update_threat(remediation=None, comment=None)

	Updates all future alerts assigned to the threat_id to the OPEN state.

	Required Permissions:
	org.alerts.dismiss (EXECUTE)

	Parameters:

	
	remediation (str) – The remediation status to set for the alert.

	comment (str) – The comment to set for the alert.

Note

	
	If you want to update all past and current alerts associated to the threat use the following:
	>>> cb.select(Alert).add_criteria("threat_id", [alert.threat_id]).update(...)

	
property workflow_

	Returns the workflow associated with this alert.

	Returns:

	The workflow associated with this alert.

	Return type:

	dict

Asset Groups Module

The model and query classes for referencing asset groups.

An asset group represents a group of devices (endpoints, VM workloads, and/or VDIs) that can have a single policy
applied to it so the protections of all similar assets are synchronized with one another. Policies carry a “position”
value as one of their attributes, so that, between the policy attached directly to the device, and the policies
attached to any asset groups the device is a member of, the one with the highest “position” is the one that applies to
that device. Devices may be added to an asset group either explicitly, or implicitly by specifying a query on the
asset group, such that all devices matching that search criteria are considered part of the asset group.

Typical usage example:

assume "cb" is an instance of CBCloudAPI
query = cb.select(AssetGroup).where('name:"HQ Devices"')
group = query.first()

	
class AssetGroup(cb, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: MutableBaseModel

Represents an asset group within the current organization in the Carbon Black Cloud.

	AssetGroup objects are typically located via a search (using AssetGroupQuery) before they can be operated
	on. They may also be created on the Carbon Black Cloud by using the create_group() class method.

	Parameters:

	
	id – The asset group identifier.

	name – The asset group name.

	description – The asset group description.

	org_key – The organization key of the owning organization.

	status – Status of the group.

	member_type – The type of objects this asset group contains.

	discovered – Whether this group has been discovered.

	create_time – Date and time the group was created.

	update_time – Date and time the group was last updated.

	member_count – Number of members in this group.

	policy_id – ID of the policy associated with this group.

	policy_name – Name of the policy associated with this group.

	query – Search query used to determine which assets are included in the group membership.

Initialize the AssetGroup object.

	Required Permissions:
	group-management(READ)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (int) – ID of the policy.

	initial_data (dict) – Initial data used to populate the policy.

	force_init (bool) – If True, forces the object to be refreshed after constructing. Default False.

	full_doc (bool) – If True, object is considered “fully” initialized. Default False.

	
add_members(members)

	Adds additional members to this asset group.

	Required Permissions:
	group-management(CREATE)

	Parameters:

	members (int, Device, or list) – The members to be added to the group. This may be an integer device ID,
a Device object, or a list of either integers or Device objects.

	
classmethod create_group(cb, name, description=None, policy_id=None, query=None)

	Create a new asset group.

	Required Permissions:
	group-management(CREATE)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	name (str) – Name for the new asset group.

	description (str) – Description for the new asset group. Default is None.

	policy_id (int) – ID of the policy to be associated with this asset group. Default is None.

	query (str) – Query string to be used to dynamically populate this group. Default is None,
which means devices _must_ be manually assigned to the group.

	Returns:

	The new asset group.

	Return type:

	AssetGroup

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
classmethod get_all_groups(cb)

	Retrieve all asset groups in the organization.

	Required Permissions:
	group-management(READ)

	Parameters:

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	Returns:

	List of AssetGroup objects corresponding to the asset groups in the organization.

	Return type:

	list[AssetGroup]

	
get_statistics()

	For this group, return statistics about its group membership.

The statistics include how many of the group’s members belong to other groups, and how many members
belong to groups without policy association.

See
this page [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/asset-groups-api/#get-asset-group-stats]
for more details on the structure of the return value from this method.

	Required Permissions:
	group-management(READ)

	Returns:

	
	A dict with two elements. The “intersections” element contains elements detailing which groups share
	members with this group, and which members they are. The “unassigned_properties” element contains
elements showing which members belong to groups without policy association.

	Return type:

	dict

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
list_member_ids(rows=20, start=0)

	Gets a list of all member IDs in the group, optionally constrained by membership type.

	Required Permissions:
	group-management(READ)

	Parameters:

	
	rows (int) – Maximum number of rows to retrieve from the server. The function may return fewer member IDs
if filtering is applied to the output. Default is 20.

	start (int) – Starting row to retrieve from the server; used to implement pagination. Default is 0.

	Returns:

	
	List of dictionaries that contain the integer element external_member_id for the device ID,
	the boolean element dynamic which is True if the group member is there due to the
group’s dynamic query, and the boolean element manual which is True if the group member
was manually added. (It is possible for both dynamic and manual to be True.)

	Return type:

	list[dict]

	
list_members(rows=20, start=0, membership='ALL')

	Gets a list of all member devices in the group, optionally constrained by membership type.

	Required Permissions:
	group-management(READ), devices(READ)

	Parameters:

	
	rows (int) – Maximum number of rows to retrieve from the server. The function may return fewer member IDs
if filtering is applied to the output. Default is 20.

	start (int) – Starting row to retrieve from the server; used to implement pagination. Default is 0.

	membership (str) – Can restrict the types of members that are returned by this method. Values are “ALL”
to return all members, “DYNAMIC” to return only members that were added via the asset
group query, or “MANUAL” to return only manually-added members. Default is “ALL”.

	Returns:

	List of Device objects comprising the membership of the group.``

	Return type:

	list[Device]

	
preview_add_members(devices)

	Previews changes to the effective policies for devices which result from adding them to this asset group.

	Required Permissions:
	org.policies (READ)

	Parameters:

	devices (list) – The devices which will be added to this asset group. Each entry in this list is either
an integer device ID or a Device object.

	Returns:

	
	A list of DevicePolicyChangePreview objects representing the assets
	that change which policy is effective as the result of this operation.

	Return type:

	list[DevicePolicyChangePreview]

	
classmethod preview_add_members_to_groups(cb, members, groups)

	Previews changes to the effective policies for devices which result from adding them to asset groups.

	Required Permissions:
	org.policies (READ)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	members (list) – The devices which will be added to new asset groups. Each entry in this list is either
an integer device ID or a Device object.

	groups (list) – The asset groups to which the devices will be added. Each entry in this list is either
a string asset group ID or an AssetGroup object.

	Returns:

	
	A list of DevicePolicyChangePreview objects representing the assets
	that change which policy is effective as the result of this operation.

	Return type:

	list[DevicePolicyChangePreview]

	
classmethod preview_create_asset_group(cb, policy_id, query)

	Previews changes to the effective policies for devices which result from creating a new asset group.

	Required Permissions:
	org.policies (READ)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	policy_id (int) – The ID of the policy to be added to the new asset group.

	query (str) – The query string to be used for the new asset group.

	Returns:

	
	A list of DevicePolicyChangePreview objects representing the assets
	that change which policy is effective as the result of this operation.

	Return type:

	list[DevicePolicyChangePreview]

	
preview_delete()

	Previews changes to the effective policies for devices which result from this asset group being deleted.

	Required Permissions:
	org.policies (READ)

	Returns:

	
	A list of DevicePolicyChangePreview objects representing the assets
	that change which policy is effective as the result of this operation.

	Return type:

	list[DevicePolicyChangePreview]

	
classmethod preview_delete_asset_groups(cb, groups)

	Previews changes to the effective policies for devices which result from deleting asset groups.

	Required Permissions:
	org.policies (READ)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	groups (list) – The asset groups which will be deleted. Each entry in this list is either
a string asset group ID or an AssetGroup object.

	Returns:

	
	A list of DevicePolicyChangePreview objects representing the assets
	that change which policy is effective as the result of this operation.

	Return type:

	list[DevicePolicyChangePreview]

	
preview_remove_members(devices)

	Previews changes to the effective policies for devices which result from removing them from this asset group.

	Required Permissions:
	org.policies (READ)

	Parameters:

	devices (list) – The devices which will be removed from this asset group. Each entry in this list is either
an integer device ID or a Device object.

	Returns:

	
	A list of DevicePolicyChangePreview objects representing the assets
	that change which policy is effective as the result of this operation.

	Return type:

	list[DevicePolicyChangePreview]

	
classmethod preview_remove_members_from_groups(cb, members, groups)

	Previews changes to the effective policies for devices which result from removing them from asset groups.

	Required Permissions:
	org.policies (READ)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	members (list) – The devices which will be removed from asset groups. Each entry in this list is either
an integer device ID or a Device object.

	groups (list) – The asset groups from which the devices will be removed. Each entry in this list is either
a string asset group ID or an AssetGroup object.

	Returns:

	
	A list of DevicePolicyChangePreview objects representing the assets
	that change which policy is effective as the result of this operation.

	Return type:

	list[DevicePolicyChangePreview]

	
preview_save()

	Previews changes to the effective policies for devices which result from unsaved changes to this asset group.

	Required Permissions:
	org.policies (READ)

	Returns:

	
	A list of DevicePolicyChangePreview objects representing the assets
	that change which policy is effective as the result of this operation.

	Return type:

	list[DevicePolicyChangePreview]

	
classmethod preview_update_asset_groups(cb, groups, policy_id=None, query=None, remove_policy_id=False, remove_query=False)

	Previews changes to the effective policies for devices which result from changes to asset groups.

	Required Permissions:
	org.policies (READ)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	groups (list) – The asset groups which will be updated. Each entry in this list is either
a string asset group ID or an AssetGroup object.

	policy_id (int) – If this is not None and remove_policy_id is False, contains the ID of the
policy to be assigned to the specified groups. Default is None.

	query (str) – If this is not None and remove_query is False, contains the new query string
to be assigned to the specified groups. Default is None.

	remove_policy_id (bool) – If this is True, indicates that the specified groups will have their policy
ID removed entirely. Default is False.

	remove_query (bool) – If this is True, indicates that the specified groups will have their query
strings removed entirely. Default is False.

	Returns:

	
	A list of DevicePolicyChangePreview objects representing the assets
	that change which policy is effective as the result of this operation.

	Return type:

	list[DevicePolicyChangePreview]

	
refresh()

	Reload this object from the server.

	
remove_members(members)

	Removes members from this asset group.

	Required Permissions:
	group-management(DELETE)

	Parameters:

	members (int, Device, or list) – The members to be removed from the group. This may be an integer device ID,
a Device object, or a list of either integers or Device objects.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
swagger_meta_file

	The valid values for the ‘filter’ parameter to list_members().

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this object.

	Returns:

	True if the object is validated.

	Return type:

	bool

	Raises:

	InvalidObjectError – If the object has missing fields.

	
class AssetGroupQuery(doc_class, cb)

	Bases: BaseQuery, QueryBuilderSupportMixin, IterableQueryMixin, CriteriaBuilderSupportMixin, AsyncQueryMixin

Query object that is used to locate AssetGroup objects.

The AssetGroupQuery is constructed via SDK functions like the select() method on CBCloudAPI.
The user would then add a query and/or criteria to it before iterating over the results.

The following criteria are supported on AssetGroupQuery via the standard add_criteria() method:

	discovered: bool - Whether the asset group has been discovered or not.

	name: str - The asset group name to be matched.

	policy_id: int - The policy ID to be matched, expressed as an integer.

	group_id: str - The asset group ID to be matched, expressed as a GUID.

Initialize the AssetGroupQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_rows(rows)

	Sets the number of query rows to fetch in each batch from the server.

	Parameters:

	rows (int) – The number of rows to be fetched fromt hes erver at a time. Default is 100.

	Returns:

	This instance.

	Return type:

	AssetGroupQuery

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(AssetGroup).sort_by("name")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	This instance.

	Return type:

	AssetGroupQuery

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

Audit Module

Model and query classes for platform audit logs.

AuditLog can be used to monitor your Carbon Black Cloud organization for actions performed by Carbon Black Cloud
console users and API keys. Audit logs are recorded for most CREATE, UPDATE and DELETE actions as well as a few READ
actions. Audit logs will include a description of the action and indicate the actor who performed the action along
with their IP to help determine if the User/API key are from an expected source.

	
class AuditLog(cb, initial_data=None)

	Bases: UnrefreshableModel

The model class which represents individual audit log entries.

Each entry includes the actor performing the action, the IP address of the actor, a description, and a request URL
where available.

	Parameters:

	
	actor_ip – IP address of the entity that caused the creation of this audit log

	actor – Name of the entity that caused the creation of this audit log

	create_time – Timestamp when this audit log was created in ISO-8601 string format

	description – Text description of this audit log

	flagged – Whether the audit has been flagged

	org_key – Organization key

	request_url – URL of the request that caused the creation of this audit log

	verbose – Whether the audit has been marked verbose

Creates a new AuditLog object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data to fill in the audit log record details.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
static get_auditlogs(cb)

	Retrieve queued audit logs from the Carbon Black Cloud server.

	Deprecated:
	This method uses an outdated API. Use get_queued_auditlogs() instead.

	Required Permissions:
	org.audits (READ)

	Parameters:

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	Returns:

	List of dictionary objects representing the audit logs, or an empty list if none available.

	Return type:

	list[dict]

	
static get_queued_auditlogs(cb)

	Retrieve queued audit logs from the Carbon Black Cloud server.

	Required Permissions:
	org.audits (READ)

	Parameters:

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	Returns:

	List of objects representing the audit logs, or an empty list if none available.

	Return type:

	list[AuditLog]

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class AuditLogQuery(doc_class, cb)

	Bases: BaseQuery, QueryBuilderSupportMixin, CriteriaBuilderSupportMixin, ExclusionBuilderSupportMixin, IterableQueryMixin, AsyncQueryMixin

Query object that is used to locate AuditLog objects.

The AuditLogQuery is constructed via SDK functions like the select() method on CBCloudAPI.
The user would then add a query and/or criteria to it before iterating over the results.

The following criteria may be added to the query via the standard add_criteria() method, or added to query
exclusions via the standard add_exclusions() method:

	actor_ip - IP address of the entity that caused the creation of this audit log.

	actor - Name of the entity that caused the creation of this audit log.

	request_url - URL of the request that caused the creation of this audit log.

	description - Text description of this audit log.

Initialize the AuditLogQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_boolean_criteria(criteria_name, value, exclude=False)

	Adds a Boolean value to either the criteria or exclusions.

	Parameters:

	
	criteria_name (str) – The criteria name to set. May be either “flagged” (to set whether or not the audit
record has been flagged) or “verbose” (so set whether or not the audit record has been marked verbose).

	value (bool) – The value of the criteria to be set.

	exclude (bool) – True if this value is to be applied to exclusions, False if this value is to be
applied to search criteria. Default False.

	Returns:

	This instance.

	Return type:

	AuditLogQuery

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
add_exclusions(key, newlist)

	Add to the exclusions on this query with a custom exclusions key.

Will overwrite any existing exclusion for the specified key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).add_exclusions("type", ["WATCHLIST"])
>>> query = api.select(Alert).add_exclusions("type", "WATCHLIST")

	
add_time_criteria(**kwargs)

	Adds a create_time value to either criteria or exclusions.

Examples

>>> query_specify_start_and_end = api.select(AuditLog).
... add_time_criteria(start="2023-10-20T20:34:07Z", end="2023-10-30T20:34:07Z")
>>> query_specify_exclude_range = api.select(AuditLog).add_time_criteria(range='-3d', exclude=True)

	Parameters:

	kwargs (dict) – Keyword arguments to this method.

	Keyword Arguments:

	
	start (str/datetime) – Starting time for the time interval to include in the criteria. Must be either a
datetime object or a string in ISO 8601 format. Both start and end must be specified
if they are to be used.

	end (str/datetime) – Ending time for the time interval to include in the criteria. Must be either a
datetime object or a string in ISO 8601 format. Both start and end must be specified
if they are to be used.

	range (str) – Range for the time interval, to be measured backwards from the current time. Cannot
be specified if start or end are specified. Must be in the format “-NX”, where N is an
integer value, and X is a single character specifying the time unit: “y” for years, “w” for weeks,
“d” for days, “h” for hours, “m” for minutes, or “s” for seconds.

	exclude (bool) – True if this value is to be applied to exclusions, False if this value is to be
applied to search criteria. Default False.

	Returns:

	This instance.

	Return type:

	AuditLogQuery

	Raises:

	ApiError – If the argument format is incorrect.

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
export(format='csv')

	Export audit logs using the Job service.

The actual results are retrieved by waiting for the resulting job to complete, then calling one of the methods
on Job to retrieve the results.

Example

>>> audit_log_query = cb.select(AuditLog).add_time_criteria(range="-1d")
>>> audit_log_export_job = audit_log_query.export(format="csv")
>>> results = audit_log_export_job.await_completion().result()

	Parameters:

	format (str) – Format in which to return results, either “csv” or “json”. Default is “csv”.

	Returns:

	The object representing the export job.

	Return type:

	Job

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(AuditLog).sort_by("name")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	This instance.

	Return type:

	AuditLogQuery

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
update_exclusions(key, newlist)

	Update the exclusion on this query with a custom exclusion key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (list) – List of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).update_exclusions("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

Devices Module

The model and query classes for referencing platform devices.

A platform device represents an endpoint registered with the Carbon Black Cloud that runs a sensor, which
communicates with Carbon Black analytics and the console. Using these classes, you can search for devices using a
wide variety of filterable fields, such as policy ID, status, or operating system. You can also perform actions on
individual devices such as quarantining/unquarantining them, enabling or disabling bypass, or upgrading them to a
new sensor version.

Typical usage example:

assume "cb" is an instance of CBCloudAPI
query = cb.select(Device).where(os="WINDOWS").set_policy_ids([142857])
for device in query:
 device.quarantine(True)

	
class Device(cb, model_unique_id, initial_data=None)

	Bases: PlatformModel

Represents a device (endpoint) within the Carbon Black Cloud.

Device objects are generally located through a search (using DeviceSearchQuery) before they can be
operated on.

	Parameters:

	
	activation_code – Device activation code

	activation_code_expiry_time – When the expiration code expires and cannot be used to register a device

	ad_group_id – Device’s AD group

	asset_group – The asset groups that this device is a member of.

	av_ave_version – AVE version (part of AV Version)

	av_engine – Current AV version

	av_last_scan_time – Last AV scan time

	av_master – Whether the device is an AV Master (?)

	av_pack_version – Pack version (part of AV Version)

	av_product_version – AV Product version (part of AV Version)

	av_status – AV Statuses

	av_update_servers – Device’s AV servers

	av_vdf_version – VDF version (part of AV Version)

	current_sensor_policy_name – Current MSM policy name

	deregistered_time – When the device was deregistered with the PSC backend

	device_id – ID of the device

	device_meta_data_item_list – MSM Device metadata

	device_owner_id – ID of the user who owns the device

	email – Email of the user who owns the device

	encoded_activation_code – Encoded device activation code

	first_name – First name of the user who owns the device

	id – ID of the device

	last_contact_time – Time the device last checked into the PSC backend

	last_device_policy_changed_time – Last time the device’s policy was changed

	last_device_policy_requested_time – Last time the device requested policy updates

	last_external_ip_address – Device’s external IP

	last_internal_ip_address – Device’s internal IP

	last_location – Location of the device (on-/off-premises)

	last_name – Last name of the user who owns the device

	last_policy_updated_time – Last time the device was MSM processed

	last_reported_time – Time when device last reported an event to PSC backend

	last_reset_time – When the sensor was last reset

	last_shutdown_time – When the device last shut down

	linux_kernel_version – Linux kernel version

	login_user_name – Last acive logged in username

	mac_address – Device’s hardware MAC address

	middle_name – Middle name of the user who owns the device

	name – Device Hostname

	organization_id – Org ID to which the device belongs

	organization_name – Name of the org that owns this device

	os – Device type

	os_version – Version of the OS

	passive_mode – Whether the device is in passive mode (bypass?)

	policy_id – ID of the policy this device is using

	policy_name – Name of the policy this device is using

	policy_override – Manually assigned policy (overrides mass sensor management)

	quarantined – Whether the device is quarantined

	registered_time – When the device was registered with the PSC backend

	scan_last_action_time – Not used. Intended for when the background scan was last active

	scan_last_complete_time – Not Used. Intended for when the background scan was last completed

	scan_status – Not Used. Intended for Background scan status

	sensor_out_of_date – Whether the device is out of date

	sensor_states – Active sensor states

	sensor_version – Version of the PSC sensor

	status – Device status

	target_priority_type – Priority of the device

	uninstall_code – Code to enter to uninstall this device

	vdi_base_device – VDI Base device

	virtual_machine – Whether this device is a Virtual Machine (VMware AppDefense integration

	virtualization_provider – VM Virtualization Provider

	windows_platform – Type of windows platform (client/server, x86/x64)

	deployment_type – Classification determined by the device lifecycle management policy

Initialize the Device object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the device represented.

	initial_data (dict) – Initial data used to populate the device.

	
add_to_groups(groups)

	Given a list of asset groups, adds this device to each one as a member.

	Parameters:

	groups (list[AssetGroup]) – The list of groups to add this device to.

	
add_to_groups_by_id(group_ids)

	Given a list of asset group IDs, adds this device to each one as a member.

	Parameters:

	group_ids (list[str]) – The list of group IDs to add this device to.

	
background_scan(flag)

	Set the background scan option for this device.

	Required Permissions:
	device.bg-scan(EXECUTE)

	Parameters:

	flag (bool) – True to turn background scan on, False to turn it off.

	Returns:

	The JSON output from the request.

	Return type:

	str

	
bypass(flag)

	Set the bypass option for this device.

	Required Permissions:
	device.bypass(EXECUTE)

	Parameters:

	flag (bool) – True to enable bypass, False to disable it.

	Returns:

	The JSON output from the request.

	Return type:

	str

	
delete_sensor()

	Delete this sensor device.

	Required Permissions:
	device.deregistered(DELETE)

	Returns:

	The JSON output from the request.

	Return type:

	str

	
property deviceId

	Warn user that Platform Devices use ‘id’, not ‘device_id’.

Platform Device APIs return ‘id’ in API responses, where Endpoint Standard APIs return ‘deviceId’.

	Raises:

	AttributeError – In all cases.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_asset_group_ids(membership='ALL')

	Finds the list of asset group IDs that this device is a member of.

	Parameters:

	membership (str) – Can restrict the types of group membership returned by this method. Values are “ALL”
to return all groups, “DYNAMIC” to return only groups that each member belongs to via the
asset group query, or “MANUAL” to return only groups that the members were manually
added to. Default is “ALL”.

	Returns:

	A list of asset group IDs this device belongs to.

	Return type:

	list[str]

	
get_asset_groups(membership='ALL')

	Finds the list of asset groups that this device is a member of.

	Required Permissions:
	group-management(READ)

	Parameters:

	membership (str) – Can restrict the types of group membership returned by this method. Values are “ALL”
to return all groups, “DYNAMIC” to return only groups that each member belongs to via the
asset group query, or “MANUAL” to return only groups that the members were manually
added to. Default is “ALL”.

	Returns:

	A list of asset groups this device belongs to.

	Return type:

	list[AssetGroup]

	
classmethod get_asset_groups_for_devices(cb, devices, membership='ALL')

	Given a list of devices, returns lists of asset groups that they are members of.

	Required Permissions:
	group-management(READ)

	Parameters:

	
	cls (class) – Class associated with the Device object.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	devices (int, Device, or list) – The devices to find the group membership of. This may be an integer
device ID, a Device object, or a list of either integers or
Device objects.

	membership (str) – Can restrict the types of group membership returned by this method. Values are “ALL”
to return all groups, “DYNAMIC” to return only groups that each member belongs to via the
asset group query, or “MANUAL” to return only groups that the members were manually
added to. Default is “ALL”.

	Returns:

	A dict containing member IDs as keys, and lists of group IDs as values.

	Return type:

	dict

	
get_vulnerability_summary(category=None)

	Get the vulnerabilities associated with this device.

	Required Permissions:
	vulnerabilityAssessment.data(READ)

	Parameters:

	category (string) – (optional) Vulnerabilty category (OS, APP).

	Returns:

	Summary of the vulnerabilities for this device.

	Return type:

	dict

	
get_vulnerabilties()

	Return a query to get an operating system or application vulnerability list for this device.

	Returns:

	Query for searching for vulnerabilities on this device.

	Return type:

	VulnerabilityQuery

	
lr_session(async_mode=False)

	Retrieve a Live Response session object for this Device.

	Required Permissions:
	org.liveresponse.session(CREATE)

	Returns:

	Live Response session for the Device.

	Return type:

	LiveResponseSession

	Raises:

	ApiError – If there is an error establishing a Live Response session for this Device.

	
property nsx_available

	Returns whether NSX actions are available on this device.

	Returns:

	True if NSX actions are available, False if not.

	Return type:

	bool

	
nsx_remediation(tag, set_tag=True)

	Start an NSX Remediation job on this device to change the tag.

	Required Permissions:
	appliances.nsx.remediation(EXECUTE)

	Parameters:

	
	tag (str) – The NSX tag to apply to this device. Valid values are “CB-NSX-Quarantine”,
“CB-NSX-Isolate”, and “CB-NSX-Custom”.

	set_tag (bool) – True to toggle the specified tag on, False to toggle it off. Default True.

	Returns:

	The object representing all running jobs. None if the operation is a no-op.

	Return type:

	NSXRemediationJob

	
classmethod preview_add_policy_override_for_devices(cb, policy_id, devices)

	Previews changes to the effective policies for devices which result from setting a policy override on them.

	Required Permissions:
	org.policies (READ)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	policy_id (int) – The ID of the policy to be added to the devices as an override.

	devices (list) – The devices which will have their policies overridden. Each entry in this list is either
an integer device ID or a Device object.

	Returns:

	
	A list of DevicePolicyChangePreview objects representing the assets
	that change which policy is effective as the result of this operation.

	Return type:

	list[DevicePolicyChangePreview]

	
preview_remove_policy_override()

	Previews changes to this device’s effective policy which result from removing its policy override.

	Required Permissions:
	org.policies (READ)

	Returns:

	
	A list of DevicePolicyChangePreview objects representing the assets
	that change which policy is effective as the result of this operation.

	Return type:

	list[DevicePolicyChangePreview]

	
classmethod preview_remove_policy_override_for_devices(cb, devices)

	Previews changes to the effective policies for devices which result from removing their policy override.

	Required Permissions:
	org.policies (READ)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	devices (list) – The devices which will have their policy overrides removed. Each entry in this list
is either an integer device ID or a Device object.

	Returns:

	
	A list of DevicePolicyChangePreview objects representing the assets
	that change which policy is effective as the result of this operation.

	Return type:

	list[DevicePolicyChangePreview]

	
quarantine(flag)

	Set the quarantine option for this device.

	Required Permissions:
	device.quarantine(EXECUTE)

	Parameters:

	flag (bool) – True to enable quarantine, False to disable it.

	Returns:

	The JSON output from the request.

	Return type:

	str

	
refresh()

	Reload this object from the server.

	
remove_from_groups(groups)

	Given a list of asset groups, removes this device from each one as a member.

	Parameters:

	groups (list[AssetGroup]) – The list of groups to remove this device from.

	
remove_from_groups_by_id(group_ids)

	Given a list of asset group IDs, removes this device from each one as a member.

	Parameters:

	group_ids (list[str]) – The list of group IDs to remove this device from.

	
swagger_meta_file

	The valid values for the ‘filter’ parameter to get_asset_groups_for_devices().

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
uninstall_sensor()

	Uninstall this sensor device.

	Required Permissions:
	device.uninstall(EXECUTE)

	Returns:

	The JSON output from the request.

	Return type:

	str

	
update_policy(policy_id)

	Set the current policy for this device.

	Required Permissions:
	device.policy(UPDATE)

	Parameters:

	policy_id (int) – ID of the policy to set for the device.

	Returns:

	The JSON output from the request.

	Return type:

	str

	
update_sensor_version(sensor_version)

	Update the sensor version for this device.

	Required Permissions:
	org.kits(EXECUTE)

	Parameters:

	sensor_version (dict) – New version properties for the sensor.

	Returns:

	The JSON output from the request.

	Return type:

	str

	
vulnerability_refresh()

	Refresh vulnerability information for the device.

	Required Permissions:
	vulnerabilityAssessment.data(EXECUTE)

	
class DeviceFacet(cb, model_unique_id, initial_data=None)

	Bases: UnrefreshableModel

Represents a device field in a facet search.

Faceting is a search technique that categorizes search results according to common attributes. This allows
users to explore and discover information within a dataset, in this case, the set of devices.

	Example:
	>>> facets = api.select(Device).facets(['policy_id'])
>>> for value in facets[0].values_:
... print(f"Policy ID {value.id}: {value.total} device(s)")

	Parameters:

	
	field – Name of the field being faceted

	values – The values of the faceted field.

Initialize the DeviceFacet object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – Not used.

	initial_data (dict) – Initial data used to populate the facet.

	
class DeviceFacetValue(cb, outer, model_unique_id, initial_data)

	Bases: UnrefreshableModel

Represents a value of a particular faceted field.

Faceting is a search technique that categorizes search results according to common attributes. This allows
users to explore and discover information within a dataset, in this case, the set of devices.

Initialize the DeviceFacetValue object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	outer (DeviceFacet) – Reference to outer facet object.

	model_unique_id (str) – Value ID.

	initial_data (dict) – Initial data used to populate the facet value.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
query_devices()

	Set up a device query to find all devices that match this facet value.

Example

>>> facets = api.select(Device).facets(['policy_id'])
>>> for value in facets[0].values_:
... print(f"Policy ID = {value.id}:")
... for dev in value.query_devices():
... print(f" {dev.name} ({dev.last_external_ip_address})")

	Returns:

	
	A new DeviceQuery set with the criteria, which may have additional criteria added
	to it.

	Return type:

	DeviceQuery

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
property values_

	Returns the list of facet values for this facet.

	
class DeviceSearchQuery(doc_class, cb)

	Bases: BaseQuery, QueryBuilderSupportMixin, CriteriaBuilderSupportMixin, IterableQueryMixin, AsyncQueryMixin

Query object that is used to locate Device objects.

The DeviceSearchQuery is constructed via SDK functions like the select() method on CBCloudAPI.
The user would then add a query and/or criteria to it before iterating over the results.

Initialize the DeviceSearchQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
background_scan(scan)

	Set the background scan option for the specified devices.

	Required Permissions:
	device.bg-scan(EXECUTE)

	Parameters:

	scan (bool) – True to turn background scan on, False to turn it off.

	Returns:

	The JSON output from the request.

	Return type:

	str

	
bypass(enable)

	Set the bypass option for the specified devices.

	Required Permissions:
	device.bypass(EXECUTE)

	Parameters:

	enable (bool) – True to enable bypass, False to disable it.

	Returns:

	The JSON output from the request.

	Return type:

	str

	
delete_sensor()

	Delete the specified sensor devices.

	Required Permissions:
	device.deregistered(DELETE)

	Returns:

	The JSON output from the request.

	Return type:

	str

	
download()

	Uses the query parameters that have been set to download all device listings in CSV format.

	Deprecated:
	Use DeviceSearchQuery.export for increased export capabilities and limits

Example

>>> cb.select(Device).set_status(["ALL"]).download()

	Required Permissions:
	device(READ)

	Returns:

	The CSV raw data as returned from the server.

	Return type:

	str

	Raises:

	ApiError – If status values have not been set before calling this function.

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
export()

	Starts the process of exporting Devices from the organization in CSV format.

Example

>>> cb.select(Device).set_status(["ACTIVE"]).export()

	Required Permissions:
	device(READ)

	Returns:

	The asynchronous job that will provide the export output when the server has prepared it.

	Return type:

	Job

	
facets(fieldlist, max_rows=0)

	Return information about the facets for all matching devices, using the defined criteria.

Example

>>> query = api.select(Device).where('')
>>> facets = query.facets(['policy_id', 'status', 'os', 'ad_group_id'])
>>> for f in facets:
... print(f"Field {f.field} - {len(f.values_)} distinct values")

	Required Permissions:
	device(READ)

	Parameters:

	
	fieldlist (list[str]) – List of facet field names. Valid names are “policy_id”, “status”, “os”,
“ad_group_id”, “cloud_provider_account_id”, “auto_scaling_group_name”,
and “virtual_private_cloud_id”.

	max_rows (int) – The maximum number of rows to return. 0 means return all rows.

	Returns:

	A list of facet information.

	Return type:

	list[DeviceFacet]

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
quarantine(enable)

	Set the quarantine option for the specified devices.

	Required Permissions:
	device.quarantine(EXECUTE)

	Parameters:

	enable (bool) – True to enable quarantine, False to disable it.

	Returns:

	The JSON output from the request.

	Return type:

	str

	
scroll(rows=10000)

	Iteratively paginate all Devices beyond the 10k max search limits.

To fetch the next set of Devices repeatively call the scroll function until
DeviceSearchQuery.num_remaining == 0 or no results are returned.

Example

>>> cb.select(Device).set_status(["ACTIVE"]).scroll(100)

	Required Permissions:
	device(READ)

	Parameters:

	rows (int) – The number of rows to fetch

	Returns:

	The list of results

	Return type:

	list[Device]

	
set_ad_group_ids(ad_group_ids)

	Restricts the devices that this query is performed on to the specified AD group IDs.

	Parameters:

	ad_group_ids (list) – List of AD group IDs to restrict the search to.

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
set_auto_scaling_group_name(group_names)

	Restricts the devices that this query is performed on to the specified auto scaling group names.

	Parameters:

	group_names (list) – List of group names to restrict search to.

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
set_cloud_provider_account_id(account_ids)

	Restricts the devices that this query is performed on to the specified cloud provider account IDs.

	Parameters:

	account_ids (list) – List of account IDs to restrict search to.

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
set_deployment_type(deployment_type)

	Restricts the devices that this query is performed on to the specified deployment types.

	Parameters:

	deployment_type (list) – List of deployment types to restrict search to.

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
set_device_ids(device_ids)

	Restricts the devices that this query is performed on to the specified device IDs.

	Parameters:

	device_ids (list) – List of device IDs to restrict the search to.

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
set_exclude_sensor_versions(sensor_versions)

	Restricts the devices that this query is performed on to exclude specified sensor versions.

	Parameters:

	sensor_versions (list) – List of sensor versions to be excluded.

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
set_last_contact_time(*args, **kwargs)

	Restricts the devices that this query is performed on to the specified last contact time.

	Parameters:

	
	*args (list) – Not used, retained for compatibility.

	**kwargs (dict) – Keyword arguments to this function. The critical ones are “start” (the start time),
“end” (the end time), and “range” (the range value).

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
set_max_rows(max_rows)

	Sets the max number of devices to fetch in a singular query

	Parameters:

	max_rows (integer) – Max number of devices. Must be in the range (0, 10000).

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
set_os(operating_systems)

	Restricts the devices that this query is performed on to the specified operating systems.

	Parameters:

	operating_systems (list) – List of operating systems to restrict search to. Valid values in this list are
“WINDOWS”, “ANDROID”, “MAC”, “IOS”, “LINUX”, and “OTHER”.

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
set_policy_ids(policy_ids)

	Restricts the devices that this query is performed on to the specified policy IDs.

	Parameters:

	policy_ids (list) – List of policy IDs to restrict the search to.

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
set_status(statuses)

	Restricts the devices that this query is performed on to the specified status values.

	Parameters:

	statuses (list) – List of statuses to restrict search to. Valid values in this list are “PENDING”,
“REGISTERED”, “UNINSTALLED”, “DEREGISTERED”, “ACTIVE”, “INACTIVE”, “ERROR”, “ALL”,
“BYPASS_ON”, “BYPASS”, “QUARANTINE”, “SENSOR_OUTOFDATE”, “DELETED”, and “LIVE”.

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
set_target_priorities(target_priorities)

	Restricts the devices that this query is performed on to the specified target priority values.

	Parameters:

	target_priorities (list) – List of priorities to restrict search to. Valid values in this list are “LOW”,
“MEDIUM”, “HIGH”, and “MISSION_CRITICAL”.

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
set_virtual_private_cloud_id(cloud_ids)

	Restricts the devices that this query is performed on to the specified virtual private cloud IDs.

	Parameters:

	cloud_ids (list) – List of cloud IDs to restrict search to.

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(Device).sort_by("status")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	This instance.

	Return type:

	DeviceSearchQuery

	
uninstall_sensor()

	Uninstall the specified sensor devices.

	Required Permissions:
	device.uninstall(EXECUTE)

	Returns:

	The JSON output from the request.

	Return type:

	str

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
update_policy(policy_id)

	Set the current policy for the specified devices.

	Required Permissions:
	device.policy(UPDATE)

	Parameters:

	policy_id (int) – ID of the policy to set for the devices.

	Returns:

	The JSON output from the request.

	Return type:

	str

	
update_sensor_version(sensor_version)

	Update the sensor version for the specified devices.

	Required Permissions:
	org.kits(EXECUTE)

	Parameters:

	sensor_version (dict) – New version properties for the sensor.

	Returns:

	The JSON output from the request.

	Return type:

	str

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
log = <Logger cbc_sdk.platform.devices (WARNING)>

	“Device Models

Events Module

Model and Query Classes for Events

	
class Event(cb, model_unique_id=None, initial_data=None, force_init=False, full_doc=True)

	Bases: UnrefreshableModel

Events can be queried for via CBCloudAPI.select or an already selected process with Process.events().

Examples

>>> events_query = (api.select(Event).where(process_guid=
 "WNEXFKQ7-00050603-0000066c-00000000-1d6c9acb43e29bb"))
retrieve results synchronously
>>> events = [event for event in events_query]
retrieve results asynchronously
>>> future = events_query.execute_async()
>>> events = future.result()
use an already selected process
>>> process = api.select(Process, "WNEXFKQ7-00050603-0000066c-00000000-1d6c9acb43e29bb")
>>> events_query = process.events()
>>> events = [event for event in events_query]

Initialize the Event object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (str) – The unique ID for this particular instance of the model object.

	initial_data (dict) – The data to use when initializing the model object.

	force_init (bool) – True to force object initialization.

	full_doc (bool) – True to mark the object as fully initialized.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class EventFacet(cb, model_unique_id, initial_data)

	Bases: UnrefreshableModel

Represents the results of an EventFacetQuery.

EventFacet objects contain both Terms and Ranges. Each of those contain facet
fields and values.

Access all of the Terms facet data with EventFacet.Terms.facets() or see just
the field names with EventFacet.Terms.fields().

Access all of the Ranges facet data with EventFacet.Ranges.facets() or see just
the field names with EventFacet.Ranges.fields().

Event Facets can be queried for via CBCloudAPI.select(EventFacet). Specify
a Process GUID with `.where(process_guid=”example_guid”), and facet field(s)
with .add_facet_field(“my_facet_field”).

Examples

>>> event_facet_query = (api.select(EventFacet).where(process_guid=
"WNEXFKQ7-00050603-0000066c-00000000-1d6c9acb43e29bb"))
>>> event_facet_query.add_facet_field("event_type")
retrieve results synchronously
>>> facet = event_facet_query.results
retrieve results asynchronously
>>> future = event_facet_query.execute_async()
>>> result = future.result()
result is a list with one item, so access the first item
>>> facet = result[0]

Initialize an EventFacet object with initial_data.

	
class Ranges(cb, initial_data)

	Bases: UnrefreshableModel

Represents the range (bucketed) facet fields and values associated with an Event Facet query.

Initialize a ProcessFacet Ranges object with initial_data.

	
property facets

	Returns the reified EventFacet.Terms._facets for this result.

	
property fields

	Returns the ranges fields for this result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class Terms(cb, initial_data)

	Bases: UnrefreshableModel

Represents the facet fields and values associated with an Event Facet query.

Initialize a ProcessFacet Terms object with initial_data.

	
property facets

	Returns the terms’ facets for this result.

	
property fields

	Returns the terms facets’ fields for this result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
property ranges_

	Returns the reified EventFacet.Ranges for this result.

	
refresh()

	Reload this object from the server.

	
property terms_

	Returns the reified EventFacet.Terms for this result.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class EventFacetQuery(cls, cb, query=None)

	Bases: FacetQuery

Represents the logic for an Event Facet query.

Initialize the FacetQuery object.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
add_exclusions(key, newlist)

	Add to the exclusions on this query with a custom exclusions key.

Will overwrite any existing exclusion for the specified key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).add_exclusions("type", ["WATCHLIST"])
>>> query = api.select(Alert).add_exclusions("type", "WATCHLIST")

	
add_facet_field(field)

	Sets the facet fields to be received by this query.

	Parameters:

	field (str or [str]) – Field(s) to be received.

	Returns:

	The Query object that will receive the specified field(s).

	Return type:

	Query (AsyncQuery)

Example

>>> cb.select(ProcessFacet).add_facet_field(["process_name", "process_username"])

	
add_range(range)

	Sets the facet ranges to be received by this query.

	Parameters:

	range (dict or [dict]) – Range(s) to be received.

	Returns:

	The Query object that will receive the specified range(s).

	Return type:

	Query (AsyncQuery)

Note

The range parameter must be in this dictionary format:

{

“bucket_size”: “<object>”,

“start”: “<object>”,

“end”: “<object>”,

“field”: “<string>”

},

where “bucket_size”, “start”, and “end” can be numbers or ISO 8601 timestamps.

Examples

>>> cb.select(ProcessFacet).add_range({"bucket_size": 5, "start": 0, "end": 10, "field": "netconn_count"})
>>> cb.select(ProcessFacet).add_range({"bucket_size": "+1DAY", "start": "2020-11-01T00:00:00Z",
... "end": "2020-11-12T00:00:00Z", "field": "backend_timestamp"})

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
limit(limit)

	Sets the maximum number of facets per category (i.e. any Process Search Fields in self._fields).

The default limit for Process Facet searches in the Carbon Black Cloud backend is 100.

	Parameters:

	limit (int) – Maximum number of facets per category.

	Returns:

	The Query object with new limit parameter.

	Return type:

	Query (AsyncQuery)

Example

>>> cb.select(ProcessFacet).where(process_name="foo.exe").limit(50)

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
property results

	Save query results to self._results with self._search() method.

	
set_rows(rows)

	Sets the number of facet results to return with the query.

	Parameters:

	rows (int) – Number of rows to return.

	Returns:

	The Query object with the new rows parameter.

	Return type:

	Query (AsyncQuery)

Example

>>> cb.select(ProcessFacet).set_rows(50)

	
set_time_range(start=None, end=None, window=None)

	Sets the ‘time_range’ query body parameter, determining a time window based on ‘device_timestamp’.

	Parameters:

	
	start (str in ISO 8601 timestamp) – When to start the result search.

	end (str in ISO 8601 timestamp) – When to end the result search.

	window (str) – Time window to execute the result search, ending on the current time.

	"-2w" (Should be in the form) –

	y=year (where) –

	w=week –

	d=day –

	h=hour –

	m=minute –

	s=second. –

Note

	window will take precendent over start and end if provided.

Examples

>>> query = api.select(Process).set_time_range(start="2020-10-20T20:34:07Z").where("query is required")
>>> second_query = api.select(Process).
... set_time_range(start="2020-10-20T20:34:07Z", end="2020-10-30T20:34:07Z").where("query is required")
>>> third_query = api.select(Process).set_time_range(window='-3d').where("query is required")

	
timeout(msecs)

	Sets the timeout on an AsyncQuery.

	Parameters:

	msecs (int) – Timeout duration, in milliseconds. This value can never be greater than the configured
default timeout. If this is 0, the configured default timeout value is used.

	Returns:

	The Query object with new milliseconds parameter.

	Return type:

	Query (AsyncQuery)

Example

>>> cb.select(ProcessFacet).where(process_name="foo.exe").timeout(5000)

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
update_exclusions(key, newlist)

	Update the exclusion on this query with a custom exclusion key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (list) – List of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).update_exclusions("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
class EventQuery(doc_class, cb)

	Bases: Query

Represents the logic for an Event query.

Initialize the Query object.

	Parameters:

	
	doc_class (class) – The class of the model this query returns.

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
add_exclusions(key, newlist)

	Add to the exclusions on this query with a custom exclusions key.

Will overwrite any existing exclusion for the specified key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).add_exclusions("type", ["WATCHLIST"])
>>> query = api.select(Alert).add_exclusions("type", "WATCHLIST")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
batch_size(new_batch_size)

	Set the batch size of the paginated query.

	Parameters:

	new_batch_size (int) – The new batch size.

	Returns:

	A new query with the updated batch size.

	Return type:

	PaginatedQuery

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_fields(fields)

	Sets the fields to be returned with the response.

	Parameters:

	fields (str or list[str]) – Field or list of fields to be returned.

	
set_rows(rows)

	Sets the ‘rows’ query body parameter, determining how many rows of results to request.

	Parameters:

	rows (int) – How many rows to request.

	
set_start(start)

	Sets the ‘start’ query body parameter, determining where to begin retrieving results from.

	Parameters:

	start (int) – Where to start results from.

	
set_time_range(start=None, end=None, window=None)

	Sets the ‘time_range’ query body parameter, determining a time window based on ‘device_timestamp’.

	Parameters:

	
	start (str in ISO 8601 timestamp) – When to start the result search.

	end (str in ISO 8601 timestamp) – When to end the result search.

	window (str) – Time window to execute the result search, ending on the current time.
Should be in the form “-2w”, where y=year, w=week, d=day, h=hour, m=minute, s=second.

Note

	window will take precendent over start and end if provided.

Examples

>>> query = api.select(Process).set_time_range(start="2020-10-20T20:34:07Z").where("query is required")
>>> second_query = api.select(Process).
... set_time_range(start="2020-10-20T20:34:07Z", end="2020-10-30T20:34:07Z").where("query is required")
>>> third_query = api.select(Process).set_time_range(window='-3d').where("query is required")

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	The query with sorting parameters.

	Return type:

	Query

Example

>>> cb.select(Process).where(process_name="cmd.exe").sort_by("device_timestamp")

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
update_exclusions(key, newlist)

	Update the exclusion on this query with a custom exclusion key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (list) – List of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).update_exclusions("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

Grants Module

Model and Query Classes for Administrative Grants and Profiles

	
class Grant(cb, model_unique_id, initial_data=None)

	Bases: MutableBaseModel

Represents a grant of access to the Carbon Black Cloud.

	Parameters:

	
	principal – URN of principal

	expires – Date and time the grant expires

	roles – URNs of roles assigned to grant (obsolete)

	profiles – Profiles assigned to this grant

	org_ref – URN of org that this grant references

	principal_name – Name of principal

	created_by – URN of user that created this grant

	updated_by – URN of user that last updated this grant

	create_time – Date and time the grant was created

	update_time – Date and time the grant was last updated

	can_manage – True if can manage (TBD)

Initialize the Grant object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – URN of the principal associated with this grant.

	initial_data (dict) – Initial data used to populate the grant.

	
class GrantBuilder(cb, principal)

	Bases: object

Auxiliary object used to construct a new grant.

Creates the empty GrantBuilder object.

	Parameters:

	
	cb (CBCloudAPI) – The reference to the API object that accesses the server.

	principal (str) – The URN for the principal.

	
add_role(role)

	Adds a role to be associated with the new grant.

	Parameters:

	role (str) – URN of the role to be added.

	Returns:

	This object.

	Return type:

	GrantBuilder

	
build()

	Builds the new Grant object from the entered data.

	Returns:

	The new Grant object.

	Return type:

	Grant

	
create_profile(template=None)

	Returns either a new Profile, or a ProfileBuilder to begin the process of adding profile to the new grant.

	Parameters:

	template (dict) – Optional template to use for creating the profile object.

	Returns:

	If a template was specified, return the new Profile object.

ProfileBuilder: If template was None, returns a ProfileBuilder object. Call methods on it to set
up the new profile, and then call build() to create the new profile.

	Return type:

	Profile

	
set_org(org)

	Sets the organization reference to be associated with the new grant.

	Parameters:

	org (str) – Organization key or URN of the organization.

	Returns:

	This object.

	Return type:

	GrantBuilder

	
set_principal_name(name)

	Sets the principal name to be associated with the new object.

	Parameters:

	name (str) – Principal name to be used.

	Returns:

	This object.

	Return type:

	GrantBuilder

	
set_roles(roles)

	Sets the roles to be associated with the new grant.

	Parameters:

	roles (list) – List of role URNs.

	Returns:

	This object.

	Return type:

	GrantBuilder

	
class Profile(cb, grant, model_unique_id, initial_data=None)

	Bases: MutableBaseModel

Represents an access profile assigned to a grant.

	Parameters:

	
	profile_uuid – UUID identifying this profile

	orgs – Organization references for this profile

	org_groups – Organization groups added to this grant (TBD)

	roles – URNs of roles assigned to profile

	conditions – Access conditions to be imposed on this profile

	can_manage – True if can manage (TBD)

Initialize the Profile object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	grant (Grant) – Reference to the Grant containing this Profile.

	model_unique_id (str) – UUID of this profile.

	initial_data (dict) – Initial data used to populate the profile.

	
property allowed_orgs

	Returns the list of organization URNs allowed by this profile.

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
matches_template(template)

	Returns whether or not the profile matches the given template.

	Parameters:

	template (dict) – The profile template to match against.

	Returns:

	True if this profile matches the template, False if not.

	Return type:

	bool

	
refresh()

	Reload this object from the server.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
set_disabled(flag)

	Sets the “disabled” flag on a profile.

	Parameters:

	flag (bool) – True to disable the profile, False to enable it.

	
set_expiration(expiration)

	Sets the expiration time on a profile.

	Parameters:

	expiration (str) – Expiration time to set on the profile (ISO 8601 format).

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this object.

	Returns:

	True if the object is validated.

	Return type:

	bool

	Raises:

	InvalidObjectError – If the object has missing fields.

	
class ProfileBuilder(grant)

	Bases: object

Auxiliary object used to construct a new profile on a grant.

Create the empty ProfileBuilder object.

	Parameters:

	grant (Grant/GrantBuilder) – The grant or GrantBuilder the new profile will be attached to.

	
add_org(org)

	Adds the specified organization to the list of organizations for which the new profile is allowed.

	Parameters:

	org (str) – Organization key or URN of the organization to be added.

	Returns:

	This object.

	Return type:

	ProfileBuilder

	
add_role(role)

	Adds a role identifier to the list of roles associated with the new profile.

	Parameters:

	role (str) – URN of the role to add.

	Returns:

	This object.

	Return type:

	ProfileBuilder

	
build()

	Builds the new Profile object from the entered data.

	Returns:

	The new Profile object.

	Return type:

	Profile

	
set_conditions(conditions_structure)

	Sets the access conditions associated with the new profile.

	Parameters:

	conditions_structure (dict) – The conditions associated with the new profile, with ‘cidr’, ‘expiration’,
and ‘disabled’ members.

	Returns:

	This object.

	Return type:

	ProfileBuilder

	
set_disabled(flag)

	Sets whether or not the new profile is disabled.

	Parameters:

	flag (bool) – True if this profile is disabled, False if noe.

	Returns:

	This object.

	Return type:

	ProfileBuilder

	
set_expiration(expiration)

	Sets the expiration time on the new profile.

	Parameters:

	expiration (str) – The expiration time, specified as ISO 8601.

	Returns:

	This object.

	Return type:

	ProfileBuilder

	
set_orgs(orgs_list)

	Set the list of organizations to which the new profile is allowed access.

	Parameters:

	orgs_list (list) – List of organization keys or URNs.

	Returns:

	This object.

	Return type:

	ProfileBuilder

	
set_roles(roles_list)

	Sets the list of roles associated with the new profile.

	Parameters:

	roles_list (list) – A list of role URNs.

	Returns:

	This object.

	Return type:

	ProfileBuilder

	
classmethod create(cb, template=None, **kwargs)

	Returns either a new Grant, or a GrantBuilder to begin the process of creating a new grant.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	template (dict) – Optional template to use for creating the grant object.

	kwargs (dict) – Additional arguments to be used to specify the principal, if template is None.

	ID. (The arguments to be used are 'org_key' and 'userid' for the two parts of the) –

	Returns:

	The new grant object, if the template is specified.

GrantBuilder: If template was None, returns a GrantBuilder object. Call methods on it to set
up the new grant, and then call build() to create the new grant.

	Return type:

	Grant

	Raises:

	ApiError – If the principal is inadequately specified (whether for the Grant or GrantBuilder).

	
create_profile(template=None)

	Returns either a new Profile, or a ProfileBuilder to begin the process of adding a new profile to this grant.

	Parameters:

	template (dict) – Optional template to use for creating the profile object.

	Returns:

	If a template was specified, return the new Profile object.

ProfileBuilder: If template was None, returns a ProfileBuilder object. Call methods on it to set
up the new profile, and then call build() to create the new profile.

	Return type:

	Profile

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
classmethod get_permitted_role_urns(cb)

	Returns a list of the URNs of all permitted roles that we can assign to a user.

	Parameters:

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	Returns:

	A list of string role URNs that we are permitted to manage (assign to users).

	Return type:

	list

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
property profiles_

	Return the profiles associated with this grant.

	Returns:

	The profiles associated with this grant, each represented as a Profile object.

	Return type:

	list

	
refresh()

	Reload this object from the server.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this object.

	Returns:

	True if the object is validated.

	Return type:

	bool

	Raises:

	InvalidObjectError – If the object has missing fields.

	
class GrantQuery(doc_class, cb)

	Bases: BaseQuery, IterableQueryMixin, AsyncQueryMixin

Query for retrieving grants in bulk.

Initialize the Query object.

	Parameters:

	
	doc_class (class) – The class of the model this query returns.

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	
add_principal(principal_urn, org_urn)

	Add a new principal to the query.

	Parameters:

	
	principal_urn (str) – URN of the principal to search for grants on.

	org_urn (str) – URN of the organization to which the principal belongs.

	Returns:

	This object.

	Return type:

	GrantQuery

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
log = <Logger cbc_sdk.platform.grants (WARNING)>

	Grant and Profile Models

	
normalize_org(org)

	Internal function to normalize an org reference to a URN.

Jobs Module

Model and Query Classes for Jobs API

	
class Job(cb, model_unique_id, initial_data=None)

	Bases: NewBaseModel

Represents a job currently executing in the background.

	Parameters:

	
	connector_id – Connector ID for the job

	create_time – Time this job was created

	errors – Errors for the job

	id – ID of the job

	job_parameters – Parameters that were used for this job

	last_update_time – Last time this job was updated

	org_key – Organization key of the org this job is being run against

	owner_id – ID of the job owner

	status – Current job status

	type – Type of job this is

Initialize the Job object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (int) – ID of the job.

	initial_data (dict) – Initial data used to populate the job.

	
await_completion(timeout=0)

	Create a Python Future to check for job completion and return results when available.

Returns a Future object which can be used to await results that are ready to fetch. This function call
does not block.

	Required Permissions:
	jobs.status (READ)

	Parameters:

	timeout (int) – The timeout for this wait in milliseconds. If this is 0, the default value will be used.

	Returns:

	
	A Future which can be used to wait for this job’s completion. When complete, the result of the
	Future will be this object.

	Return type:

	Future

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_output_as_file(filename)

	Export the results from the job, writing the results to the given file.

	Required Permissions:
	jobs.status (READ)

	Parameters:

	filename (str) – Name of the file to write the results to.

	
get_output_as_lines()

	Export the results from the job, returning the data as iterated lines of text.

This is only intended for output that can reasonably be represented as lines of text, such as plain text or
CSV. If a job outputs structured text like JSON or XML, this method should not be used.

	Required Permissions:
	jobs.status (READ)

	Returns:

	An iterable that can be used to get each line of text in turn as a string.

	Return type:

	iterable

	
get_output_as_stream(output)

	Export the results from the job, writing the results to the given stream.

	Required Permissions:
	jobs.status (READ)

	Parameters:

	output (RawIOBase) – Stream to write the CSV data from the request to.

	
get_output_as_string()

	Export the results from the job, returning the results as a string.

	Required Permissions:
	jobs.status (READ)

	Returns:

	The results from the job.

	Return type:

	str

	
get_progress()

	Get and return the current progress information for the job.

	Required Permissions:
	jobs.status (READ)

	Returns:

	Total number of items to be operated on by this job.
int: Total number of items for which operation has been completed.
str: Current status message for the job.

	Return type:

	int

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class JobQuery(doc_class, cb)

	Bases: BaseQuery, IterableQueryMixin, AsyncQueryMixin

Query for retrieving current jobs.

Initialize the Query object.

	Parameters:

	
	doc_class (class) – The class of the model this query returns.

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

Legacy Alerts Module

Model and Query Classes for Legacy Alerts and Workflows used Alert API v6 and SDK 1.4.3 or earlier

	
class LegacyAlertSearchQueryCriterionMixin

	Bases: CriteriaBuilderSupportMixin

Represents a legacy alert, based on Alert API v6 or SDK 1.4.3 or earlier.

	
set_alert_ids(alert_ids)

	Restricts the alerts that this query is performed on to the specified alert IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	alert_ids (list) – List of string alert IDs.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_blocked_threat_categories(categories)

	The field blocked_threat_category was deprecated and not included in v7. This method has been removed.

See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

Args:
categories (list): List of threat categories to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_categories(categories)

	The field categories was deprecated and not included in v7. This method has been removed.

In Alerts v7, only records with the type THREAT are returned.
Records that in v6 had the category MONITORED (Observed) are now Observations
See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

	Parameters:

	categories (list) – List of categories to be restricted to.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_cluster_names(names)

	Restricts the alerts that this query is performed on to the specified Kubernetes cluster names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of Kubernetes cluster names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_create_time(*args, **kwargs)

	Restricts the alerts that this query is performed on to the specified creation time.

The time may either be specified as a start and end point or as a range.
In SDK 1.5.0 to align with Alerts v7 API, create_time is set as time_range outside of criteria.

	Deprecated:
	Use add_time_criteria(field_name, start, end, range) instead.

	Parameters:

	
	*args (list) – Not used.

	**kwargs (dict) – Used to specify start= for start time, end= for end time, and range= for range.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_ids(device_ids)

	Restricts the alerts that this query is performed on to the specified device IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	device_ids (list) – List of integer device IDs.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_locations(locations)

	Restricts the alerts that this query is performed on to the specified device locations.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	locations (list) – List of device locations to look for. Valid values are “ONSITE”, “OFFSITE”,
and “UNKNOWN”.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_device_names(device_names)

	Restricts the alerts that this query is performed on to the specified device names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	device_names (list) – List of string device names.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_os(device_os)

	Restricts the alerts that this query is performed on to the specified device operating systems.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	device_os (list) – List of string operating systems. Valid values are “WINDOWS”, “ANDROID”,
“MAC”, “IOS”, “LINUX”, and “OTHER.”

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_os_versions(device_os_versions)

	Restricts the alerts that this query is performed on to the specified device operating system versions.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	device_os_versions (list) – List of string operating system versions.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_device_username(users)

	Restricts the alerts that this query is performed on to the specified user names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	users (list) – List of string user names.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_egress_group_ids(ids)

	Restricts the alerts that this query is performed on to the specified egress group IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of egress group IDs to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_egress_group_names(names)

	Restricts the alerts that this query is performed on to the specified egress group names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of egress group names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_external_device_friendly_names(names)

	Restricts the alerts that this query is performed on to the specified external device friendly names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of external device friendly names to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_external_device_ids(ids)

	Restricts the alerts that this query is performed on to the specified external device IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of external device IDs to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_group_results(do_group)

	The field group_results was deprecated and not included in v7. This method has been removed.

It previously specified whether to group the results of the query.
Use the Grouped Alerts Operations [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/alerts-api/]
#grouped-alerts-operations) instead.
See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

	Parameters:

	do_group (bool) – True to group the results, False to not do so.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_ip_reputations(reputations)

	Restricts the alerts that this query is performed on to the specified IP reputation values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	reputations (list) – List of IP reputation values to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_kill_chain_statuses(statuses)

	The field kill_chain_status was deprecated and not included in v7. This method has been removed.

See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

Args:
statuses (list): List of kill chain statuses to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_legacy_alert_ids(alert_ids)

	Restricts the alerts that this query is performed on to the specified legacy alert IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	alert_ids (list) – List of string legacy alert IDs.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_namespaces(namespaces)

	Restricts the alerts that this query is performed on to the specified Kubernetes namespaces.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	namespaces (list) – List of Kubernetes namespaces to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_not_blocked_threat_categories(categories)

	The field not_blocked_threat_category was deprecated and not included in v7. This method has been removed.

See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

Args:
categories (list): List of threat categories to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_policy_applied(applied_statuses)

	Restricts the alerts that this query is performed on to the specified policy status values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	applied_statuses (list) – List of status values to look for. Valid values are “APPLIED” and “NOT_APPLIED”.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_policy_ids(policy_ids)

	Restricts the alerts that this query is performed on to the specified policy IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	policy_ids (list) – List of integer policy IDs.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_policy_names(policy_names)

	Restricts the alerts that this query is performed on to the specified policy names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	policy_names (list) – List of string policy names.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_ports(ports)

	Restricts the alerts that this query is performed on to the specified netconn_local_ports.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

Note that in SDK 1.5.0, to align with Alerts API v7, the search field was updated from
port to netconn_local_port. It is possible to search on either netconn_local_port
or netconn_remote_port using the `add_criteria(fieldname, [field values]) method.

	Parameters:

	ports (list) – List of netconn_local_ports to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_process_names(process_names)

	Restricts the alerts that this query is performed on to the specified process names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	process_names (list) – List of string process names.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_process_sha256(shas)

	Restricts the alerts that this query is performed on to the specified process SHA-256 hash values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	shas (list) – List of string process SHA-256 hash values.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_product_ids(ids)

	Restricts the alerts that this query is performed on to the specified product IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of product IDs to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_product_names(names)

	Restricts the alerts that this query is performed on to the specified product names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of product names to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_protocols(protocols)

	Restricts the alerts that this query is performed on to the specified protocols.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	protocols (list) – List of protocols to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_reason_code(reason)

	Restricts the alerts that this query is performed on to the specified reason codes (enum values).

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	reason (list) – List of string reason codes to look for.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_remote_domains(domains)

	Restricts the alerts that this query is performed on to the specified remote domains.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	domains (list) – List of remote domains to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_remote_ips(addrs)

	Restricts the alerts that this query is performed on to the specified remote IP addresses.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	addrs (list) – List of remote IP addresses to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_replica_ids(ids)

	Restricts the alerts that this query is performed on to the specified pod names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of pod names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_reputations(reps)

	Restricts the alerts that this query is performed on to the specified reputation values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	reps (list) – List of string reputation values. Valid values are “KNOWN_MALWARE”, “SUSPECT_MALWARE”,
“PUP”, “NOT_LISTED”, “ADAPTIVE_WHITE_LIST”, “COMMON_WHITE_LIST”, “TRUSTED_WHITE_LIST”,
and “COMPANY_BLACK_LIST”.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_rule_ids(ids)

	Restricts the alerts that this query is performed on to the specified Kubernetes policy rule IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

In SDK prior to 1.5.0 this was only supported for Container Runtime Alerts so will
convert to k8s_rule_id in criteria. In SDK 1.5.0 and later, aligned to Alert v7 API, use add_criteria()
should be used for both k8s_rule_id and for other alert types, rule_id.

	Parameters:

	ids (list) – List of Kubernetes policy rule IDs to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_rule_names(names)

	Restricts the alerts that this query is performed on to the specified Kubernetes policy rule names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of Kubernetes policy rule names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_run_states(states)

	Restricts the alerts that this query is performed on to the specified run states.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	states (list) – List of run states to look for. Valid values are “DID_NOT_RUN”, “RAN”, and “UNKNOWN”.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_sensor_actions(actions)

	Restricts the alerts that this query is performed on to the specified sensor actions.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	actions (list) – List of sensor actions to look for. Valid values are “POLICY_NOT_APPLIED”, “ALLOW”,
“ALLOW_AND_LOG”, “TERMINATE”, and “DENY”.

	Returns:

	This instance.

	Return type:

	CBAnalyticsAlertSearchQuery

	
set_serial_numbers(serial_numbers)

	Restricts the alerts that this query is performed on to the specified serial numbers.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	serial_numbers (list) – List of serial numbers to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_tags(tags)

	Restricts the alerts that this query is performed on to the specified tag values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	tags (list) – List of string tag values.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_target_priorities(priorities)

	Restricts the alerts that this query is performed on to the specified target priority values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	priorities (list) – List of string target priority values. Valid values are “LOW”, “MEDIUM”,
“HIGH”, and “MISSION_CRITICAL”.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_threat_cause_vectors(vectors)

	The field threat_cause_vector was deprecated and not included in v7. This method has been removed.

See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

	Parameters:

	vectors (list) – List of threat cause vectors to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_threat_ids(threats)

	Restricts the alerts that this query is performed on to the specified threat ID values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	threats (list) – List of string threat ID values.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_types(alerttypes)

	Restricts the alerts that this query is performed on to the specified alert type values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	alerttypes (list) – List of string alert type values. Valid values are “CB_ANALYTICS”,
“WATCHLIST”, “DEVICE_CONTROL”, and “CONTAINER_RUNTIME”. In SDK 1.5.0,
to align with Alert API v7, more alert types are available but the add_criteria
method must be used.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

Note: - When filtering by fields that take a list parameter, an empty list will be treated as a wildcard and
match everything.

	
set_vendor_ids(ids)

	Restricts the alerts that this query is performed on to the specified vendor IDs.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of vendor IDs to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_vendor_names(names)

	Restricts the alerts that this query is performed on to the specified vendor names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of vendor names to look for.

	Returns:

	This instance.

	Return type:

	DeviceControlAlertSearchQuery

	
set_watchlist_ids(ids)

	Restricts the alerts that this query is performed on to the specified watchlist ID values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	ids (list) – List of string watchlist ID values.

	Returns:

	This instance.

	Return type:

	WatchlistAlertSearchQuery

	
set_watchlist_names(names)

	Restricts the alerts that this query is performed on to the specified watchlist name values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of string watchlist name values.

	Returns:

	This instance.

	Return type:

	WatchlistAlertSearchQuery

	
set_workflows(workflow_vals)

	Restricts the alerts that this query is performed on to the specified workflow status values.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	workflow_vals (list) – List of string alert type values. Valid values are “OPEN” and “DISMISSED”.

	Returns:

	This instance.

	Return type:

	AlertSearchQuery

	
set_workload_ids(ids)

	The field workload_id was deprecated and not included in v7. This method has been removed.

Use workload_name instead. See Developer Network Alerts v6 Migration [https://developer.carbonblack.com/reference/carbon-black-cloud/guides/api-migration/alerts-migration/]
for more details.

	Parameters:

	ids (list) – List of workload IDs to look for.

	Raises:

	FunctionalityDecommissioned – If the requested attribute is no longer available.

	
set_workload_kinds(kinds)

	Restricts the alerts that this query is performed on to the specified workload types.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	kinds (list) – List of workload types to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

	
set_workload_names(names)

	Restricts the alerts that this query is performed on to the specified workload names.

	Deprecated:
	Use add_criteria(field_name, [field_value]) instead.

	Parameters:

	names (list) – List of workload names to look for.

	Returns:

	This instance.

	Return type:

	ContainerRuntimeAlertSearchQuery

Network Threat Metadata Module

Model Class for NetworkThreatMetadata

	
class NetworkThreatMetadata(cb, model_unique_id=None, initial_data=None, force_init=False, full_doc=True)

	Bases: NewBaseModel

Represents a NetworkThreatMetadata

	Parameters:

	
	detector_abstract – Abstract or description of the detector

	detector_goal – Description of what the detector is achieving

	false_negatives – Highlights why detector could not have been triggered

	false_positives – Highlights why detector could have been triggered

	threat_public_comment – Public comment of the threat

Initialize the NetworkThreatMetadata object.

	Required Permissions:
	org.xdr.metadata (READ)

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (Any) – The unique ID for this particular instance of the model object.

	initial_data (dict) – Not used, retained for compatibility.

	force_init (bool) – False to not force object initialization.

	full_doc (bool) – True to mark the object as fully initialized.

	Raises:

	ApiError – if model_unique_id is not provided

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

Observations Module

Model and Query Classes for Observations

	
class Observation(cb, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: NewBaseModel

Represents an Observation

Initialize the Observation object.

	Required Permissions:
	org.search.events (READ)

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (Any) – The unique ID for this particular instance of the model object.

	initial_data (dict) – The data to use when initializing the model object.

	force_init (bool) – True to force object initialization.

	full_doc (bool) – False to mark the object as not fully initialized.

	
static bulk_get_details(cb, alert_id=None, observation_ids=None, timeout=0)

	Bulk get details

	Required Permissions:
	org.search.events (READ, CREATE)

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	alert_id (str) – An alert id to fetch associated observations

	observation_ids (list) – A list of observation ids to fetch

	timeout (int) – Observations details request timeout in milliseconds. This may never be greater than
the configured default timeout. If this value is 0, the configured default timeout is used.

	Returns:

	list of Observations

	Return type:

	list

	Raises:

	ApiError – if cb is not instance of CBCloudAPI

	
deobfuscate_cmdline()

	Deobfuscates the command line of the process pointed to by the observation and returns the deobfuscated result.

	Required Permissions:
	script.deobfuscation(EXECUTE)

	Returns:

	A dict containing information about the obfuscated command line, including the deobfuscated result.

	Return type:

	dict

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_details(timeout=0, async_mode=False)

	Requests detailed results.

	Parameters:

	
	timeout (int) – Observations details request timeout in milliseconds. This may never be greater than the
configured default timeout. If this value is 0, the configured default timeout is used.

	async_mode (bool) – True to request details in an asynchronous manner.

	Returns:

	Observation object enriched with the details fields

	Return type:

	Observation

Note

	When using asynchronous mode, this method returns a python future.
You can call result() on the future object to wait for completion and get the results.

Examples

>>> observation = api.select(Observation, observation_id)
>>> observation.get_details()

>>> observations = api.select(Observation).where(process_pid=2000)
>>> observations[0].get_details()

	
get_network_threat_metadata()

	Requests Network Threat Metadata.

	Returns:

	Get the metadata for a given detector (rule).

	Return type:

	NetworkThreatMetadata

	Raises:

	ApiError – when rule_id is not returned for the Observation

Examples

>>> observation = api.select(Observation, observation_id)
>>> threat_metadata = observation.get_network_threat_metadata()

	
refresh()

	Reload this object from the server.

	
static search_suggestions(cb, query, count=None)

	Returns suggestions for keys and field values that can be used in a search.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	query (str) – A search query to use.

	count (int) – (optional) Number of suggestions to be returned

	Returns:

	A list of search suggestions expressed as dict objects.

	Return type:

	list

	Raises:

	ApiError – if cb is not instance of CBCloudAPI

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class ObservationFacet(cb, model_unique_id, initial_data)

	Bases: UnrefreshableModel

Represents an observation facet retrieved.

	Parameters:

	
	terms – Contains the Observations Facet search results

	ranges – Groupings for search result properties that are ISO 8601 timestamps or numbers

	contacted – The number of searchers contacted for this query

	completed – The number of searchers that have reported their results

Initialize the Terms object with initial data.

	
class Ranges(cb, initial_data)

	Bases: UnrefreshableModel

Represents the range (bucketed) facet fields and values associated with an Observation Facet query.

Initialize an ObservationFacet Ranges object with initial_data.

	
property facets

	Returns the reified ObservationFacet.Terms._facets for this result.

	
property fields

	Returns the ranges fields for this result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class Terms(cb, initial_data)

	Bases: UnrefreshableModel

Represents the facet fields and values associated with an Observation Facet query.

Initialize an ObservationFacet Terms object with initial_data.

	
property facets

	Returns the terms’ facets for this result.

	
property fields

	Returns the terms facets’ fields for this result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
property ranges_

	Returns the reified ObservationFacet.Ranges for this result.

	
refresh()

	Reload this object from the server.

	
property terms_

	Returns the reified ObservationFacet.Terms for this result.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class ObservationGroup(cb, initial_data=None)

	Bases: object

Represents ObservationGroup

Initialize ObservationGroup object

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	initial_data (dict) – The data to use when initializing the model object.

Notes

The constructed object will have the following data:
- group_start_timestamp
- group_end_timestamp
- group_key
- group_value

	
class ObservationQuery(doc_class, cb)

	Bases: Query

Represents the query logic for an Observation query.

This class specializes Query to handle the particulars of observations querying.

Initialize the ObservationQuery object.

	Parameters:

	
	doc_class (class) – The class of the model this query returns.

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
add_exclusions(key, newlist)

	Add to the exclusions on this query with a custom exclusions key.

Will overwrite any existing exclusion for the specified key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).add_exclusions("type", ["WATCHLIST"])
>>> query = api.select(Alert).add_exclusions("type", "WATCHLIST")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
batch_size(new_batch_size)

	Set the batch size of the paginated query.

	Parameters:

	new_batch_size (int) – The new batch size.

	Returns:

	A new query with the updated batch size.

	Return type:

	PaginatedQuery

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
get_group_results(fields, max_events_per_group=None, rows=500, start=None, range_duration=None, range_field=None, range_method=None)

	Get group results grouped by provided fields.

	Parameters:

	
	fields (str / list) – field or fields by which to perform the grouping

	max_events_per_group (int) – Maximum number of events in a group, if not provided, all events will be returned

	rows (int) – Number of rows to request, can be paginated

	start (int) – First row to use for pagination

	ranges (dict) – dict with information about duration, field, method

	Returns:

	grouped results

	Return type:

	dict

Examples

>>> for group in api.select(Observation).where(process_pid=2000).get_group_results("device_name"):
>>> ...

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(**kwargs)

	or_() criteria are explicitly provided to Observation queries.

This method overrides the base class in order to provide or_() functionality rather than raising an exception.

	
set_fields(fields)

	Sets the fields to be returned with the response.

	Parameters:

	fields (str or list[str]) – Field or list of fields to be returned.

	
set_rows(rows)

	Sets the ‘rows’ query body parameter to the ‘start search’ API call, determining how many rows to request.

	Parameters:

	rows (int) – How many rows to request.

	Returns:

	ObservationQuery object

	Return type:

	Query

Example

>>> cb.select(Observation).where(process_name="foo.exe").set_rows(50)

	
set_start(start)

	Sets the ‘start’ query body parameter, determining where to begin retrieving results from.

	Parameters:

	start (int) – Where to start results from.

	
set_time_range(start=None, end=None, window=None)

	Sets the ‘time_range’ query body parameter, determining a time window based on ‘device_timestamp’.

	Parameters:

	
	start (str in ISO 8601 timestamp) – When to start the result search.

	end (str in ISO 8601 timestamp) – When to end the result search.

	window (str) – Time window to execute the result search, ending on the current time.
Should be in the form “-2w”, where y=year, w=week, d=day, h=hour, m=minute, s=second.

Note

	window will take precendent over start and end if provided.

Examples

>>> query = api.select(Process).set_time_range(start="2020-10-20T20:34:07Z").where("query is required")
>>> second_query = api.select(Process).
... set_time_range(start="2020-10-20T20:34:07Z", end="2020-10-30T20:34:07Z").where("query is required")
>>> third_query = api.select(Process).set_time_range(window='-3d').where("query is required")

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	The query with sorting parameters.

	Return type:

	Query

Example

>>> cb.select(Process).where(process_name="cmd.exe").sort_by("device_timestamp")

	
timeout(msecs)

	Sets the timeout on a observation query.

	Parameters:

	msecs (int) – Timeout duration, in milliseconds. This may never be greater than the configured default
timeout. If this value is 0, the configured default timeout is used.

	Returns:

	The Query object with new milliseconds parameter.

	Return type:

	Query (ObservationQuery)

Example

>>> cb.select(Observation).where(process_name="foo.exe").timeout(5000)

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
update_exclusions(key, newlist)

	Update the exclusion on this query with a custom exclusion key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (list) – List of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).update_exclusions("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

Policies Module

Policy implementation as part of Platform API

	
class Policy(cb, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: MutableBaseModel

Represents a policy within the organization.

Create one of these objects (either directly or with the CBCloudAPI.create() method) and set its properties,
then call its save() method to create the policy on the server. This requires the org.policies(CREATE) permission.

Alternatively, you may call Policy.create() to get a PolicyBuilder, use its methods to set the properties of the
new policy, call its build() method to build the populated Policy, then call the policy save() method.

To update a Policy, change the values of its property fields, then call the policy’s save() method. This requires
the org.policies(UPDATE) permission.

To delete an existing Policy, call its delete() method. This requires the org.policies(DELETE) permission.

For information on values for policy settings including enumeration values, see the Policy Service API page:
https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/policy-service/#fields

	Parameters:

	
	id – The policy identifier

	name – Defined name for the policy

	org_key – The organization key associated with the console instance

	priority_level – The priority level designated for policy

	position – Relative priority of this policy within the organization. Lower values indicate higher priority.

	is_system – Indicates that the policy was created by VMware

	description – The description of the policy

	auto_deregister_inactive_vdi_interval_ms – The time in milliseconds to wait after a VDI is inactive before setting the VDI to a DEREGISTERED state

	auto_delete_known_bad_hashes_delay – Enables the Carbon Black Cloud to automatically delete known malware after a specified time in milliseconds

	av_settings – Anti-Virus settings for endpoints and workloads assigned to the policy

	rules – Permission or prevention rules

	directory_action_rules – Rules to deny or allow the deployed sensors to send uploads from specific paths

	sensor_settings – Settings to configure sensor behavior and capabilities

	managed_detection_response_permissions – Permissions for Managed Detection and Response analysts to perform remediations on endpoints and workloads assigned to the policy

	version – Version of the policy

Initialize the Policy object.

	Required Permissions:
	org.policies (READ)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (int) – ID of the policy.

	initial_data (dict) – Initial data used to populate the policy.

	force_init (bool) – If True, forces the object to be refreshed after constructing. Default False.

	full_doc (bool) – If True, object is considered “fully” initialized. Default False.

	
class PolicyBuilder(cb)

	Bases: object

Builder object to simplify the creation of new Policy objects.

To use, call Policy.create() to get a PolicyBuilder, use its methods to set the properties of the
new policy, call its build() method to build the populated Policy, then call the policy save() method.
The org.policy(CREATE) permission is required.

Examples

>>> builder = Policy.create(api)
>>> builder.set_name("New Policy").set_priority("MEDIUM").set_description("New policy description")
>>> # more calls here to set up rules, sensor settings, etc.
>>> policy = builder.build()
>>> policy.save()

Initialize the PolicyBuilder object.

	Parameters:

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_directory_action_rule(path, file_upload, protection)

	Add a directory action rule to the new policy.

	Parameters:

	
	path (str) – Path to the file or directory.

	file_upload (bool) – True to allow the deployed sensor to upload from that path.

	protection (bool) – True to deny the deployed sensor to upload from that path.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	
add_rule(app_type, app_value, operation, action, required=True)

	Add a new rule as discrete data elements to the new policy.

	Parameters:

	
	app_type (str) – Specifies “NAME_PATH”, “SIGNED_BY”, or “REPUTATION”.

	app_value (str) – Value of the attribute specified by app_type to be matched.

	operation (str) – The type of behavior the application is performing.

	action (str) – The action the sensor will take when the application performs the specified action.

	required (bool) – True if this rule is required, False if not.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	Raises:

	InvalidObjectError – If the rule data passed in is not valid.

	
add_rule_config(config_id, name, category, **kwargs)

	Add a new rule configuration as discrete data elements to the new policy.

	Parameters:

	
	config_id (str) – ID of the rule configuration object (a GUID).

	name (str) – Name of the rule configuration object.

	category (str) – Category of the rule configuration object.

	**kwargs (dict) – Parameter values for the rule configuration object.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	Raises:

	InvalidObjectError – If the rule configuration data passed in is not valid.

	
add_rule_config_copy(rule_config)

	Adds a copy of an existing rule configuration to this new policy.

	Parameters:

	rule_config (PolicyRuleConfig) – The rule configuration to copy and add to this object.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	Raises:

	InvalidObjectError – If the rule configuration data passed in is not valid.

	
add_rule_copy(rule)

	Adds a copy of an existing rule to this new policy.

	Parameters:

	rule (PolicyRule) – The rule to copy and add to this object.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	Raises:

	InvalidObjectError – If the rule data passed in is not valid.

	
add_sensor_setting(name, value)

	Add a sensor setting to the policy.

	Parameters:

	
	name (str) – Sensor setting name.

	value (str) – Sensor setting value.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	Raises:

	ApiError – If the sensor setting name is not a valid one.

	
build()

	Build a new Policy object using the contents of this builder.

The new policy must have save() called on it to be saved to the server.

	Returns:

	The new Policy object.

	Return type:

	Policy

	
set_auto_delete_bad_hash_delay(delay)

	Set the delay in milliseconds after which known malware will be deleted.

	Parameters:

	delay (int) – The desired delay interval in milliseconds.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	
set_auto_deregister_interval(interval)

	Set the time in milliseconds after a VDI goes inactive to deregister it.

	Parameters:

	interval (int) – The desired interval in milliseconds.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	
set_avira_protection_cloud(enabled, max_exe_delay=None, max_file_size=None, risk_level=None)

	Set the settings for third-party unknown binary reputation analysis.

	Parameters:

	
	enabled (bool) – True to enable unknown binary reputation analysis.

	max_exe_delay (int) – Time before sending unknown binary for analysis, in seconds.

	max_file_size (int) – Maximum size of file to send for analysis, in megabytes.

	risk_level (int) – Risk level to send for analysis (0-7).

	Returns:

	This object.

	Return type:

	PolicyBuilder

	
set_description(descr)

	Set the new policy description.

	Parameters:

	descr (str) – The new policy description.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	
set_managed_detection_response_permissions(policy_mod, quarantine)

	Set the permissions for managed detection and response.

	Parameters:

	
	policy_mod (bool) – True to allow MDR team to modify the policy.

	quarantine (bool) – True to allow MDR team to quarantine endpoints/workloads associated with the policy.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	
set_name(name)

	Set the new policy name.

	Parameters:

	name (str) – The new policy name.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	
set_on_access_scan(enabled, mode='NORMAL')

	Sets the local scan settings.

	Parameters:

	
	enabled (bool) – True to enable local scan.

	mode (str) – The mode to operate in, either “NORMAL” or “AGGRESSIVE”.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	Raises:

	ApiError – If an invalid value is passed for the “mode” parameter.

	
set_on_demand_scan(enabled, profile='NORMAL', scan_usb='AUTOSCAN', scan_cd_dvd='AUTOSCAN')

	Sets the background scan settings.

	Parameters:

	
	enabled (bool) – True to enable background scan.

	profile (str) – The background scan mode, either “NORMAL” or “AGGRESSIVE”.

	scan_usb (str) – Either “AUTOSCAN” to scan USB devices, or “DISABLED” to not do so.

	scan_cd_dvd (str) – Either “AUTOSCAN” to scan CDs and DVDs, or “DISABLED” to not do so.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	Raises:

	ApiError – If an invalid value is passed for any parameter.

	
set_on_demand_scan_schedule(days, start_hour, range_hours, recover_if_missed=True)

	Sets the schedule for when background scans will be performed.

	Parameters:

	
	days (list[str]) – The days on which to perform background scans.

	start_hour (int) – The hour of the day at which to perform the scans.

	range_hours (int) – The range of hours over which to perform the scans.

	recover_if_missed (bool) – True if the background scan should be performed ASAP if it’s been missed.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	Raises:

	ApiError – If an invalid value is passed for a day of the week.

	
set_priority(priority)

	Set the new policy’s priority. Default is MEDIUM.

	Parameters:

	priority (str) – The priority, either “LOW”, “MEDIUM”, “HIGH”, or “MISSION_CRITICAL”.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	Raises:

	ApiError – If an invalid priority value is passed in.

	
set_signature_update(enabled)

	Set the enable status for signature updates.

	Parameters:

	enabled (bool) – True to enable signature updates.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	
set_signature_update_schedule(full_interval_hours, initial_random_delay_hours, interval_hours)

	Set the signature update schedule.

	Parameters:

	
	full_interval_hours (int) – The interval in hours between signature updates.

	initial_random_delay_hours (int) – The initial delay in hours before the first signature update.

	interval_hours (int) – The interval in hours between signature updates.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	
set_update_servers_offsite(names)

	Sets the list of update servers for offsite devices.

	Parameters:

	names (list[str]) – The list of update servers, as URIs.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	
set_update_servers_onsite(names, preferred_servers=None)

	Sets the list of update servers for internal devices.

	Parameters:

	
	names (list[str]) – The list of available update servers, as URIs.

	preferred_servers (list[str]) – The list of update servers to be considered “preferred,” as URIs.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	
set_update_servers_override(names)

	Sets the list of update servers to override offsite/onsite settings.

	Parameters:

	names (list[str]) – The server names to use, as a list of URIs.

	Returns:

	This object.

	Return type:

	PolicyBuilder

	
add_rule(new_rule)

	Adds a rule to this Policy.

	Parameters:

	new_rule (dict(str,str)) – The new rule to add to this Policy.

Notes

	The new rule must conform to this dictionary format:

{“action”: “ACTION”,
“application”: {“type”: “TYPE”, “value”: “VALUE”},
“operation”: “OPERATION”,
“required”: “REQUIRED”}

	The dictionary keys have these possible values:

“action”: [“IGNORE”, “ALLOW”, “DENY”, “TERMINATE_PROCESS”,
“TERMINATE_THREAD”, “TERMINATE”]

“type”: [“NAME_PATH”, “SIGNED_BY”, “REPUTATION”]

“value”: Any string value to match on

“operation”: [“BYPASS_ALL”, “INVOKE_SCRIPT”, “INVOKE_SYSAPP”,
“POL_INVOKE_NOT_TRUSTED”, “INVOKE_CMD_INTERPRETER”,
“RANSOM”, “NETWORK”, “PROCESS_ISOLATION”, “CODE_INJECTION”,
“MEMORY_SCRAPE”, “RUN_INMEMORY_CODE”, “ESCALATE”, “RUN”]

“required”: [True, False]

	
property bypass_rule_configs

	Returns a dictionary of bypass rule configuration IDs and objects for this Policy.

	Returns:

	
	A dictionary with bypass rule configuration IDs as keys and BypassRuleConfig objects
	as values.

	Return type:

	dict

	
property bypass_rule_configs_list

	Returns a list of bypass rule configuration objects for this Policy.

	Returns:

	A list of BypassRuleConfig objects.

	Return type:

	list

	
property core_prevention_rule_configs

	Returns a dictionary of core prevention rule configuration IDs and objects for this Policy.

	Returns:

	
	A dictionary with core prevention rule configuration IDs as keys and CorePreventionRuleConfig objects
	as values.

	Return type:

	dict

	
property core_prevention_rule_configs_list

	Returns a list of core prevention rule configuration objects for this Policy.

	Returns:

	A list of CorePreventionRuleConfig objects.

	Return type:

	list

	
classmethod create(cb)

	Begins creating a policy by returning a PolicyBuilder.

	Parameters:

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	Returns:

	The new policy builder object.

	Return type:

	PolicyBuilder

	
property data_collection_rule_configs

	Returns a dictionary of data collection rule configuration IDs and objects for this Policy.

	Returns:

	
	A dictionary with data collection rule configuration IDs as keys and DataCollectionRuleConfig objects
	as values.

	Return type:

	dict

	
property data_collection_rule_configs_list

	Returns a list of data collection rule configuration objects for this Policy.

	Returns:

	A list of DataCollectionRuleConfig objects.

	Return type:

	list

	
delete()

	Delete this object.

	
delete_rule(rule_id)

	Deletes a rule from this Policy.

	Parameters:

	rule_id (int) – The ID of the rule to be deleted.

	Raises:

	ApiError – If the rule ID does not exist in this policy.

	
delete_rule_config(rule_config_id)

	Deletes a rule configuration from this Policy.

	Parameters:

	rule_config_id (str) – The ID of the rule configuration to be deleted.

	Raises:

	ApiError – If the rule configuration ID does not exist in this policy.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_ruleconfig_parameter_schema(ruleconfig_id)

	Returns the parameter schema for a specified rule configuration.

Uses cached rule configuration presentation data if present.

	Parameters:

	ruleconfig_id (str) – The rule configuration ID (UUID).

	Returns:

	The parameter schema for this particular rule configuration (a JSON schema).

	Return type:

	dict

	Raises:

	InvalidObjectError – If the rule configuration ID is not valid.

	
property host_based_firewall_rule_config

	Returns the host-based firewall rule configuration for this policy.

	Returns:

	The host-based firewall rule configuration, or None.

	Return type:

	HostBasedFirewallRuleConfig

	Raises:

	InvalidObjectError – If there’s more than one host-based firewall rule configuration (should not happen).

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
property latestRevision

	Returns the latest revision of this policy (compatibility method).

	
property object_rule_configs

	Returns a dictionary of rule configuration IDs and objects for this Policy.

	Returns:

	A dictionary with rule configuration IDs as keys and PolicyRuleConfig objects as values.

	Return type:

	dict

	
property object_rule_configs_list

	Returns a list of rule configuration objects for this Policy.

	Returns:

	A list of PolicyRuleConfig objects.

	Return type:

	list

	
property object_rules

	Returns a dictionary of rule objects and rule IDs for this Policy.

	Returns:

	A dictionary with rule IDs as keys and PolicyRule objects as values.

	Return type:

	dict

	
property policy

	Returns the contents of this policy [compatibility method].

	
preview_add_policy_override(devices)

	Previews changes to the effective policies for devices which result from setting this policy override on them.

	Required Permissions:
	org.policies (READ)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	devices (list) – The devices which will have their policies overridden. Each entry in this list is either
an integer device ID or a Device object.

	Returns:

	
	A list of DevicePolicyChangePreview objects representing the assets
	that change which policy is effective as the result of this operation.

	Return type:

	list[DevicePolicyChangePreview]

	
classmethod preview_policy_rank_changes(cb, changes_list)

	Previews changes in the ranking of policies, and determines how this will affect asset groups.

Example:

>>> cb = CBCloudAPI(profile='sample')
>>> changes = Policy.preview_policy_rank_changes(cb, [(667251, 1)])
>>> # also: changes = Policy.preview_policy_rank_changes(cb, [{"id": 667251, "position": 1}])
>>> len(changes)
2
>>> changes[0].current_policy_id
660578
>>> changes[0].new_policy_id
667251

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	changes_list (list) – The list of proposed changes in the ranking of policies. Each change may be in
the form of a dict, in which case the “id” and “position” members are used to designate the policy ID
and the new position, or in the form of a list or tuple, in which case the first element specifies
the policy ID, and the second element specifies the new position. In all cases, “position” values are
limited to values in the range [1.._N_], where _N_ is the total number of policies in the organization.

	Returns:

	A list of objects containing data previewing the policy changes.

	Return type:

	list[DevicePolicyChangePreview]

	
preview_rank_change(new_rank)

	Previews a change in the ranking of this policy, and determines how this will affect asset groups.

	Parameters:

	new_rank (int) – The new rank to give this policy. Ranks are limited to values in the range [1.._N_],
where _N_ is the total number of policies in the organization.

	Returns:

	A list of objects containing data previewing the policy changes.

	Return type:

	list[DevicePolicyChangePreview]

	
property priorityLevel

	Returns the priority level of this policy (compatibility method).

	
refresh()

	Reload this object from the server.

	
replace_rule(rule_id, new_rule)

	Replaces a rule in this policy.

	Parameters:

	
	rule_id (int) – The ID of the rule to be replaced.

	new_rule (dict) – The data for the new rule.

	Raises:

	ApiError – If the rule ID does not exist in this policy.

	
replace_rule_config(rule_config_id, new_rule_config)

	Replaces a rule configuration in this policy.

	Parameters:

	
	rule_config_id (str) – The ID of the rule configuration to be replaced.

	new_rule_config (dict) – The data for the new rule configuration.

	Raises:

	ApiError – If the rule configuration ID does not exist in this policy.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
set_auth_event_collection(flag)

	Sets auth event collection to be enabled or disabled on this policy.

	Parameters:

	flag (bool) – True to enable auth event data collection, False to disable it.

	Raises:

	ApiError – If the parameter setting operation failed.

	
set_data_collection(parameter, value)

	Sets a data collection parameter value on any data collection rule configurations in the policy that have it.

As a safety check, this method also validates that the type of the existing value of that parameter is the
same as the type of the new value we want to set for that parameter.

	Parameters:

	
	parameter (str) – The name of the parameter to set.

	value (Any) – The value of the parameter to set.

	Raises:

	ApiError – If the parameter setting operation failed.

	
set_xdr_collection(flag)

	Sets XDR collection to be enabled or disabled on this policy.

	Parameters:

	flag (bool) – True to enable XDR data collection, False to disable it.

	Raises:

	ApiError – If the parameter setting operation failed.

	
property systemPolicy

	Returns whether or not this is a systsem policy (compatibility method).

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
valid_rule_configs()

	Returns a dictionary identifying all valid rule configurations for this policy.

	Returns:

	
	A dictionary mapping string ID values (UUIDs) to dicts containing entries for name, description,
	and category.

	Return type:

	dict

	
validate()

	Validates this object.

	Returns:

	True if the object is validated.

	Return type:

	bool

	Raises:

	InvalidObjectError – If the object has missing fields.

	
class PolicyQuery(doc_class, cb)

	Bases: BaseQuery, IterableQueryMixin, AsyncQueryMixin

Query for retrieving policies (summary info only).

Initialize the Query object.

	Parameters:

	
	doc_class (class) – The class of the model this query returns.

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	
add_descriptions(descrs)

	Add policy description(s) to the list to search for.

	Parameters:

	descrs (str/list) – Either a single policy description or a list of descriptions.

	Returns:

	This object instance.

	Return type:

	PolicyQuery

	Raises:

	ApiError – If not supplied with a string or a list of strings.

	
add_names(names)

	Add policy name(s) to the list to search for.

	Parameters:

	names (str/list) – Either a single policy name or a list of names.

	Returns:

	This object instance.

	Return type:

	PolicyQuery

	Raises:

	ApiError – If not supplied with a string or a list of strings.

	
add_policy_ids(ids)

	Add policy ID(s) to the list to search for.

	Parameters:

	ids (int/list) – Either a single policy ID or a list of IDs.

	Returns:

	This object instance.

	Return type:

	PolicyQuery

	Raises:

	ApiError – If not supplied with an int or a list of ints.

	
add_priorities(priorities)

	Add policy priority/priorities to the list to search for.

	Parameters:

	priorities (str/list) – Either a single policy priority value or a list of priority values.

	Returns:

	This object instance.

	Return type:

	PolicyQuery

	Raises:

	ApiError – If not supplied with a string priority value or a list of string priority values.

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
set_system(system)

	Set to look for either system or non-system policies.

	Parameters:

	system (bool) – True to look for system policies, False to look for non-system policies.

	Returns:

	This object instance.

	Return type:

	PolicyQuery

	Raises:

	ApiError – If not supplied with a Boolean.

	
class PolicyRule(cb, parent, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: MutableBaseModel

Represents a rule in the policy.

Create one of these objects, associating it with a Policy, and set its properties, then call its save() method to
add the rule to the policy. This requires the org.policies(UPDATE) permission.

To update a PolicyRule, change the values of its property fields, then call the rule’s save() method. This
requires the org.policies(UPDATE) permission.

To delete an existing PolicyRule, call its delete() method. This requires the org.policies(UPDATE) permission.

	Parameters:

	
	id – The identifier of the rule

	action – The action the sensor will take when an application attempts to perform the selected operation

	application – The path, signature or reputation of the application

	operation – The type of behavior an application is performing

Initialize the PolicyRule object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	parent (Policy) – The “parent” policy of this rule.

	model_unique_id (int) – ID of the rule.

	initial_data (dict) – Initial data used to populate the rule.

	force_init (bool) – If True, forces the object to be refreshed after constructing. Default False.

	full_doc (bool) – If True, object is considered “fully” initialized. Default False.

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
property is_deleted

	Returns True if this rule object has been deleted.

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
refresh()

	Reload this object from the server.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this rule against its constraints.

	Raises:

	InvalidObjectError – If the rule object is not valid.

RuleConfigs Module

Policy rule configuration implementation as part of Platform API

	
class BypassRuleConfig(cb, parent, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: PolicyRuleConfig

Represents a bypass rule configuration in the policy.

Create one of these objects, associating it with a Policy, and set its properties, then call its save() method to
add the rule configuration to the policy. This requires the org.policies(UPDATE) permission.

To update a BypassRuleConfig, change the values of its property fields, then call its save() method. This
requires the org.policies(UPDATE) permission.

To delete an existing BypassRuleConfig, call its delete() method. This requires the org.policies(DELETE)
permission.

	Parameters:

	
	id – The ID of this rule config

	name – The name of this rule config

	description – The description of this rule config

	inherited_from – Indicates where the rule config was inherited from

	category – The category for this rule config

	parameters – The parameters associated with this rule config

	exclusions – The exclusions associated with this rule config

Initialize the BypassRuleConfig object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	parent (Policy) – The “parent” policy of this rule configuration.

	model_unique_id (str) – ID of the rule configuration.

	initial_data (dict) – Initial data used to populate the rule configuration.

	force_init (bool) – If True, forces the object to be refreshed after constructing. Default False.

	full_doc (bool) – If True, object is considered “fully” initialized. Default False.

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_parameter(name, default_value=None)

	Not Supported

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
property parameter_names

	Not Supported

	
refresh()

	Reload this object from the server.

	
replace_exclusions(exclusions)

	Replaces all the exclusions for a bypasss rule configuration

	Parameters:

	exclusions (dict) – The entire exclusion set to be replaced

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
set_parameter(name, value)

	Not Supported

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this rule configuration against its constraints.

	Raises:

	InvalidObjectError – If the rule object is not valid.

	
class CorePreventionRuleConfig(cb, parent, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: PolicyRuleConfig

Represents a core prevention rule configuration in the policy.

Create one of these objects, associating it with a Policy, and set its properties, then call its save() method to
add the rule configuration to the policy. This requires the org.policies(UPDATE) permission.

To update a CorePreventionRuleConfig, change the values of its property fields, then call its save() method. This
requires the org.policies(UPDATE) permission.

To delete an existing CorePreventionRuleConfig, call its delete() method. This requires the org.policies(DELETE)
permission.

	Parameters:

	
	id – The ID of this rule config

	name – The name of this rule config

	description – The description of this rule config

	inherited_from – Indicates where the rule config was inherited from

	category – The category for this rule config

	parameters – The parameters associated with this rule config

	exclusions – The exclusions associated with this rule config

Initialize the CorePreventionRuleConfig object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	parent (Policy) – The “parent” policy of this rule configuration.

	model_unique_id (str) – ID of the rule configuration.

	initial_data (dict) – Initial data used to populate the rule configuration.

	force_init (bool) – If True, forces the object to be refreshed after constructing. Default False.

	full_doc (bool) – If True, object is considered “fully” initialized. Default False.

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_assignment_mode()

	Returns the assignment mode of this core prevention rule configuration.

	Returns:

	The assignment mode, either “REPORT” or “BLOCK”.

	Return type:

	str

	
get_parameter(name, default_value=None)

	Returns a parameter value from the rule configuration.

	Parameters:

	
	name (str) – The parameter name.

	default_value (Any) – The default value to return if there’s no parameter by that name. Default is None.

	Returns:

	The parameter value, or None if there is no value.

	Return type:

	Any

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
property parameter_names

	Returns a list of parameter names in this rule configuration.

	Returns:

	A list of parameter names in this rule configuration.

	Return type:

	list[str]

	
refresh()

	Reload this object from the server.

	
replace_exclusions(exclusions)

	Replaces all the exclusions for a bypasss rule configuration

	Parameters:

	exclusions (dict) – The entire exclusion set to be replaced

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
set_assignment_mode(mode)

	Sets the assignment mode of this core prevention rule configuration.

	Parameters:

	mode (str) – The new mode to set, either “REPORT” or “BLOCK”. The default is “BLOCK”.

	
set_parameter(name, value)

	Sets a parameter value into the rule configuration.

	Parameters:

	
	name (str) – The parameter name.

	value (Any) – The new value to be set.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this rule configuration against its constraints.

	Raises:

	InvalidObjectError – If the rule object is not valid.

	
class DataCollectionRuleConfig(cb, parent, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: PolicyRuleConfig

Represents a data collection rule configuration in the policy.

Create one of these objects, associating it with a Policy, and set its properties, then call its save() method to
add the rule configuration to the policy. This requires the org.policies(UPDATE) permission.

To update a DataCollectionRuleConfig, change the values of its property fields, then call its save() method. This
requires the org.policies(UPDATE) permission.

To delete an existing DataCollectionRuleConfig, call its delete() method. This requires the org.policies(DELETE)
permission.

	Parameters:

	
	id – The ID of this rule config

	name – The name of this rule config

	description – The description of this rule config

	inherited_from – Indicates where the rule config was inherited from

	category – The category for this rule config

	parameters – The parameters associated with this rule config

	exclusions – The exclusions associated with this rule config

Initialize the DataCollectionRuleConfig object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	parent (Policy) – The “parent” policy of this rule configuration.

	model_unique_id (str) – ID of the rule configuration.

	initial_data (dict) – Initial data used to populate the rule configuration.

	force_init (bool) – If True, forces the object to be refreshed after constructing. Default False.

	full_doc (bool) – If True, object is considered “fully” initialized. Default False.

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_parameter(name, default_value=None)

	Returns a parameter value from the rule configuration.

	Parameters:

	
	name (str) – The parameter name.

	default_value (Any) – The default value to return if there’s no parameter by that name. Default is None.

	Returns:

	The parameter value, or None if there is no value.

	Return type:

	Any

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
property parameter_names

	Returns a list of parameter names in this rule configuration.

	Returns:

	A list of parameter names in this rule configuration.

	Return type:

	list[str]

	
refresh()

	Reload this object from the server.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
set_parameter(name, value)

	Sets a parameter value into the rule configuration.

	Parameters:

	
	name (str) – The parameter name.

	value (Any) – The new value to be set.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this rule configuration against its constraints.

	Raises:

	InvalidObjectError – If the rule object is not valid.

	
class HostBasedFirewallRuleConfig(cb, parent, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: PolicyRuleConfig

Represents a host-based firewall rule configuration in the policy.

	Parameters:

	
	id – The ID of this rule config

	name – The name of this rule config

	description – The description of this rule config

	inherited_from – Indicates where the rule config was inherited from

	category – The category for this rule config

	parameters – The parameters associated with this rule config

	exclusions – The exclusions associated with this rule config

Initialize the HostBasedFirewallRuleConfig object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	parent (Policy) – The “parent” policy of this rule configuration.

	model_unique_id (str) – ID of the rule configuration.

	initial_data (dict) – Initial data used to populate the rule configuration.

	force_init (bool) – If True, forces the object to be refreshed after constructing. Default False.

	full_doc (bool) – If True, object is considered “fully” initialized. Default False.

	
class FirewallRule(cb, parent, initial_data)

	Bases: MutableBaseModel

Represents a single firewall rule.

	Parameters:

	
	action – The action to take when rule is hit

	application_path – The application path to limit the rule

	direction – The direction the network request is being made from

	enabled – Whether the rule is enabled

	protocol – The type of network request

	local_ip_address – IPv4 address of the local side of the network connection (stored as dotted decimal)

	local_port_ranges – TCP or UDP port used by the local side of the network connection

	remote_ip_address – IPv4 address of the remote side of the network connection (stored as dotted decimal)

	remote_port_ranges – TCP or UDP port used by the remote side of the network connection

	test_mode – Enables host-based firewall hits without blocking network traffic or generating alerts

Initialize the FirewallRule object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the firewall rule.

	parent (HostBasedFirewallRuleConfig) – The parent rule configuration.

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
refresh()

	Reload this object from the server.

	
remove()

	Removes this rule from the rule group that contains it.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this object.

	Returns:

	True if the object is validated.

	Return type:

	bool

	Raises:

	InvalidObjectError – If the object has missing fields.

	
class FirewallRuleGroup(cb, parent, initial_data)

	Bases: MutableBaseModel

Represents a group of related firewall rules.

	Parameters:

	
	name – Name of the rule group

	description – Description of the rule group

	rules – List of rules in the rule group

Initialize the FirewallRuleGroup object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the firewall rule group.

	parent (HostBasedFirewallRuleConfig) – The parent rule configuration.

	
append_rule(name, action, direction, protocol, remote_ip, **kwargs)

	Creates a new FirewallRule object and appends it to this rule group.

	Parameters:

	
	name (str) – The name for the new rule.

	action (str) – The action to be taken by this rule. Valid values are “ALLOW,” “BLOCK,” and “BLOCK_ALERT.”

	direction (str) – The traffic direction this rule matches. Valid values are “IN,” “OUT,” and “BOTH.”

	protocol (str) – The network protocol this rule matches. Valid values are “TCP” and “UDP.”

	remote_ip (str) – The remote IP address this rule matches.

	kwargs (dict) – Additional parameters which may be added to the new rule.

	Returns:

	The new rule object.

	Return type:

	FirewallRule

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
refresh()

	Reload this object from the server.

	
remove()

	Removes this rule group from the rule configuration.

	
reset()

	Undo any changes made to this object’s fields.

	
property rules_

	Returns a list of the firewall rules within this rule group.

	Returns:

	List of contained firewall rules.

	Return type:

	list(HostBasedFirewallRuleConfig.FirewallRule)

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this object.

	Returns:

	True if the object is validated.

	Return type:

	bool

	Raises:

	InvalidObjectError – If the object has missing fields.

	
append_rule_group(name, description)

	Creates a new FirewallRuleGroup object and appends it to the list of rule groups in the rule configuration.

	Parameters:

	
	name (str) – The name of the new rule group.

	description (str) – The description of the new rule group.

	Returns:

	The newly added rule group.

	Return type:

	FirewallRuleGroup

	
copy_rules(*args)

	Copies the parameters for host-based firewall rule configurations to another policy or policies.

	Required Permissions:
	org.firewall.rules(UPDATE)

	Parameters:

	args (list[Any]) – References to policies to copy to. May be Policy objects, integers, or
string representations of integers.

	Returns:

	Result structure from copy operation.

	Return type:

	dict

	Raises:

	ApiError – If the parameters could not be converted to policy IDs.

	
property default_action

	Returns the default action of this rule configuration.

	Returns:

	The default action of this rule configuration, either “ALLOW” or “BLOCK.”

	Return type:

	str

	
delete()

	Delete this object.

	
property enabled

	Returns whether or not the host-based firewall is enabled.

	Returns:

	True if the host-based firewall is enabled, False if not.

	Return type:

	bool

	
export_rules(format='json')

	Exports the rules from this host-based firewall rule configuration.

	Required Permissions:
	org.firewall.rules(READ)

	Parameters:

	format (str) – The format to return the rule data in. Valid values are “csv” and “json” (the default).

	Returns:

	The exported rule configuration data.

	Return type:

	str

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_parameter(name, default_value=None)

	Returns a parameter value from the rule configuration.

	Parameters:

	
	name (str) – The parameter name.

	default_value (Any) – The default value to return if there’s no parameter by that name. Default is None.

	Returns:

	The parameter value, or None if there is no value.

	Return type:

	Any

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
property parameter_names

	Returns a list of parameter names in this rule configuration.

	Returns:

	A list of parameter names in this rule configuration.

	Return type:

	list[str]

	
refresh()

	Reload this object from the server.

	
reset()

	Undo any changes made to this object’s fields.

	
property rule_groups

	Returns the list of rule groups in this rule configuration.

	Returns:

	The list of rule groups.

	Return type:

	list[FirewallRuleGroup]

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
set_default_action(action)

	Sets the default action of this rule configuration.

	Parameters:

	action (str) – The new default action of this rule configuration. Valid values are “ALLOW” and “BLOCK.”

	
set_enabled(flag)

	Sets whether or not the host-based firewall is enabled.

	Parameters:

	flag (bool) – True if the host-based firewall should be enabled, False if not.

	
set_parameter(name, value)

	Sets a parameter value into the rule configuration.

	Parameters:

	
	name (str) – The parameter name.

	value (Any) – The new value to be set.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this rule configuration against its constraints.

	Raises:

	InvalidObjectError – If the rule object is not valid.

	
class PolicyRuleConfig(cb, parent, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: MutableBaseModel

Represents a rule configuration in the policy.

Create one of these objects, associating it with a Policy, and set its properties, then call its save() method to
add the rule configuration to the policy. This requires the org.policies(UPDATE) permission.

To update a PolicyRuleConfig, change the values of its property fields, then call its save() method. This
requires the org.policies(UPDATE) permission.

To delete an existing PolicyRuleConfig, call its delete() method. This requires the org.policies(DELETE) permission.

	Parameters:

	
	id – The ID of this rule config

	name – The name of this rule config

	description – The description of this rule config

	inherited_from – Indicates where the rule config was inherited from

	category – The category for this rule config

	parameters – The parameters associated with this rule config

	exclusions – The exclusions associated with this rule config

Initialize the PolicyRuleConfig object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	parent (Policy) – The “parent” policy of this rule configuration.

	model_unique_id (str) – ID of the rule configuration.

	initial_data (dict) – Initial data used to populate the rule configuration.

	force_init (bool) – If True, forces the object to be refreshed after constructing. Default False.

	full_doc (bool) – If True, object is considered “fully” initialized. Default False.

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_parameter(name, default_value=None)

	Returns a parameter value from the rule configuration.

	Parameters:

	
	name (str) – The parameter name.

	default_value (Any) – The default value to return if there’s no parameter by that name. Default is None.

	Returns:

	The parameter value, or None if there is no value.

	Return type:

	Any

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
property parameter_names

	Returns a list of parameter names in this rule configuration.

	Returns:

	A list of parameter names in this rule configuration.

	Return type:

	list[str]

	
refresh()

	Reload this object from the server.

	
reset()

	Undo any changes made to this object’s fields.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
set_parameter(name, value)

	Sets a parameter value into the rule configuration.

	Parameters:

	
	name (str) – The parameter name.

	value (Any) – The new value to be set.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
validate()

	Validates this rule configuration against its constraints.

	Raises:

	InvalidObjectError – If the rule object is not valid.

Previewer Module

This module contains the DevicePolicyChangePreview object.

When methods on Device, Policy, or AssetGroup are called to “preview” changes in device policy,
a list of these objects is returned. Each object represents a change in “effective” policy on one or more
devices.

	
class DevicePolicyChangePreview(cb, preview_data)

	Bases: object

Contains data previewing a change in device policies.

Changes to policies may happen via asset group memberships, policy rank changes, device policy overrides,
or other causes.

Each one of these objects shows, for a given group of assets, the current policy that is the “effective policy”
for those assets, the new policy that will be the “effective policy” for those assets, the number of assets
affected, and which assets they are.

Creates a new instance of AssetGroupChangePreview.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	preview_data (dict) – Contains the preview data returned by the server API.

	
property asset_count

	The number of assets to be affected by the change in their effective policy.

	
property asset_query

	A Device query which looks up the assets that are to be affected by the change in their effective policy.

Once the query is created, it can be modified with additional criteria or options before it is executed.

	
property assets

	The list of assets, i.e. Device objects, to be affected by the change in their effective policy.

	Required Permissions:
	device (READ)

	
property current_policy

	The Policy object that is the current “effective” policy for a group of assets.

	
property current_policy_id

	The ID of the policy that is the current “effective” policy for a group of assets.

	
property current_policy_position

	The position, or rank, of the policy that is the current “effective” policy for a group of assets.

	
property new_policy

	The Policy object that will become the new “effective” policy for a group of assets.

	
property new_policy_id

	The ID of the policy that will become the new “effective” policy for a group of assets.

	
property new_policy_position

	The position, or rank, of the policy that will become the new “effective” policy for a group of assets.

Processes Module

Model and query that allow location and manipulation of process data reported by an organization’s sensors.

This data can be used to identify applications that are acting abnormally and over time, cull the outliers from the
total observed process activity, and retroactively identify the origination point for attacks that previously escaped
notice. Use cases include:

	Finding the process that was identified in an alert with a process search.

	Finding processes that match targeted behavioral characteristics identified in Carbon Black or third-party threat
intelligence reports.

	Finding additional details about processes that were potentially involved in malicious activity identified elsewhere.

	Using faceting to get filtering terms or prevalent values in a set of processes.

Locating processes generally requires the Endpoint Standard or Enterprise EDR products.

Typical usage example:

>>> query = api.select(Process).where("process_name:chrome.exe")
>>> for process in query:
... print(f"Chrome PID = {process.process_guid}")

	
class AsyncProcessQuery(doc_class, cb)

	Bases: Query

A query object used to search for Process objects asynchronously.

Create one of these objects by calling select(Process) on a CBCloudAPI object.

Initialize the AsyncProcessQuery object.

	Parameters:

	
	doc_class (class) – The class of the model this query returns.

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
add_exclusions(key, newlist)

	Add to the exclusions on this query with a custom exclusions key.

Will overwrite any existing exclusion for the specified key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).add_exclusions("type", ["WATCHLIST"])
>>> query = api.select(Alert).add_exclusions("type", "WATCHLIST")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
batch_size(new_batch_size)

	Set the batch size of the paginated query.

	Parameters:

	new_batch_size (int) – The new batch size.

	Returns:

	A new query with the updated batch size.

	Return type:

	PaginatedQuery

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_collapse_field(field)

	Sets the ‘collapse_field’ query parameter, which queries the file name depending on field.

	Parameters:

	field (list) – query parameters to get file details.

	
set_fields(fields)

	Sets the fields to be returned with the response.

	Parameters:

	fields (str or list[str]) – Field or list of fields to be returned.

	
set_rows(rows)

	Sets the number of rows to request per batch.

This will not limit the total results to the specified number of rows; instead, the query will use
this to determine how many rows to request at a time from the server.

	Parameters:

	rows (int) – How many rows to request.

	
set_start(start)

	Sets the ‘start’ query body parameter, determining where to begin retrieving results from.

	Parameters:

	start (int) – Where to start results from.

	
set_time_range(start=None, end=None, window=None)

	Sets the ‘time_range’ query body parameter, determining a time window based on ‘device_timestamp’.

	Parameters:

	
	start (str in ISO 8601 timestamp) – When to start the result search.

	end (str in ISO 8601 timestamp) – When to end the result search.

	window (str) – Time window to execute the result search, ending on the current time.
Should be in the form “-2w”, where y=year, w=week, d=day, h=hour, m=minute, s=second.

Note

	window will take precendent over start and end if provided.

Examples

>>> query = api.select(Process).set_time_range(start="2020-10-20T20:34:07Z").where("query is required")
>>> second_query = api.select(Process).
... set_time_range(start="2020-10-20T20:34:07Z", end="2020-10-30T20:34:07Z").where("query is required")
>>> third_query = api.select(Process).set_time_range(window='-3d').where("query is required")

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	The query with sorting parameters.

	Return type:

	Query

Example

>>> cb.select(Process).where(process_name="cmd.exe").sort_by("device_timestamp")

	
timeout(msecs)

	Sets the timeout on a process query.

	Parameters:

	msecs (int) – Timeout duration, in milliseconds. This can never be greater than the configured default
timeout. If this is 0, the configured default timeout is used.

	Returns:

	The modified query object.

	Return type:

	AsyncProcessQuery

Example

>>> cb.select(Process).where(process_name="foo.exe").timeout(5000)

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
update_exclusions(key, newlist)

	Update the exclusion on this query with a custom exclusion key.

	Parameters:

	
	key (str) – The key for the exclusion item to be set.

	newlist (list) – List of values to be set for the exclusion item.

	Returns:

	The query object with specified custom exclusion.

Example

>>> query = api.select(Alert).update_exclusions("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
class Process(cb, model_unique_id=None, initial_data=None, force_init=False, full_doc=False)

	Bases: UnrefreshableModel

Information about a process running on one of the endpoints connected to the Carbon Black Cloud.

Objects of this type are retrieved through queries to the Carbon Black Cloud server, such as via
AsyncProcessQuery.

Processes have many fields, too many to list here; for a complete list of available fields, visit
the Search Fields page [https://developer.carbonblack.com/reference/carbon-black-cloud/platform/latest/platform-search-fields/]
on the Carbon Black Developer Network, and filter on the PROCESS route.

Examples

>>> # use the Process GUID directly
>>> process = api.select(Process, "WNEXFKQ7-00050603-0000066c-00000000-1d6c9acb43e29bb")

>>> # use the Process GUID in a where() clause
>>> process_query = api.select(Process).where(process_guid=
... "WNEXFKQ7-00050603-0000066c-00000000-1d6c9acb43e29bb")
>>> process_query_results = list(process_query)
>>> process_2 = process_query_results[0]

Initialize the Process object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (str) – The unique ID (GUID) for this process.

	initial_data (dict) – The data to use when initializing the model object.

	force_init (bool) – True to force object initialization.

	full_doc (bool) – True to mark the object as fully initialized.

	
class Summary(cb, model_unique_id=None, initial_data=None, force_init=False, full_doc=True)

	Bases: UnrefreshableModel

A summary of organization-specific information for a process.

The preferred interface for interacting with Summary models is Process.summary.

Example

>>> process = api.select(Process, "WNEXFKQ7-00050603-0000066c-00000000-1d6c9acb43e29bb")
>>> summary = process.summary

Initialize the Summary object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (str) – The unique ID for this particular instance of the model object.

	initial_data (dict) – The data to use when initializing the model object.

	force_init (bool) – True to force object initialization.

	full_doc (bool) – True to mark the object as fully initialized.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class Tree(cb, model_unique_id=None, initial_data=None, force_init=False, full_doc=True)

	Bases: UnrefreshableModel

Summary of organization-specific information for a process.

The preferred interface for interacting with Tree models is Process.tree.

Example

>>> process = api.select(Process, "WNEXFKQ7-00050603-0000066c-00000000-1d6c9acb43e29bb")
>>> tree = process.tree

Initialize the Tree object.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	model_unique_id (str) – The unique ID for this particular instance of the model object.

	initial_data (dict) – The data to use when initializing the model object.

	force_init (bool) – True to force object initialization.

	full_doc (bool) – True to mark the object as fully initialized.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
approve_process_sha256(description='')

	Approves the application by adding the process_sha256 to the WHITE_LIST.

	Parameters:

	description (str) – The justification for why the application was added to the WHITE_LIST.

	Returns:

	ReputationOverride object created in the Carbon Black Cloud.

	Return type:

	cbc_sdk.platform.ReputationOverride

	
ban_process_sha256(description='')

	Bans the application by adding the process_sha256 to the BLACK_LIST.

	Parameters:

	description (str) – The justification for why the application was added to the BLACK_LIST.

	Returns:

	cbc_sdk.platform.ReputationOverride) ReputationOverride object created in the Carbon Black Cloud.

	
property children

	Returns a list of child processes for this process.

	
deobfuscate_cmdline()

	Deobfuscates the command line of the process and returns the deobfuscated result.

	Required Permissions:
	script.deobfuscation(EXECUTE)

	Returns:

	A dict containing information about the obfuscated command line, including the deobfuscated result.

	Return type:

	dict

	
events(**kwargs)

	Returns a query for events associated with this process’s process GUID.

	Parameters:

	kwargs – Arguments to filter the event query with.

Example

>>> [print(event) for event in process.events()]
>>> [print(event) for event in process.events(event_type="modload")]

	
facets()

	Returns a FacetQuery for a Process.

This represents the search for a summary of result groupings (facets). The returned AsyncFacetQuery
object must have facet fields or ranges specified before it can be submitted, using the add_facet_field()
or add_range() methods.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_details(timeout=0, async_mode=False)

	Requests detailed information about this process from the Carbon Black Cloud server.

	Required Permissions:
	org.search.events(CREATE, READ)

	Parameters:

	
	timeout (int) – Event details request timeout in milliseconds. This value can never be greater than the
configured default timeout. If this value is 0, the configured default timeout is used.

	async_mode (bool) – True to request details in an asynchronous manner.

	Returns:

	
	If async_mode is True. Call result() on this Future to wait for completion and
	retrieve the results.

dict: If async_mode is False.

	Return type:

	Future

	
property parents

	Returns the parent process associated with this process, or None if there is no recorded parent.

	
property process_md5

	Returns a string representation of the MD5 hash for this process.

	
property process_pids

	Returns a list of integer PIDs associated with this process, or None if there are none.

	
property process_sha256

	Returns a string representation of the SHA256 hash for this process.

	
refresh()

	Reload this object from the server.

	
property siblings

	Returns a list of sibling processes for this process.

	
property summary

	Returns organization-specific information about this process.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
property tree

	Returns a process tree associated with this process.

Example

>>> tree = process.tree

	
class ProcessFacet(cb, model_unique_id, initial_data)

	Bases: UnrefreshableModel

Represents the results of a process facet query.

ProcessFacet objects contain both Terms and Ranges. Each of those contain facet fields and values.

Access all of the Terms facet data with ProcessFacet.Terms.facets() or see just the field names with
ProcessFacet.Terms.fields().

Access all of the Ranges facet data with ProcessFacet.Ranges.facets() or see just the field names
with ProcessFacet.Ranges.fields().

Process facets can be queried for via CBCloudAPI.select(ProcessFacet). Specify facet field(s) with
.add_facet_field("my_facet_field").

Optionally, you can limit the facet query to a single process with the following two options. Using the solrq
builder, specify process GUID with .where(process_guid="example_guid") and modify the query with
.or_(parent_effective_reputation="KNOWN_MALWARE") and .and_(parent_effective_reputation="KNOWN_MALWARE").

If you want full control over the query string, specify the process GUID in the query string
.where("process_guid: example_guid OR parent_effective_reputation: KNOWN_MALWARE")

	Examples:
	>>> process_facet_query = api.select(ProcessFacet).where(process_guid=
... "WNEXFKQ7-00050603-0000066c-00000000-1d6c9acb43e29bb")
>>> process_facet_query.add_facet_field("device_name")

retrieve results synchronously
>>> facet = process_facet_query.results

retrieve results asynchronously
>>> future = process_facet_query.execute_async()
>>> result = future.result()

result is a list with one item, so access the first item
>>> facet = result[0]

	Parameters:

	
	job_id – The Job ID assigned to this query

	terms – Contains the Process Facet search results

	ranges – Groupings for search result properties that are ISO 8601 timestamps or numbers

	contacted – The number of searchers contacted for this query

	completed – The number of searchers that have reported their results

Initialize a ProcessFacet object with initial_data.

	
class Ranges(cb, initial_data)

	Bases: UnrefreshableModel

The range (bucketed) facet fields and values associated with a process facet query.

Initialize a ProcessFacet.Ranges object with initial_data.

	
property facets

	Returns the reified facets for this result.

	
property fields

	Returns the ranges fields for this result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class Terms(cb, initial_data)

	Bases: UnrefreshableModel

The facet fields and values associated with a process facet query.

Initialize a ProcessFacet.Terms object with initial_data.

	
property facets

	Returns the terms’ facets for this result.

	
property fields

	Returns the terms facets’ fields for this result.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
property ranges_

	Returns the reified ProcessFacet.Ranges for this result.

	
refresh()

	Reload this object from the server.

	
property terms_

	Returns the reified ProcessFacet.Terms for this result.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class SummaryQuery(doc_class, cb)

	Bases: BaseQuery, AsyncQueryMixin, QueryBuilderSupportMixin

A query used to search for Process.Summary or Process.Tree objects.

Create one of these queries with a select() on either Process.Summary or Process.Tree.
These queries are also created by accessing the summary or tree properties on Process.

Initialize the SummaryQuery object.

	Parameters:

	
	doc_class (class) – The class of the model this query returns.

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
property results

	Return the results of this query. If the query has not yet been run, it is run to determine the results.

	Required Permissions:
	org.search.events(CREATE, READ)

	
set_time_range(start=None, end=None, window=None)

	Sets the time_range query body parameter, determining a time window based on device_timestamp.

	Parameters:

	
	start (str in ISO 8601 timestamp) – When to start the result search.

	end (str in ISO 8601 timestamp) – When to end the result search.

	window (str) – Time window to execute the result search, ending on the current time.
Should be in the form “-nx”, where n is an integer and x is y=year, w=week, d=day, h=hour,
m=minute, s=second.

Note

window will take precendent over start and end if provided.

Example

>>> query = api.select(Event).set_time_range(start="2020-10-20T20:34:07Z")
>>> second_query = api.select(Event).set_time_range
... (start="2020-10-20T20:34:07Z", end="2020-10-30T20:34:07Z")
>>> third_query = api.select(Event).set_time_range(window='-3d')

	
timeout(msecs)

	Sets the timeout on a process query.

	Parameters:

	msecs (int) – Timeout duration, in milliseconds. This can never be greater than the configured default
timeout. If this value is 0, the configured default timeout is used.

	Returns:

	The modified query object.

	Return type:

	SummaryQuery

Example

>>> cb.select(Process).where(process_name="foo.exe").timeout(5000)

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

Reputation Module

Model and Query Classes for Reputation

	
class ReputationOverride(cb, model_unique_id, initial_data=None)

	Bases: PlatformModel

Represents a reputation override.

	Parameters:

	
	id – An identifier for a reputation override

	created_by – Creator of the override

	create_time – Time the override was created

	description – Justification for override

	override_list – The override list to add a new reputation (BLACK_LIST only valid for SHA256)

	override_type – Process property match when applying override

	sha256_hash – A hexadecimal string of length 64 characters representing the SHA-256 hash of the application

	filename – An application name for the hash

	signed_by – Name of the signer for the application

	certificate_authority – Certificate authority that authorizes the validity of the certificate

	path – The absolute path to file or directory where tool exists on disk

	include_child_processes – Include tool’s child processes on approved list

Initialize the ReputationOverride object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
classmethod bulk_delete(cb, overrides)

	Deletes reputation overrides in bulk by id.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	overrides (List) – List if reputation override ids

Example

>>>
[
 "e9410b754ea011ebbfd0db2585a41b07"
]

	
classmethod create(cb, initial_data)

	Returns all vendors and products that have been seen for the organization.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (Object) – The initial data for a ReputationOverride

Example

>>>
{
 "description": "Banned as known malware",
 "override_list": "BLACK_LIST",
 "override_type": "SHA256",
 "sha256_hash": "dd191a5b23df92e13a8852291f9fb5ed594b76a28a5a464418442584afd1e048",
 "filename": "foo.exe"
}

	Returns:

	The created ReputationOverride object based on the specified properties

	Return type:

	ReputationOverride

	
delete()

	Delete this object.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class ReputationOverrideQuery(doc_class, cb)

	Bases: BaseQuery, QueryBuilderSupportMixin, IterableQueryMixin, AsyncQueryMixin

Represents a query that is used to locate ReputationOverride objects.

Initialize the ReputationOverrideQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_override_list(override_list)

	Sets the override_list criteria filter.

	Parameters:

	override_list (str) – Override List to filter on.

	Returns:

	The ReputationOverrideQuery with specified override_list.

	
set_override_type(override_type)

	Sets the override_type criteria filter.

	Parameters:

	override_type (str) – Override List to filter on.

	Returns:

	The ReputationOverrideQuery with specified override_type.

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(ReputationOverride).sort_by("create_time")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	This instance.

	Return type:

	ReputationOverrideQuery

	Raises:

	ApiError – If an invalid direction value is passed.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

Users Module

Model and Query Classes for Users

	
class User(cb, model_unique_id, initial_data=None)

	Bases: MutableBaseModel

Represents a user in the Carbon Black Cloud.

	Parameters:

	
	org_key – Organization key for this user

	auth_method – Method to be used for the user to authenticate

	admin_login_version – Version number of the user information

	email – User’s E-mail address

	login_name – Login name for the user

	login_id – Login ID (user ID) for this user

	phone – User’s phone number

	first_name – User’s first name

	last_name – User’s last name

	org_id – ID of the organization the user is in

	org_admin_version – TBD

	role – Not used, always “DEPRECATED”

	contact_id – ID of the user’s contact information

	contact_version – Version of the user’s contact information

Initialize the User object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (int) – Login ID of this user.

	initial_data (dict) – Initial data used to populate the user.

	
class UserBuilder(cb)

	Bases: object

Auxiliary object used to construct a new User.

Create the empty UserBuilder object.

	Parameters:

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_grant_profile(orgs, roles)

	Adds a grant profile for the new user.

	Parameters:

	
	orgs (list[str]) – List of organizations to be allowed, specified as keys or URNs.

	roles (list[str]) – List of roles to be granted, specified as URNs.

	Returns:

	This object.

	Return type:

	UserBuilder

	
build()

	Builds the new user.

Notes

The new user will not be “findable” by other API functions until it has been activated and its initial
password has been set.

	
set_auth_method(method)

	Sets the authentication method for the new user. The default is ‘PASSWORD’.

	Parameters:

	method (str) – The authentication method for the new user.

	Returns:

	This object.

	Return type:

	UserBuilder

	
set_email(email)

	Sets the E-mail address for the new user.

	Parameters:

	email (str) – The E-mail address for the new user.

	Returns:

	This object.

	Return type:

	UserBuilder

	
set_first_name(first_name)

	Sets the first name for the new user.

	Parameters:

	first_name (str) – The first name for the new user.

	Returns:

	This object.

	Return type:

	UserBuilder

	
set_last_name(last_name)

	Sets the last name for the new user.

	Parameters:

	last_name (str) – The last name for the new user.

	Returns:

	This object.

	Return type:

	UserBuilder

	
set_phone(phone)

	Sets the phone number for the new user.

	Parameters:

	phone (str) – The phone number for the new user.

	Returns:

	This object.

	Return type:

	UserBuilder

	
set_role(role)

	Sets the role URN for the new user.

	Parameters:

	role (str) – The URN of the role to set for the user.

	Returns:

	This object.

	Return type:

	UserBuilder

	
add_profiles(profile_templates)

	Add the specified profiles to the user’s grant.

	Parameters:

	profile_templates (list[dict]) – List of profile templates to be added to the user.

	
classmethod bulk_add_profiles(users, profile_templates)

	Add the specified profiles to the specified users’ grants.

	Parameters:

	
	users (list[User]) – List of User objects specifying users to be modified.

	profile_templates (list[dict]) – List of profile templates to be added to the users.

	
classmethod bulk_create(cb, user_templates, profile_templates)

	Creates a series of new users.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	user_templates (list[dict]) – List of templates for users to be created.

	profile_templates (list[dict]) – List of profile templates to be applied to each user.

	
classmethod bulk_delete(users)

	Deletes all the listed users.

	Parameters:

	users (list[User]) – List of User objects specifying users to be deleted.

	
classmethod bulk_disable_all_access(users)

	Disables all access profiles held by the listed users.

	Parameters:

	users (list[User]) – List of User objects specifying users to be disabled.

	
classmethod bulk_disable_profiles(users, profile_templates)

	Disable the specified profiles in the specified users’ grants.

	Parameters:

	
	users (list[User]) – List of User objects specifying users to be modified.

	profile_templates (list[dict]) – List of profile templates to be disabled.

	
change_role(role_urn, org=None)

	Add the specified role to the user (either to the grant or the profiles).

	Parameters:

	
	role_urn (str) – URN of the role to be added.

	org (str) – If specified, only profiles that match this organization will have the role added. Organization
may be specified as either an org key or a URN.

	Raises:

	ApiError – If the user is a “legacy” user that has no grant.

	
classmethod create(cb, template=None)

	Creates a new user.

	Parameters:

	
	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	template (dict) – Optional template data for creating the new user.

	Returns:

	
	If template is None, returns an instance of this object. Call methods on the object to set
	the values associated with the new user, and then call build() to create it.

	Return type:

	UserBuilder

	
delete()

	Delete this object.

	
disable_all_access()

	Disables all access profiles held by ths user.

	Raises:

	ApiError – If the user is a “legacy” user that has no grant.

	
disable_profiles(profile_templates)

	Disable the specified profiles in the user’s grant.

	Parameters:

	profile_templates (list[dict]) – List of profile templates to be disabled.

	Raises:

	ApiError – If the user is a “legacy” user that has no grant.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
grant()

	Locates the access grant for this user.

	Returns:

	Access grant for this user, or None if the user has none.

	Return type:

	Grant

	
is_dirty()

	Returns whether or not any fields of this object have been changed.

	Returns:

	True if any fields of this object have been changed, False if not.

	Return type:

	bool

	
property org_urn

	Returns the URN for this user’s organization (used in accessing Grants).

	Returns:

	URN for this user’s organization.

	Return type:

	str

	
refresh()

	Reload this object from the server.

	
reset()

	Undo any changes made to this object’s fields.

	
reset_google_authenticator_registration()

	Forces Google Authenticator registration to be reset for this user.

	
save()

	Save any changes made to this object’s fields.

	Returns:

	This object.

	Return type:

	MutableBaseModel

	
set_profile_expiration(profile_templates, expiration_date)

	Set the expiration time for the specified profiles in the user’s grant.

	Parameters:

	
	profile_templates (list[dict]) – List of profile templates to be reset.

	expiration_date (str) – New expiration date, in ISO 8601 format.

	Raises:

	ApiError – If the user is a “legacy” user that has no grant.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
touch(fulltouch=False)

	Force this object to be considered as changed.

	
property urn

	Returns the URN for this user (used in accessing Grants).

	Returns:

	URN for this user.

	Return type:

	str

	
validate()

	Validates this object.

	Returns:

	True if the object is validated.

	Return type:

	bool

	Raises:

	InvalidObjectError – If the object has missing fields.

	
class UserQuery(doc_class, cb)

	Bases: BaseQuery, IterableQueryMixin, AsyncQueryMixin

Query for retrieving users in bulk.

Initialize the Query object.

	Parameters:

	
	doc_class (class) – The class of the model this query returns.

	cb (CBCloudAPI) – A reference to the CBCloudAPI object.

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
email_addresses(addrs)

	Limit the query to users with the specified E-mail addresses. Call multiple times to add multiple addresses.

	Parameters:

	addrs (list[str]) – List of addresses to be added to the query.

	Returns:

	This object.

	Return type:

	UserQuery

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
user_ids(userids)

	Limit the query to users with the specified user IDs. Call multiple times to add multiple user IDs.

	Parameters:

	userids (list[str]) – List of user IDs to be added to the query.

	Returns:

	This object.

	Return type:

	UserQuery

	
log = <Logger cbc_sdk.platform.users (WARNING)>

	User Models

	
normalize_profile_list(profile_templates)

	Internal function to normalize a list of profile templates.

Vulnerability Assessment Module

Model and Query Classes for Vulnerability Assessment API

	
class AffectedAssetQuery(vulnerability, cb)

	Bases: VulnerabilityQuery

Query Class for the Vulnerability

Initialize the AffectedAssetQuery.

	Parameters:

	
	vulnerability (class) – The vulnerability that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, value, operator='EQUALS')

	Restricts the vulnerabilities that this query is performed on to the specified key value pair.

	Parameters:

	
	key (str) – Property from the vulnerability object

	value (str) – Value of the property to filter by

	operator (str) – (optional) logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
export()

	Performs the query and export the results in the form of a Job.

Example

>>> # Create the Vulnerability query
>>> query = cb.select(Vulnerability).set_severity('CRITICAL')
>>> # Export the results
>>> job = query.export()
>>> # wait for the export to finish
>>> job.await_completion()
>>> # write the results to a file
>>> job.get_output_as_file("vulnerabilities.csv")

	Returns:

	The export job.

	Return type:

	Job

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_deployment_type(deployment_type, operator)

	Restricts the vulnerabilities that this query is performed on to the specified deployment type.

	Parameters:

	
	deployment_type (str) – deployment type (“ENDPOINT”, “AWS”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_device_type(device_type, operator)

	Restricts the vulnerabilities that this query is performed on to the specified device type.

	Parameters:

	
	device_type (str) – device type (“WORKLOAD”, “ENDPOINT”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_highest_risk_score(highest_risk_score, operator)

	Restricts the vulnerabilities that this query is performed on to the specified highest_risk_score.

	Parameters:

	
	highest_risk_score (double) – highest_risk_score.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_last_sync_ts(last_sync_ts, operator)

	Restricts the vulnerabilities that this query is performed on to the specified last_sync_ts.

	Parameters:

	
	last_sync_ts (str) – last_sync_ts.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_name(name, operator)

	Restricts the vulnerabilities that this query is performed on to the specified name.

	Parameters:

	
	name (str) – name.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_os_arch(os_arch, operator)

	Restricts the vulnerabilities that this query is performed on to the specified os_arch.

	Parameters:

	
	os_arch (str) – os_arch.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_os_name(os_name, operator)

	Restricts the vulnerabilities that this query is performed on to the specified os_name.

	Parameters:

	
	os_name (str) – os_name.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_os_product_id(os_product_id, operator)

	Restricts the vulnerabilities that this query is performed on to the specified os_product_id.

	Parameters:

	
	os_product_id (str) – os_product_id.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	AffectedAssetQuery

	
set_os_type(os_type, operator)

	Restricts the vulnerabilities that this query is performed on to the specified os type.

	Parameters:

	
	os_type (str) – os type (“CENTOS”, “RHEL”, “SLES”, “UBUNTU”, “WINDOWS”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_os_version(os_version, operator)

	Restricts the vulnerabilities that this query is performed on to the specified os_version.

	Parameters:

	
	os_version (str) – os_version.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_severity(severity, operator)

	Restricts the vulnerabilities that this query is performed on to the specified severity.

	Parameters:

	
	severity (str) – severity (“CRITICAL”, “IMPORTANT”, “MODERATE”, “LOW”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_sync_status(sync_status, operator)

	Restricts the vulnerabilities that this query is performed on to the specified sync_status.

	Parameters:

	
	sync_status (str) – sync_status (“NOT_STARTED”, “MATCHED”, “ERROR”, “NOT_MATCHED”, “NOT_SUPPORTED”,
“CANCELLED”, “IN_PROGRESS”, “ACTIVE”, “COMPLETED”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_sync_type(sync_type, operator)

	Restricts the vulnerabilities that this query is performed on to the specified sync_type.

	Parameters:

	
	sync_type (str) – sync_type (“MANUAL”, “SCHEDULED”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_vcenter(vcenter_uuid)

	Restricts the vulnerabilities that this query is performed on to the specified vcenter id.

	Parameters:

	vcenter_uuid (str) – vcenter uuid.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_visibility(visibility)

	Restricts the vulnerabilities that this query is performed on to the specified visibility

	Parameters:

	visibility (str) – The visibility state of the vulnerabilty. (supports ACTIVE, DISMISSED)

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_vm_id(vm_id, operator)

	Restricts the vulnerabilities that this query is performed on to the specified vm_id.

	Parameters:

	
	vm_id (str) – vm_id.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_vuln_count(vuln_count, operator)

	Restricts the vulnerabilities that this query is performed on to the specified vuln_count.

	Parameters:

	
	vuln_count (str) – vuln_count.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(Vulnerabiltiy).sort_by("status")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	Raises:

	ApiError – If an invalid direction value is passed.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
class Vulnerability(cb, model_unique_id, os_product_id=None, initial_data=None)

	Bases: NewBaseModel

Represents a vulnerability

	Parameters:

	
	affected_assets – List of affected assets

	category – Vulnerability category

	device_count – Number of affected devices

	os_info – Information about the operating system associated with the vulnerability

	os_product_id – Operating system product ID

	product_info – Information about the vulnerable product

	vuln_info – Information about the vulnerability

Initialize the Vulnerability object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the vulnerability represented.

	os_product_id (str) – os_product_id of the vulnerabilty used to uniquely identify a CVE with
multiple OS/Product instances

	initial_data (dict) – Initial data used to populate the alert.

	
class AssetView(cb, initial_data=None)

	Bases: list

Represents a list of Vulnerability for an organization.

Initialize Vulnerability.AssetView object

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (list[dict]) – list of assets and their vulnerabilty view

	
append(object, /)

	Append object to the end of the list.

	
clear()

	Remove all items from list.

	
copy()

	Return a shallow copy of the list.

	
count(value, /)

	Return number of occurrences of value.

	
extend(iterable, /)

	Extend list by appending elements from the iterable.

	
index(value, start=0, stop=9223372036854775807, /)

	Return first index of value.

Raises ValueError if the value is not present.

	
insert(index, object, /)

	Insert object before index.

	
pop(index=-1, /)

	Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

	
remove(value, /)

	Remove first occurrence of value.

Raises ValueError if the value is not present.

	
reverse()

	Reverse IN PLACE.

	
sort(*, key=None, reverse=False)

	Sort the list in ascending order and return None.

The sort is in-place (i.e. the list itself is modified) and stable (i.e. the
order of two equal elements is maintained).

If a key function is given, apply it once to each list item and sort them,
ascending or descending, according to their function values.

The reverse flag can be set to sort in descending order.

	
class OrgSummary(cb, initial_data=None)

	Bases: UnrefreshableModel

Represents a vulnerability summary for an organization.

	Parameters:

	
	monitored_assets – Number of assets being monitored

	severity_summary – Information about vulnerabilities at each severity level

Initialize Vulnerability.OrgSummary object

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – dictionary of the data

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
severity_levels()

	Returns the severity levels

	Returns:

	List of severities

	Return type:

	Severities (list[str])

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
get_affected_assets()

	Returns an AffectedAssetQuery to fetch the list of devices affected by the Vulnerability.

	Args;
	os_product_id (str) operating system product ID

	Returns:

	AffectedAssetQuery

	
perform_action(type, reason=None, notes=None)

	Take an action to manage the Vulnerability.

	Parameters:

	
	type (str) – The type of action. (supports DISMISS, DISMISS_EDIT, or UNDISMISS)

	reason (str) – The reason the vulnerabilty is dismissed. Required when type is DISMISS or DISMISS_EDIT.
(supports FALSE_POSITIVE, RESOLUTION_DEFERRED, NON_ISSUE, NON_CRITICAL_ASSET, UNDER_RESOLUTION, OTHER)

	notes (str) – Notes to be associated with the dismissal. Required when reason is OTHER.

	Returns:

	The action response

	Return type:

	obj

	Raises:

	ApiError – If the request is invalid or missing required properties

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class VulnerabilityAssetViewQuery(doc_class, cb)

	Bases: VulnerabilityQuery

Represents a query that is used fetch the Vulnerability Asset View

Initialize the VulnerabilityAssetViewQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, value, operator='EQUALS')

	Restricts the vulnerabilities that this query is performed on to the specified key value pair.

	Parameters:

	
	key (str) – Property from the vulnerability object

	value (str) – Value of the property to filter by

	operator (str) – (optional) logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
export()

	Performs the query and export the results in the form of a Job.

	Returns:

	The export job.

	Return type:

	Job

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_deployment_type(deployment_type, operator)

	Restricts the vulnerabilities that this query is performed on to the specified deployment type.

	Parameters:

	
	deployment_type (str) – deployment type (“ENDPOINT”, “AWS”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_device_type(device_type, operator)

	Restricts the vulnerabilities that this query is performed on to the specified device type.

	Parameters:

	
	device_type (str) – device type (“WORKLOAD”, “ENDPOINT”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_highest_risk_score(highest_risk_score, operator)

	Restricts the vulnerabilities that this query is performed on to the specified highest_risk_score.

	Parameters:

	
	highest_risk_score (double) – highest_risk_score.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_last_sync_ts(last_sync_ts, operator)

	Restricts the vulnerabilities that this query is performed on to the specified last_sync_ts.

	Parameters:

	
	last_sync_ts (str) – last_sync_ts.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_name(name, operator)

	Restricts the vulnerabilities that this query is performed on to the specified name.

	Parameters:

	
	name (str) – name.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_os_arch(os_arch, operator)

	Restricts the vulnerabilities that this query is performed on to the specified os_arch.

	Parameters:

	
	os_arch (str) – os_arch.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_os_name(os_name, operator)

	Restricts the vulnerabilities that this query is performed on to the specified os_name.

	Parameters:

	
	os_name (str) – os_name.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_os_type(os_type, operator)

	Restricts the vulnerabilities that this query is performed on to the specified os type.

	Parameters:

	
	os_type (str) – os type (“CENTOS”, “RHEL”, “SLES”, “UBUNTU”, “WINDOWS”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_os_version(os_version, operator)

	Restricts the vulnerabilities that this query is performed on to the specified os_version.

	Parameters:

	
	os_version (str) – os_version.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_severity(severity, operator)

	Restricts the vulnerabilities that this query is performed on to the specified severity.

	Parameters:

	
	severity (str) – severity (“CRITICAL”, “IMPORTANT”, “MODERATE”, “LOW”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_sync_status(sync_status, operator)

	Restricts the vulnerabilities that this query is performed on to the specified sync_status.

	Parameters:

	
	sync_status (str) – sync_status (“NOT_STARTED”, “MATCHED”, “ERROR”, “NOT_MATCHED”, “NOT_SUPPORTED”,
“CANCELLED”, “IN_PROGRESS”, “ACTIVE”, “COMPLETED”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_sync_type(sync_type, operator)

	Restricts the vulnerabilities that this query is performed on to the specified sync_type.

	Parameters:

	
	sync_type (str) – sync_type (“MANUAL”, “SCHEDULED”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_vcenter(vcenter_uuid)

	Restricts the vulnerabilities that this query is performed on to the specified vcenter id.

	Parameters:

	vcenter_uuid (str) – vcenter uuid.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_visibility(visibility)

	Restricts the vulnerabilities that this query is performed on to the specified visibility

	Parameters:

	visibility (str) – The visibility state of the vulnerabilty. (supports ACTIVE, DISMISSED)

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_vm_id(vm_id, operator)

	Restricts the vulnerabilities that this query is performed on to the specified vm_id.

	Parameters:

	
	vm_id (str) – vm_id.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_vuln_count(vuln_count, operator)

	Restricts the vulnerabilities that this query is performed on to the specified vuln_count.

	Parameters:

	
	vuln_count (str) – vuln_count.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(Vulnerabiltiy).sort_by("status")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	Raises:

	ApiError – If an invalid direction value is passed.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
class VulnerabilityOrgSummaryQuery(doc_class, cb, device=None)

	Bases: BaseQuery

Represents a query that is used fetch the VulnerabiltitySummary

Initialize the VulnerabilityQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	device (cbc_sdk.platform.devices.Device) – Optional Device object to indicate
VulnerabilityQuery is for a specific device

	
set_severity(severity)

	Restricts the vulnerability summary to a severity level

	Parameters:

	severity (str) – filters the vulnerability summary per severity (CRITICAL, IMPORTANT, MODERATE, LOW)

	Returns:

	This instance.

	Return type:

	VulnerabilityOrgSummaryQuery

	
set_vcenter(vcenter_uuid)

	Restricts the vulnerability summary to a specific vcenter

	Parameters:

	vcenter_uuid (str) – vcenter uuid.

	Returns:

	This instance.

	Return type:

	VulnerabilityOrgSummaryQuery

	
set_visibility(visibility)

	Restricts the vulnerabilities that this query is performed on to the specified visibility

	Parameters:

	visibility (str) – The visibility state of the vulnerabilty. (supports ACTIVE, DISMISSED)

	Returns:

	This instance.

	Return type:

	VulnerabilityOrgSummaryQuery

	
submit()

	Performs the query and returns the Vulnerability.OrgSummary

	Returns:

	The vulnerabilty summary for the organization

	Return type:

	Vulnerability.OrgSummary

	
class VulnerabilityQuery(doc_class, cb, device=None)

	Bases: BaseQuery, QueryBuilderSupportMixin, IterableQueryMixin, AsyncQueryMixin

Represents a query that is used to locate Vulnerabiltity objects.

Initialize the VulnerabilityQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	device (cbc_sdk.platform.devices.Device) – Optional Device object to indicate
VulnerabilityQuery is for a specific device

	
add_criteria(key, value, operator='EQUALS')

	Restricts the vulnerabilities that this query is performed on to the specified key value pair.

	Parameters:

	
	key (str) – Property from the vulnerability object

	value (str) – Value of the property to filter by

	operator (str) – (optional) logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
export()

	Performs the query and export the results in the form of a Job.

Example

>>> # Create the Vulnerability query
>>> query = cb.select(Vulnerability).set_severity('CRITICAL')
>>> # Export the results
>>> job = query.export()
>>> # wait for the export to finish
>>> job.await_completion()
>>> # write the results to a file
>>> job.get_output_as_file("vulnerabilities.csv")

	Returns:

	The export job.

	Return type:

	Job

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_deployment_type(deployment_type, operator)

	Restricts the vulnerabilities that this query is performed on to the specified deployment type.

	Parameters:

	
	deployment_type (str) – deployment type (“ENDPOINT”, “AWS”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_device_type(device_type, operator)

	Restricts the vulnerabilities that this query is performed on to the specified device type.

	Parameters:

	
	device_type (str) – device type (“WORKLOAD”, “ENDPOINT”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_highest_risk_score(highest_risk_score, operator)

	Restricts the vulnerabilities that this query is performed on to the specified highest_risk_score.

	Parameters:

	
	highest_risk_score (double) – highest_risk_score.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_last_sync_ts(last_sync_ts, operator)

	Restricts the vulnerabilities that this query is performed on to the specified last_sync_ts.

	Parameters:

	
	last_sync_ts (str) – last_sync_ts.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_name(name, operator)

	Restricts the vulnerabilities that this query is performed on to the specified name.

	Parameters:

	
	name (str) – name.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_os_arch(os_arch, operator)

	Restricts the vulnerabilities that this query is performed on to the specified os_arch.

	Parameters:

	
	os_arch (str) – os_arch.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_os_name(os_name, operator)

	Restricts the vulnerabilities that this query is performed on to the specified os_name.

	Parameters:

	
	os_name (str) – os_name.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_os_type(os_type, operator)

	Restricts the vulnerabilities that this query is performed on to the specified os type.

	Parameters:

	
	os_type (str) – os type (“CENTOS”, “RHEL”, “SLES”, “UBUNTU”, “WINDOWS”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_os_version(os_version, operator)

	Restricts the vulnerabilities that this query is performed on to the specified os_version.

	Parameters:

	
	os_version (str) – os_version.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_severity(severity, operator)

	Restricts the vulnerabilities that this query is performed on to the specified severity.

	Parameters:

	
	severity (str) – severity (“CRITICAL”, “IMPORTANT”, “MODERATE”, “LOW”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_sync_status(sync_status, operator)

	Restricts the vulnerabilities that this query is performed on to the specified sync_status.

	Parameters:

	
	sync_status (str) – sync_status (“NOT_STARTED”, “MATCHED”, “ERROR”, “NOT_MATCHED”, “NOT_SUPPORTED”,
“CANCELLED”, “IN_PROGRESS”, “ACTIVE”, “COMPLETED”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_sync_type(sync_type, operator)

	Restricts the vulnerabilities that this query is performed on to the specified sync_type.

	Parameters:

	
	sync_type (str) – sync_type (“MANUAL”, “SCHEDULED”)

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_vcenter(vcenter_uuid)

	Restricts the vulnerabilities that this query is performed on to the specified vcenter id.

	Parameters:

	vcenter_uuid (str) – vcenter uuid.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_visibility(visibility)

	Restricts the vulnerabilities that this query is performed on to the specified visibility

	Parameters:

	visibility (str) – The visibility state of the vulnerabilty. (supports ACTIVE, DISMISSED)

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_vm_id(vm_id, operator)

	Restricts the vulnerabilities that this query is performed on to the specified vm_id.

	Parameters:

	
	vm_id (str) – vm_id.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
set_vuln_count(vuln_count, operator)

	Restricts the vulnerabilities that this query is performed on to the specified vuln_count.

	Parameters:

	
	vuln_count (str) – vuln_count.

	operator (str) – logic operator to apply to property value.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(Vulnerabiltiy).sort_by("status")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	This instance.

	Return type:

	VulnerabilityQuery

	Raises:

	ApiError – If an invalid direction value is passed.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
log = <Logger cbc_sdk.platform.vulnerability_assessment (WARNING)>

	Vulnerability models

Workload Package

CIS Benchmarks

Model and Query Classes for Compliance Assessment API

	
class ComplianceBenchmark(cb, model_unique_id, initial_data=None)

	Bases: UnrefreshableModel

Class representing Compliance Benchmarks.

	Parameters:

	
	id – Unique identifier for the benchmark set.

	name – Name of the benchmark set.

	version – Version of the benchmark set.

	os_family – Operating system family associated with the benchmark set (e.g., WINDOWS_SERVER).

	enabled – Indicates whether the benchmark set is enabled or not.

	type – Type of the benchmark set (e.g., Custom).

	supported_os_info – Array of supported operating system information.

	created_by – Name of the user who created the benchmark set.

	updated_by – Email of the user who last updated the benchmark set.

	create_time – Timestamp indicating when the benchmark set was created (in ISO 8601 format).

	update_time – Timestamp indicating when the benchmark set was last updated (in ISO 8601 format).

	release_time – Timestamp indicating when the benchmark set was released (in ISO 8601 format).

Initialize a ComplianceBenchmark instance.

	Parameters:

	
	cb (CBCloudAPI) – Instance of CBCloudAPI.

	initial_data (dict) – Initial data for the instance.

	model_unique_id (str) – Unique identifier for the model.

	Returns:

	An instance of ComplianceBenchmark.

	Return type:

	ComplianceBenchmark

	
execute_action(action, device_ids=None)

	Execute a specified action for the Benchmark Set for all devices or a specified subset.

	Required Permissions:
	complianceAssessment.data(EXECUTE)

	Parameters:

	
	action (str) – The action to be executed. Options: ENABLE, DISABLE, REASSESS

	device_ids (str or list, optional) – IDs of devices on which the action will be executed.
If specified as a string, only one device will be targeted. If specified as a list,
the action will be executed on multiple devices. Default is None.

	Returns:

	JSON response containing information about the executed action.

	Return type:

	dict

	Raises:

	ApiError – If the provided action is not one of the allowed actions.

Example

To reassess an object:
benchmark_sets = cb.select(ComplianceBenchmark)
benchmark_sets[0].execute_action(‘REASSESS’)

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
static get_compliance_schedule(cb)

	Gets the compliance scan schedule and timezone configured for the Organization.

	Parameters:

	cb (CBCloudAPI) – An instance of CBCloudAPI representing the Carbon Black Cloud API.

	Required Permissions:
	complianceAssessment.data(READ)

	Raises:

	ApiError – If cb is not an instance of CBCloudAPI.

	Returns:

	The configured organization settings for Compliance Assessment.

	Return type:

	dict

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> schedule = ComplianceBenchmark.get_compliance_schedule(cb)
>>> print(schedule)

	
get_device_compliances(query='')

	Fetches devices compliance summaries associated with the benchmark set.

	Required Permissions:
	complianceAssessment.data(READ)

	Parameters:

	query (str, optional) – The query to filter results.

	Returns:

	List of Device Compliances

	Return type:

	[dict]

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> benchmark_set = cb.select(ComplianceBenchmark).first()
>>> device_compliances = benchmark_set.get_device_compliance()

	
get_device_rule_compliances(device_id, query='')

	Fetches rule compliances for specific device.

	Required Permissions:
	complianceAssessment.data(READ)

	Parameters:

	
	device_id (int) – Device id to fetch benchmark rule compliance

	query (str, optional) – The query to filter results.

	Returns:

	List of Rule Compliances

	Return type:

	[dict]

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> benchmark_set = cb.select(ComplianceBenchmark).first()
>>> rules = benchmark_set.get_device_rule_compliance(123)

	
get_rule_compliance_devices(rule_id, query='')

	Fetches device compliances for a specific rule.

	Required Permissions:
	complianceAssessment.data(READ)

	Parameters:

	
	rule_id (str) – Rule id to fetch device compliances

	query (str, optional) – The query to filter results.

	Returns:

	List of Device Compliances

	Return type:

	[dict]

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> benchmark_set = cb.select(ComplianceBenchmark).first()
>>> rules = benchmark_set.get_rule_compliance_devices("BCCAAACA-F0BE-4C0F-BE0A-A09FC1641EE2")

	
get_rule_compliances(query='')

	Fetches rule compliance summaries associated with the benchmark set.

	Required Permissions:
	complianceAssessment.data(READ)

	Parameters:

	query (str, optional) – The query to filter results.

	Returns:

	List of Rule Compliances

	Return type:

	[dict]

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> benchmark_set = cb.select(ComplianceBenchmark).first()
>>> rules = benchmark_set.get_rule_compliance()

	
get_rules(rule_id=None)

	Fetches compliance rules associated with the benchmark set.

	Required Permissions:
	complianceAssessment.data(READ)

	Parameters:

	rule_id (str, optional) – The rule ID to fetch a specific rule. Defaults to None.

	Returns:

	List of Benchmark Rules

	Return type:

	[dict]

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> benchmark_set = cb.select(ComplianceBenchmark).first()
>>> # To return all rules within a benchmark set, leave get_rules empty.
>>> rules = benchmark_set.get_rules()

	
get_sections()

	Get Sections of the Benchmark Set.

	Required Permissions:
	complianceAssessment.data(READ)

	Returns:

	List of sections within the Benchmark Set.

	Return type:

	list[dict]

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> benchmark = cb.select(ComplianceBenchmark).first()
>>> for section in benchmark.get_sections():
... print(section.section_name, section.section_id)

	
refresh()

	Reload this object from the server.

	
static set_compliance_schedule(cb, scan_schedule, scan_timezone)

	Sets the compliance scan schedule and timezone for the organization.

	Required Permissions:
	complianceAssessment.data(UPDATE)

	Parameters:

	
	cb (CBCloudAPI) – An instance of CBCloudAPI representing the Carbon Black Cloud API.

	scan_schedule (str) – The scan schedule, specified in RFC 5545 format.
Example: “RRULE:FREQ=DAILY;BYHOUR=17;BYMINUTE=30;BYSECOND=0”.

	scan_timezone (str) – The timezone in which the scan will run,
specified as a timezone string. Example: “UTC”.

	Raises:

	ApiError – If cb is not an instance of CBCloudAPI, or if scan_schedule or scan_timezone are not provided.

	Returns:

	The configured organization settings for Compliance Assessment.

	Return type:

	dict

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> schedule = ComplianceBenchmark.set_compliance_schedule(cb,
 scan_schedule="RRULE:FREQ=DAILY;BYHOUR=17;BYMINUTE=30;BYSECOND=0",
 scan_timezone="UTC")
>>> print(schedule)

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
update_rules(rule_ids, enabled)

	Update compliance rules associated with the benchmark set.

	Required Permissions:
	complianceAssessment.data(UPDATE)

	Parameters:

	
	rule_ids (list[str]) – The rule IDs to update their enabled/disabled status.

	enabled (bool) – Whether the rule is enabled or disabled.

	Returns:

	List of Updated Benchmark Rules

	Return type:

	[dict]

Example

>>> cb = CBCloudAPI(profile="example_profile")
>>> benchmark_set = cb.select(ComplianceBenchmark).first()
>>> # To return all rules within a benchmark set, leave get_rules empty.
>>> rules = benchmark_set.update_rules(["2A65B63E-89D9-4844-8290-5042FDF2A27B"], True)

	
class ComplianceBenchmarkQuery(doc_class, cb)

	Bases: BaseQuery, QueryBuilderSupportMixin, CriteriaBuilderSupportMixin, IterableQueryMixin, AsyncQueryMixin

A class representing a query for Compliance Benchmark.

Initialize a ComplianceBenchmarkQuery instance.

	Parameters:

	
	doc_class (class) – The document class for this query.

	cb (CBCloudAPI) – An instance of CBCloudAPI.

	Returns:

	An instance of ComplianceBenchmarkQuery.

	Return type:

	ComplianceBenchmarkQuery

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order, either “ASC” or “DESC”.

	Returns:

	The query with sorting parameters.

	Return type:

	Query

	Raises:

	ApiError – If an invalid sort direction is specified.

Example

To sort by a field in descending order:

>>> cb = CBCloudAPI(profile="example_profile")
>>> benchmark_sets = cb.select(ComplianceBenchmark).sort_by("name", direction="DESC")
>>> print(*benchmark_sets)

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
log = <Logger cbc_sdk.workload.compliance_assessment (WARNING)>

	Compliance models

NSX Remediation Module

NSX Remediation for Workloads

	
class NSXRemediationJob(cb, running_job_ids)

	Bases: object

An object that runs and monitors an NSX Remediation operation.

Creates a new NSXRemediationJob object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	running_job_ids (list[str]) – The list of running job IDs.

	
async_await_result()

	Sets up a Future which can be used to wait asynchronously for all running jobs to be completed.

	Required Permissions:
	appliances.registration(READ)

	Returns:

	A future representing the job and its results.

	Return type:

	Future

	
await_result()

	Waits for all running jobs to be completed and returns the final status.

	Required Permissions:
	appliances.registration(READ)

	Returns:

	The final status, mapping individual job IDs to status value dicts.

	Return type:

	dict

	
classmethod start_request(cb, device_ids, tag, set_tag=True)

	Starts an NSX Remediation request and returns the job object.

	Required Permissions:
	appliances.nsx.remediation(EXECUTE)

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	device_ids (int|list) – The device ID(s) to run the remediation request on.

	tag (str) – The NSX tag to apply to specified devices. Valid values are “CB-NSX-Quarantine”,
“CB-NSX-Isolate”, and “CB-NSX-Custom”.

	set_tag (bool) – True to toggle the specified tag on, False to toggle it off. Default True.

	Returns:

	The object representing all running jobs.

	Return type:

	NSXRemediationJob

	Raises:

	
	ApiError – If the parameters to start the request are incorrect.

	ServerError – If the request could not be successfully started.

	
property status

	Returns the current status.

	Returns:

	The current status, mapping individual job IDs to status value dicts.

	Return type:

	dict

Sensor Lifecycle Module

Sensor Lifecycle Management for Workloads

	
class SensorKit(cb, initial_data=None)

	Bases: UnrefreshableModel

Represents the information about a sensor, including installation file URLs.

	Parameters:

	
	sensor_type – The type of information this sensor is for.

	sensor_url – The URL for downloading the sensor installation package.

	sensor_config_url – The URL for downloading the sensor configuration information.

	error_code – Code for any error that occurred while getting the sensor information.

	message – Message for any error that occurred while getting the sensor information.

Initialize the SensorKit object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	initial_data (dict) – Initial data used to populate the sensor kit data.

	
classmethod from_type(cb, device_type, architecture, sensor_type, version)

	Helper method used to create a temporary SensorKit object from its four components.

This method CANNOT be used to create an object that will be persisted to the server.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	device_type (str) – Device type to be used. Valid values are “WINDOWS”, “LINUX”, and “MAC”.

	architecture (str) – Architecture to be used. Valid values are “32”, “64”, and “OTHER”.

	sensor_type (str) – Sensor type to be used. Valid values are “WINDOWS”, “MAC”, “RHEL”, “UBUNTU”, “SUSE”,
and “AMAZON_LINUX”.

	version (str) – Sensor version number to be used.

	Returns:

	A SensorType object with those specified values.

	Return type:

	SensorType

	Raises:

	ApiError – If an invalid value was used for one of the three limited values.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
classmethod get_config_template(cb)

	Retrieve the sample config.ini file with the properties populated from the server.

	Parameters:

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	Returns:

	Text of the sample configuration file.

	Return type:

	str

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class SensorKitQuery(doc_class, cb)

	Bases: BaseQuery, CriteriaBuilderSupportMixin, IterableQueryMixin, AsyncQueryMixin

Query class used to read in SensorKit objects.

Initialize the SensorKitQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
add_sensor_kit_type(skit=None, **kwargs)

	Add a sensor kit type to the request.

	Parameters:

	
	skit (SensorKit) – The sensor kit type to be added to the request.

	**kwargs (dict) – If skit is None, the keyword arguments ‘device_type’, ‘architecture’, ‘sensor_type’,
and ‘version’ are used to create the sensor kit type to be added.

	Returns:

	Reference to this object.

	Return type:

	SensorKitQuery

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
config_params(params)

	Sets the configuration parameters for the sensor kit query request.

	Parameters:

	params (str) – The text of a config.ini file with a list of sensor properties to configure
on installation.

	Returns:

	Reference to this object.

	Return type:

	SensorKitQuery

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
expires(expiration_date_time)

	Sets the expiration date and time for the sensor kit query request.

	Parameters:

	expiration_date_time (str) – The time at which the sensor download link will expire, expressed
as ISO 8601 UTC.

	Returns:

	Reference to this object.

	Return type:

	SensorKitQuery

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

VM Workloads Search Module

Model and Query Classes for VM Workloads Search API

	
class AWSComputeResource(cb, model_unique_id, initial_data=None)

	Bases: BaseComputeResource

Models an AWS compute resource.

Initialize the AWSComputeResource object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
classmethod bulk_install(cb, compute_resources, sensor_kit_types, config_file=None)

	Install a sensor on a list of compute resources.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	compute_resources (list) – A list of ComputeResource objects used to specify compute resources to install
sensors on.

	sensor_kit_types (list) – A list of SensorKit objects used to specify sensor types to choose from
in installation.

	config_file (str) – The text of a config.ini file with a list of sensor properties to configure
on installation.

	Returns:

	A dict with two members, ‘type’ and ‘code’, indicating the status of the installation.

	Return type:

	dict

	Raises:

	NotImplementedError – Always, for BaseComputeResource.

	
classmethod bulk_install_by_id(cb, compute_resources, sensor_kit_types, config_file=None)

	Install a sensor on a list of compute resources, specified by ID.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	compute_resources (list) – A list of dicts, each of which contains the keys ‘vcenter_uuid’ and
‘compute_resource_id’, specifying the compute resources to install sensors on.

	sensor_kit_types (list) – A list of SensorKit objects used to specify sensor types to choose from
in installation.

	config_file (str) – The text of a config.ini file with a list of sensor properties to configure
on installation.

	Returns:

	A dict with two members, ‘type’ and ‘code’, indicating the status of the installation.

	Return type:

	dict

	Raises:

	NotImplementedError – Always, for BaseComputeResource.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
install_sensor(sensor_version, config_file=None)

	Install a sensor on this compute resource.

	Parameters:

	
	sensor_version (str) – The version number of the sensor to be used.

	config_file (str) – The text of a config.ini file with a list of sensor properties to configure
on installation.

	Returns:

	A dict with two members, ‘type’ and ‘code’, indicating the status of the installation.

	Return type:

	dict

	Raises:

	NotImplementedError – Always, for BaseComputeResource.

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class AWSComputeResourceQuery(doc_class, cb)

	Bases: BaseComputeResourceQuery

Represents a query that is used to locate AWSComputeResource objects.

Initialize the ComputeResourceQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
download(download_format=None)

	Downloads all compute resources matching the specific criteria.

Example

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.workload import VCenterComputeResource
>>> cbc = CBCloudAPI()
>>> query = cbc.select(VCenterComputeResource).set_os_type(["UBUNTU"]).set_eligibility(["ELIGIBLE"])
>>> query.set_installation_status(["ERROR"])
>>> job = query.download("CSV")
>>> job.await_completion()
>>> print(job.get_output_as_string())

	Required Permissions:
	public.cloud.inventory(READ) or _API.Public.Cloud:Public.cloud.inventory:READ, jobs.status(READ)

	Parameters:

	download_format (str) – The download format to be used. Valid values are “JSON” (the default) and “CSV”.

	Returns:

	Asynchronous job which will supply the results of the download when they’re complete.

	Return type:

	Job

	Raises:

	ApiError – If the format specified was not valid, or if the server did not properly return the job.

	
exclude_auto_scaling_group_name(auto_scaling_group_name)

	Excludes the specified auto scaling group name from appearing in the search results.

	Parameters:

	auto_scaling_group_name (list) – List of string auto scaling group names.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
exclude_availability_zone(availability_zone)

	Excludes the specified availability zone from appearing in the search results.

	Parameters:

	availability_zone (list) – List of string availability zones.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
exclude_cloud_provider_account_id(cloud_provider_account_id)

	Excludes the specified cloud provider account ID from appearing in the search results.

	Parameters:

	cloud_provider_account_id (list) – List of string cloud provider account IDs.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
exclude_cloud_provider_resource_id(cloud_provider_resource_id)

	Excludes the specified cloud provider resource ID from appearing in the search results.

	Parameters:

	cloud_provider_resource_id (list) – List of string cloud provider resource IDs.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
exclude_cloud_provider_tags(cloud_provider_tags)

	Excludes the specified cloud provider tags from appearing in the search results.

	Parameters:

	cloud_provider_tags (list) – List of string cloud provider tags.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
exclude_id(id_value)

	Excludes the specified compute resource ID from appearing in the search results.

	Parameters:

	id_value (list) – List of string compute resource IDs.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
exclude_installation_status(installation_status)

	Excludes the specified installation status from appearing in the search results.

	Parameters:

	installation_status (list) – List of string installation statuses.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
exclude_name(name)

	Excludes the specified compute resource name from appearing in the search results.

	Parameters:

	name (list) – List of string compute resource names.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
exclude_platform(platform)

	Excludes the specified platform from appearing in the search results.

	Parameters:

	platform (list) – List of string platforms.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
exclude_platform_details(platform_details)

	Excludes the specified platform details from appearing in the search results.

	Parameters:

	platform_details (list) – List of string platform details.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
exclude_region(region)

	Excludes the specified region from appearing in the search results.

	Parameters:

	region (list) – List of string regions.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
exclude_subnet_id(subnet_id)

	Excludes the specified subnet ID from appearing in the search results.

	Parameters:

	subnet_id (list) – List of string subnet IDs.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
exclude_virtual_private_cloud_id(virtual_private_cloud_id)

	Excludes the specified virtual private cloud ID from appearing in the search results.

	Parameters:

	virtual_private_cloud_id (list) – List of string virtual private cloud IDs.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
facet(fields, rows=None)

	Facets all compute resources matching the specified criteria and returns the facet results.

Example

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.workload import AWSComputeResource
>>> cbc = CBCloudAPI()
>>> query = cbc.select(AWSComputeResource)
>>> facets = query.facet(['platform', 'virtual_private_cloud_id'])

	Required Permissions:
	public.cloud.inventory(READ) or _API.Public.Cloud:Public.cloud.inventory:READ

	Parameters:

	
	fields (list[str]) – List of the fields to be faceted on.

	rows (int) – Number of the top entries to return. Default is 20.

	Returns:

	The facet data.

	Return type:

	list[ComputeResourceFacet]

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_auto_scaling_group_name(auto_scaling_group_name)

	Restricts the search that this query is performed on to the specified auto scaling group name.

	Parameters:

	auto_scaling_group_name (list) – List of string auto scaling group names.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
set_availability_zone(availability_zone)

	Restricts the search that this query is performed on to the specified availability zone.

	Parameters:

	availability_zone (list) – List of string availability zones.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
set_cloud_provider_account_id(cloud_provider_account_id)

	Restricts the search that this query is performed on to the specified cloud provider account ID.

	Parameters:

	cloud_provider_account_id (list) – List of string cloud provider account IDs.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
set_cloud_provider_resource_id(cloud_provider_resource_id)

	Restricts the search that this query is performed on to the specified cloud provider resource ID.

	Parameters:

	cloud_provider_resource_id (list) – List of string cloud provider resource IDs.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
set_cloud_provider_tags(cloud_provider_tags)

	Restricts the search that this query is performed on to the specified cloud provider tags.

	Parameters:

	cloud_provider_tags (list) – List of string cloud provider tags.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
set_id(id_value)

	Restricts the search that this query is performed on to the specified compute resource ID.

	Parameters:

	id_value (list) – List of string compute resource IDs.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
set_installation_status(installation_status)

	Restricts the search that this query is performed on to the specified installation status.

	Parameters:

	installation_status (list) – List of string installation statuses.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
set_name(name)

	Restricts the search that this query is performed on to the specified compute resource name.

	Parameters:

	name (list) – List of string compute resource names.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
set_platform(platform)

	Restricts the search that this query is performed on to the specified platform.

	Parameters:

	platform (list) – List of string platforms.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
set_platform_details(platform_details)

	Restricts the search that this query is performed on to the specified platform details.

	Parameters:

	platform_details (list) – List of string platform details.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
set_region(region)

	Restricts the search that this query is performed on to the specified region.

	Parameters:

	region (list) – List of string regions.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
set_subnet_id(subnet_id)

	Restricts the search that this query is performed on to the specified subnet ID.

	Parameters:

	subnet_id (list) – List of string subnet IDs.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
set_virtual_private_cloud_id(virtual_private_cloud_id)

	Restricts the search that this query is performed on to the specified virtual private cloud ID.

	Parameters:

	virtual_private_cloud_id (list) – List of string virtual private cloud IDs.

	Returns:

	This instance.

	Return type:

	AWSComputeResourceQuery

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(ComputeResource).sort_by("name")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order.

	Returns:

	This instance.

	Return type:

	BaseComputeResourceQuery

	
summarize(summary_fields)

	Get compute resource summaries on required fields of the resources with the specified criteria.

Example

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.workload import AWSComputeResource
>>> cbc = CBCloudAPI()
>>> query = cbc.select(AWSComputeResource)
>>> summary = query.summarize(['availability_zone', 'region', 'virtual_private_cloud_id'])

	Required Permissions:
	public.cloud.inventory(READ) or _API.Public.Cloud:Public.cloud.inventory:READ

	Parameters:

	summary_fields (list[str]) – The fields to be summarized.

	Returns:

	A mapping of field names to the number of resources with that field.

	Return type:

	map[str, int]

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
class BaseComputeResource(cb, model_unique_id, initial_data=None)

	Bases: NewBaseModel

Internal BaseComputeResource model

Initialize the BaseComputeResource object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the compute resource represented.

	initial_data (dict) – Initial data used to populate the resource object.

	
classmethod bulk_install(cb, compute_resources, sensor_kit_types, config_file=None)

	Install a sensor on a list of compute resources.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	compute_resources (list) – A list of ComputeResource objects used to specify compute resources to install
sensors on.

	sensor_kit_types (list) – A list of SensorKit objects used to specify sensor types to choose from
in installation.

	config_file (str) – The text of a config.ini file with a list of sensor properties to configure
on installation.

	Returns:

	A dict with two members, ‘type’ and ‘code’, indicating the status of the installation.

	Return type:

	dict

	Raises:

	NotImplementedError – Always, for BaseComputeResource.

	
classmethod bulk_install_by_id(cb, compute_resources, sensor_kit_types, config_file=None)

	Install a sensor on a list of compute resources, specified by ID.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	compute_resources (list) – A list of dicts, each of which contains the keys ‘vcenter_uuid’ and
‘compute_resource_id’, specifying the compute resources to install sensors on.

	sensor_kit_types (list) – A list of SensorKit objects used to specify sensor types to choose from
in installation.

	config_file (str) – The text of a config.ini file with a list of sensor properties to configure
on installation.

	Returns:

	A dict with two members, ‘type’ and ‘code’, indicating the status of the installation.

	Return type:

	dict

	Raises:

	NotImplementedError – Always, for BaseComputeResource.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
install_sensor(sensor_version, config_file=None)

	Install a sensor on this compute resource.

	Parameters:

	
	sensor_version (str) – The version number of the sensor to be used.

	config_file (str) – The text of a config.ini file with a list of sensor properties to configure
on installation.

	Returns:

	A dict with two members, ‘type’ and ‘code’, indicating the status of the installation.

	Return type:

	dict

	Raises:

	NotImplementedError – Always, for BaseComputeResource.

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class BaseComputeResourceQuery(doc_class, cb)

	Bases: BaseQuery, QueryBuilderSupportMixin, CriteriaBuilderSupportMixin, IterableQueryMixin, AsyncQueryMixin

Base class for compute resource queries, not intended for direct use.

Initialize the BaseComputeResourceQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
download(download_format=None)

	Downloads all compute resources matching the specific criteria.

Example

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.workload import VCenterComputeResource
>>> cbc = CBCloudAPI()
>>> query = cbc.select(VCenterComputeResource).set_os_type(["UBUNTU"]).set_eligibility(["ELIGIBLE"])
>>> query.set_installation_status(["ERROR"])
>>> job = query.download("CSV")
>>> job.await_completion()
>>> print(job.get_output_as_string())

	Required Permissions:
	public.cloud.inventory(READ) or _API.Public.Cloud:Public.cloud.inventory:READ, jobs.status(READ)

	Parameters:

	download_format (str) – The download format to be used. Valid values are “JSON” (the default) and “CSV”.

	Returns:

	Asynchronous job which will supply the results of the download when they’re complete.

	Return type:

	Job

	Raises:

	ApiError – If the format specified was not valid, or if the server did not properly return the job.

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
facet(fields, rows=None)

	Facets all compute resources matching the specified criteria and returns the facet results.

Example

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.workload import AWSComputeResource
>>> cbc = CBCloudAPI()
>>> query = cbc.select(AWSComputeResource)
>>> facets = query.facet(['platform', 'virtual_private_cloud_id'])

	Required Permissions:
	public.cloud.inventory(READ) or _API.Public.Cloud:Public.cloud.inventory:READ

	Parameters:

	
	fields (list[str]) – List of the fields to be faceted on.

	rows (int) – Number of the top entries to return. Default is 20.

	Returns:

	The facet data.

	Return type:

	list[ComputeResourceFacet]

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(ComputeResource).sort_by("name")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order.

	Returns:

	This instance.

	Return type:

	BaseComputeResourceQuery

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
class ComputeResourceFacet(cb, model_unique_id, initial_data=None)

	Bases: UnrefreshableModel

Facet data returned by the facet() method of the query.

Initialize the ComputeResourceFacet object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the facet represented.

	initial_data (dict) – Initial data used to populate the facet.

	
class ComputeResourceFacetValue(cb, model_unique_id, initial_data=None)

	Bases: UnrefreshableModel

Represents a single facet value inside a ComputeResourceFacet.

Initialize the ComputeResourceFacetValue object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the facet value represented.

	initial_data (dict) – Initial data used to populate the facet value.

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
property values

	Returns the values for this particular facet.

	Returns:

	The values of this facet.

	Return type:

	list[ComputeResourceFacet.ComputeResourceFacetValue]

	
class VCenterComputeResource(cb, model_unique_id, initial_data=None)

	Bases: BaseComputeResource

Models a vCenter compute resource.

Initialize the VCenterComputeResource object.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	model_unique_id (str) – ID of the alert represented.

	initial_data (dict) – Initial data used to populate the alert.

	
classmethod bulk_install(cb, compute_resources, sensor_kit_types, config_file=None)

	Install a sensor on a list of compute resources.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	compute_resources (list) – A list of ComputeResource objects used to specify compute resources to install
sensors on.

	sensor_kit_types (list) – A list of SensorKit objects used to specify sensor types to choose from
in installation.

	config_file (str) – The text of a config.ini file with a list of sensor properties to configure
on installation.

	Returns:

	A dict with two members, ‘type’ and ‘code’, indicating the status of the installation.

	Return type:

	dict

	
classmethod bulk_install_by_id(cb, compute_resources, sensor_kit_types, config_file=None)

	Install a sensor on a list of compute resources, specified by ID.

	Parameters:

	
	cb (BaseAPI) – Reference to API object used to communicate with the server.

	compute_resources (list) – A list of dicts, each of which contains the keys ‘vcenter_uuid’ and
‘compute_resource_id’, specifying the compute resources to install sensors on.

	sensor_kit_types (list) – A list of SensorKit objects used to specify sensor types to choose from
in installation.

	config_file (str) – The text of a config.ini file with a list of sensor properties to configure
on installation.

	Returns:

	A dict with two members, ‘type’ and ‘code’, indicating the status of the installation.

	Return type:

	dict

	
get(attrname, default_val=None)

	Return an attribute of this object.

	Parameters:

	
	attrname (str) – Name of the attribute to be returned.

	default_val (Any) – Default value to be used if the attribute is not set.

	Returns:

	The returned attribute value, which may be defaulted.

	Return type:

	Any

	
install_sensor(sensor_version, config_file=None)

	Install a sensor on this compute resource.

	Parameters:

	
	sensor_version (str) – The version number of the sensor to be used.

	config_file (str) – The text of a config.ini file with a list of sensor properties to configure
on installation.

	Returns:

	A dict with two members, ‘type’ and ‘code’, indicating the status of the installation.

	Return type:

	dict

	Raises:

	ApiError – If the compute node is not eligible or is of an invalid type.

	
refresh()

	Reload this object from the server.

	
to_json()

	Return a json object of the response.

	Returns:

	The response dictionary representation.

	Return type:

	Any

	
class VCenterComputeResourceQuery(doc_class, cb)

	Bases: BaseComputeResourceQuery

Represents a query that is used to locate ComputeResource objects.

Initialize the ComputeResourceQuery.

	Parameters:

	
	doc_class (class) – The model class that will be returned by this query.

	cb (BaseAPI) – Reference to API object used to communicate with the server.

	
add_criteria(key, newlist)

	Add to the criteria on this query with a custom criteria key.

Will overwrite any existing criteria for the specified key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (str or list[str]) – Value or list of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).add_criteria("type", ["CB_ANALYTIC", "WATCHLIST"])
>>> query = api.select(Alert).add_criteria("type", "CB_ANALYTIC")

	
all()

	Returns all the items of a query as a list.

	Returns:

	List of query items

	Return type:

	list

	
and_(q=None, **kwargs)

	Add a conjunctive filter to this query.

	Parameters:

	
	q (Any) – Query string or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
download(download_format=None)

	Downloads all compute resources matching the specific criteria.

Example

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.workload import VCenterComputeResource
>>> cbc = CBCloudAPI()
>>> query = cbc.select(VCenterComputeResource).set_os_type(["UBUNTU"]).set_eligibility(["ELIGIBLE"])
>>> query.set_installation_status(["ERROR"])
>>> job = query.download("CSV")
>>> job.await_completion()
>>> print(job.get_output_as_string())

	Required Permissions:
	public.cloud.inventory(READ) or _API.Public.Cloud:Public.cloud.inventory:READ, jobs.status(READ)

	Parameters:

	download_format (str) – The download format to be used. Valid values are “JSON” (the default) and “CSV”.

	Returns:

	Asynchronous job which will supply the results of the download when they’re complete.

	Return type:

	Job

	Raises:

	ApiError – If the format specified was not valid, or if the server did not properly return the job.

	
exclude_appliance_uuid(appliance_uuid)

	Excludes the specified appliance UUID from appearing in the search results.

	Parameters:

	appliance_uuid (list) – List of string appliance uuids.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_cluster_name(cluster_name)

	Excludes the specified cluster name from appearing in the search results.

	Parameters:

	cluster_name (list) – List of string cluster names.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_datacenter_name(datacenter_name)

	Excludes the specified datacenter name from appearing in the search results.

	Parameters:

	datacenter_name (list) – List of string datacenter names.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_device_guid(device_guid)

	Excludes the specified device GUID from appearing in the search results.

	Parameters:

	device_guid (list) – List of string device GUIDs.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_eligibility(eligibility)

	Excludes the specified eligibility from appearing in the search results.

	Parameters:

	eligibility (list) – List of string eligibilities.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_eligibility_code(eligibility_code)

	Excludes the specified eligibility code from appearing in the search results.

	Parameters:

	eligibility_code (list) – List of string eligibility codes.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_esx_host_name(esx_host_name)

	Excludes the specified ESX host name from appearing in the search results.

	Parameters:

	esx_host_name (list) – List of string ESX host names.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_esx_host_uuid(esx_host_uuid)

	Excludes the specified ESX host UUID from appearing in the search results.

	Parameters:

	esx_host_uuid (list) – List of string ESX host UUIDs.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_host_name(host_name)

	Excludes the specified host name from appearing in the search results.

	Parameters:

	host_name (list) – List of string host names.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_installation_status(installation_status)

	Excludes the specified installation status from appearing in the search results.

	Parameters:

	installation_status (list) – List of string installation statuses.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_installation_type(installation_type)

	Excludes the specified installation type from appearing in the search results.

	Parameters:

	installation_type (list) – List of string installation types.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_ip_address(ip_address)

	Excludes the specified IP address from appearing in the search results.

	Parameters:

	ip_address (list) – List of string IP addresses.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_name(name)

	Excludes the specified name from appearing in the search results.

	Parameters:

	name (list) – List of string names.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_os_architecture(os_architecture)

	Excludes the specified OS architecture from appearing in the search results.

	Parameters:

	os_architecture (list) – List of string OS architectures.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_os_description(os_description)

	Excludes the specified OS description from appearing in the search results.

	Parameters:

	os_description (list) – List of string OS descriptions.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_os_type(os_type)

	Excludes the specified OS type from appearing in the search results.

	Parameters:

	os_type (list) – List of string OS types.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_registration_id(registration_id)

	Excludes the specified registration ID from appearing in the search results.

	Parameters:

	registration_id (list) – List of string registration IDs.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_uuid(uuid)

	Excludes the specified UUID from appearing in the search results.

	Parameters:

	uuid (list) – List of string UUIDs.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_vcenter_host_url(vcenter_host_url)

	Excludes the specified vCenter host URL from appearing in the search results.

	Parameters:

	vcenter_host_url (list) – List of string vCenter host URLs.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_vcenter_name(vcenter_name)

	Excludes the specified vCenter name from appearing in the search results.

	Parameters:

	vcenter_name (list) – List of string vCenter names.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_vcenter_uuid(vcenter_uuid)

	Excludes the specified vCenter UUID from appearing in the search results.

	Parameters:

	vcenter_uuid (list) – List of string vCenter UUIDs.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
exclude_vmwaretools_version(vmwaretools_version)

	Excludes the specified VMware Tools version from appearing in the search results.

	Parameters:

	vmwaretools_version (list) – List of string VMware Tools versions.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
execute_async()

	Executes the current query in an asynchronous fashion.

	Returns:

	A future representing the query and its results.

	Return type:

	Future

	
facet(fields, rows=None)

	Facets all compute resources matching the specified criteria and returns the facet results.

Example

>>> from cbc_sdk import CBCloudAPI
>>> from cbc_sdk.workload import AWSComputeResource
>>> cbc = CBCloudAPI()
>>> query = cbc.select(AWSComputeResource)
>>> facets = query.facet(['platform', 'virtual_private_cloud_id'])

	Required Permissions:
	public.cloud.inventory(READ) or _API.Public.Cloud:Public.cloud.inventory:READ

	Parameters:

	
	fields (list[str]) – List of the fields to be faceted on.

	rows (int) – Number of the top entries to return. Default is 20.

	Returns:

	The facet data.

	Return type:

	list[ComputeResourceFacet]

	
first()

	Returns the first item that would be returned as the result of a query.

	Returns:

	First query item

	Return type:

	obj

	
not_(q=None, **kwargs)

	Adds a negated filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
one()

	Returns the only item that would be returned by a query.

	Returns:

	Sole query return item

	Return type:

	obj

	Raises:

	
	MoreThanOneResultError – If the query returns more than one item

	ObjectNotFoundError – If the query returns zero items

	
or_(q=None, **kwargs)

	Add a disjunctive filter to this query.

	Parameters:

	
	q (solrq.Q) – Query object.

	**kwargs (dict) – Arguments to construct a solrq.Q with.

	Returns:

	This Query object.

	Return type:

	Query

	
set_appliance_uuid(appliance_uuid)

	Restricts the search that this query is performed on to the specified appliance uuid.

	Parameters:

	appliance_uuid (list) – List of string appliance uuids.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_cluster_name(cluster_name)

	Restricts the search that this query is performed on to the specified cluster name.

	Parameters:

	cluster_name (list) – List of string cluster names.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_datacenter_name(datacenter_name)

	Restricts the search that this query is performed on to the specified datacenter name.

	Parameters:

	datacenter_name (list) – List of string datacenter names.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_device_guid(device_guid)

	Restricts the search that this query is performed on to the specified device GUID.

	Parameters:

	device_guid (list) – List of string device GUIDs.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_eligibility(eligibility)

	Restricts the search that this query is performed on to the specified eligibility.

	Parameters:

	eligibility (list) – List of string eligibilities.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_eligibility_code(eligibility_code)

	Restricts the search that this query is performed on to the specified eligibility code.

	Parameters:

	eligibility_code (list) – List of string eligibility codes.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_esx_host_name(esx_host_name)

	Restricts the search that this query is performed on to the specified ESX host name.

	Parameters:

	esx_host_name (list) – List of string ESX host names.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_esx_host_uuid(esx_host_uuid)

	Restricts the search that this query is performed on to the specified ESX host UUID.

	Parameters:

	esx_host_uuid (list) – List of string ESX host UUIDs.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_host_name(host_name)

	Restricts the search that this query is performed on to the specified host name.

	Parameters:

	host_name (list) – List of string host names.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_installation_status(installation_status)

	Restricts the search that this query is performed on to the specified installation status.

	Parameters:

	installation_status (list) – List of string installation status.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_installation_type(installation_type)

	Restricts the search that this query is performed on to the specified installation type.

	Parameters:

	installation_type (list) – List of string installation types.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_ip_address(ip_address)

	Restricts the search that this query is performed on to the specified ip address.

	Parameters:

	ip_address (list) – List of string ip addresses.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_name(name)

	Restricts the search that this query is performed on to the specified name.

	Parameters:

	name (list) – List of string names.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_os_architecture(os_architecture)

	Restricts the search that this query is performed on to the specified os architecture.

	Parameters:

	os_architecture (list) – List of string os architecture.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_os_description(os_description)

	Restricts the search that this query is performed on to the specified os description.

	Parameters:

	os_description (list) – List of string os description.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_os_type(os_type)

	Restricts the search that this query is performed on to the specified os type.

	Parameters:

	os_type (list) – List of string os type.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_registration_id(registration_id)

	Restricts the search that this query is performed on to the specified registration ID.

	Parameters:

	registration_id (list) – List of string registration IDs.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_uuid(uuid)

	Restricts the search that this query is performed on to the specified uuid.

	Parameters:

	uuid (list) – List of string uuid.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_vcenter_host_url(vcenter_host_url)

	Restricts the search that this query is performed on to the specified vCenter host URL.

	Parameters:

	vcenter_host_url (list) – List of string vCenter host URLs.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_vcenter_name(vcenter_name)

	Restricts the search that this query is performed on to the specified vCenter name.

	Parameters:

	vcenter_name (list) – List of string vCenter names.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_vcenter_uuid(vcenter_uuid)

	Restricts the search that this query is performed on to the specified vCenter UUID.

	Parameters:

	vcenter_uuid (list) – List of string vCenter UUIDs.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
set_vmwaretools_version(vmwaretools_version)

	Restricts the search that this query is performed on to the specified VMware Tools version.

	Parameters:

	vmwaretools_version (list) – List of string VMware Tools versions.

	Returns:

	This instance.

	Return type:

	VCenterComputeResourceQuery

	
sort_by(key, direction='ASC')

	Sets the sorting behavior on a query’s results.

Example

>>> cb.select(ComputeResource).sort_by("name")

	Parameters:

	
	key (str) – The key in the schema to sort by.

	direction (str) – The sort order.

	Returns:

	This instance.

	Return type:

	BaseComputeResourceQuery

	
update_criteria(key, newlist)

	Update the criteria on this query with a custom criteria key.

	Parameters:

	
	key (str) – The key for the criteria item to be set.

	newlist (list) – List of values to be set for the criteria item.

	Returns:

	The query object with specified custom criteria.

Example

>>> query = api.select(Alert).update_criteria("my.criteria.key", ["criteria_value"])

Note

Use this method if there is no implemented method for your desired criteria.

	
where(q=None, **kwargs)

	Add a filter to this query.

	Parameters:

	
	q (Any) – Query string, QueryBuilder, or solrq.Q object

	**kwargs (dict) – Arguments to construct a solrq.Q with

	Returns:

	This Query object.

	Return type:

	Query

	
log = <Logger cbc_sdk.workload.vm_workloads_search (WARNING)>

	Workloads Search model

Logging & Diagnostics

The cbc_sdk provides extensive logging facilities to track down issues communicating with the REST API and understand
potential performance bottlenecks.

Enabling Logging

The cbc_sdk uses Python’s standard logging module for logging. To enable debug logging for the cbc_sdk, you
can do the following:

>>> import logging
>>> logging.basicConfig(level=logging.DEBUG)

All REST API calls, including the API endpoint, any data sent via POST or PUT, and the time it took for the call
to complete:

>>> devices = [device for device in cb.select(Device)]
DEBUG:cbc_sdk.connection:Sending HTTP POST /appservices/v6/orgs/ABCD1234/devices/_search with {"criteria": {}, "exclusions": {}, "query": ""}
DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): defense-eap01.conferdeploy.net:443
DEBUG:urllib3.connectionpool:https://defense-eap01.conferdeploy.net:443 "POST /appservices/v6/orgs/ABCD1234/devices/_search HTTP/1.1" 200 None
DEBUG:cbc_sdk.connection:HTTP POST /appservices/v6/orgs/ABCD1234/devices/_search took 0.409s (response 200)

Testing

This document will provide information about how to run the functional tests
for the CBC Python SDK in Linux and Windows platforms.

These instructions assume you already have the CBC SDK sources present
locally. If not, they can be checked out from GitHub using the URL
https://github.com/carbonblack/carbon-black-cloud-sdk-python; doing so will require you to
either have Git installed or download the source tree packed as a zip archive from GitHub
and then unarchive it.

Running the tests on Microsoft Windows

Install Python

From http://python.org, download the installer for the most recent Python 3.8 version
(as of this writing, version 3.8.6 is the latest).

Fix the Execution PATH

Go to the Environment Variables dialog (System Control Panel or Properties page
for My Computer/This PC, then select Advanced system settings and then the
Environment Variables button). Ensure that the first two components of
the user PATH environment variable are %USERPROFILE%\AppData\Local\Programs\Python\Python38
and %USERPROFILE%\AppData\Local\Programs\Python\Python38\Scripts.

To test this, open a command window and use the command:
python --version

It should run Python and show that you are running Python 3.8.

Install CBC Python SDK Requirements

From the top-level CBC SDK source directory, execute the following commands:

pip install -r requirements.txt

This will ensure that all required python modules are installed.

Execute the Functional Tests

From the top-level CBC SDK source directory, execute the following command:

pytest

The tests should return that they all completed successfully.

Running the tests on Linux

Carbon Black Cloud Python SDK provides a number of Dockerfiles inside the docker folder
of the source root. Those contain the necessary instructions to build docker images
containing a number of distributions with CBC Python SDK preinstalled in /app directory
(relative to image root).

Build the docker image

Currently the following Dockerfiles are available:

	docker/amazon/Dockerfile - Amazon Linux (latest) image

	docker/ubuntu/Dockerfile - Ubuntu 18.04 image

	docker/rhel/Dockerfile - RHEL8 UBI image

	docker/suse/Dockerfile - OpenSUSE Leap (latest) image

Building the images should be done from the CBC SDK root directory by explicitly providing
the path to the Dockerfile to be built, e.g for the RHEL one, the build command would be:

docker build -t cbc-sdk-python=rhel -f docker/rhel/Dockerfile .

By default, the docker Unix socket is owned by root user / docker group. In case you are running
the build as a non-root user that isn’t member of docker group, sudo should be used:

sudo docker build -t cbc-sdk-python-rhel -f docker/rhel/Dockerfile .

Run the container and execute the test

When the docker image builds, it should be started, e.g:

docker run -it cbc-sdk-python-rhel

This will run the container and spawn an interactive shell running in it. CBC Python SDK is installed
in the /app directory, so pytest needs to be executed from there:

cd /app && pytest

Changelog

CBC SDK 1.5.2 - Released May 1, 2024

New Features:

	Enhanced Audit Log support with search and export capabilities

	CIS Benchmarking:

	Schedule compliance scans

	Search, create, update, and delete benchmark sets

	Search and modify benchmark rules within a benchmark set

	Search and export device summaries for benchmark sets

	Enable, disable, and trigger reassessment on benchmark sets or individual devices

	Search benchmark set summaries

	Search and export device compliance summaries

	Search and export rule compliance summaries

	Search rule results for devices

	Get and acknowledge compliance bundle version updates, show differences, get rule info

Updates:

	Added collapse_field parameter for process searches

	Added an exponential backoff for polling of Job completion status

	Added rule configurations for event reporting and sensor operation exclusions

Bug Fixes:

	Fixed implementation of iterable queries for consistency across the SDK

	Fixed parsing of credential files that are encoded in UTF-16

	Fixed processing of Job so that it doesn’t rely on an API call that doesn’t give proper answers

	Fixed missing properties in Process

Documentation:

	Fixed documentation for Alert and Process to include links to the Developer Network field descriptions

	New example script for identifying devices that have checked in but have not sent any events

	Added guide page for Devices including searching and actions

CBC SDK 1.5.1 - Released January 30, 2024

New Features:

	Asset Groups - Added management of asset groups:

	Create, delete, and update asset groups (either with manual or dynamic membership)

	Retrieve asset groups by ID

	Search for asset groups, retrieve list of all asset groups

	Add/remove members, get all members in a group

	Get statistics for a group

	Helper functions for Device to retrieve and maintain group membership

	Preview changes to effective policy for device(s) as a result of a number of different potential changes

	Full documentation and new Guide page

	Alerts v7 Enhancements - Added additional functionality to Alerts v7 as implemented in version 1.5.0:

	Search Grouped Alerts, including faceting and retrieval of all alerts for a group

	Get list of watchlists on an alert

	Network threat metadata helper function

	Full update to Alerts guide in documentation

	Command line deobfuscation added to Processes, Alerts, and Observations, allowing visualization of PowerShell
command lines that have been deliberately obfuscated by attackers.

	New scroll() method added to Live Query search results.

	New helper methods added to Policy to enable or disable XDR data collection and auth event data collection.

	New export() and scroll() methods added to DeviceSearchQuery.

Updates:

	Python 3.7 has been re-added as “unofficially” supported, since certain integrations that use the SDK still use it.

	Added deployment_type as part of the facets available in DeviceSearchQuery.

Bug Fixes:

	Search jobs that allow setting a timeout now default that timeout to 5 minutes. The timeout may be lowered
from that point, but never raised beyond it. This eliminates a problem of “hung” searches.

Documentation:

	ReadTheDocs generation has been improved to show the inherited methods. There are some helper functions on
SearchQuery classes such as add_criteria() inherited from CriteriaBuilderSupportMixin and first()
inherited from IterableQueryMixin.

CBC SDK 1.5.0 - Released October 24, 2023

Alerts Update to use V7 API

The new Alerts V7 API will improve alert management and allow for easier management, consumption, and triage of alerts
in the Carbon Black Cloud. Alerts v7 API extends the capabilities with improved methods of retrieving alerts and added
functionality to manage alert workflow.

N.B.: This change involves breaking changes to the SDK involving the core Alerts workflow. Please check your
existing code carefully before deploying this SDK upgrade.

Breaking Changes:

	Alerts V7: Certain changes are not compatible with code written to the old V6 API. For details, please see the
Alert Migration Guide. Breaking changes include:

	Default Search Time Period is reduced to two weeks.

	For fields that do not exist in the Alerts V7 API, a FunctionalityDecommissioned exception is raised.

	get_events() method has been removed.

	All facet terms match the field names.

	Workflow has been rebuilt.

	Create Note returns a single Note instance instead of a list.

	Official support for Python 3.7 has been dropped, since that version is now end-of-life. Added explicit testing
support for Python version 3.12. N.B.: End users should update their Python version to 3.8.x or greater.

New Features:

	Alerts V7:

	Extended alert schema with additional metadata such as process command line and username, parent and child process
information, netconn data, additional device fields, MITRE categorization when available, and more

	Ability to mark alerts as “In Progress”

	Ability to mark alerts as True Positive or False Positive

	Additional fields available for both searching and faceting

	Enhanced note management with the ability to add notes to both individual alerts and threats (alerts grouped
by threat)

	Observed Alerts have been removed from the Alerts API as these events are not considered actionable threats. They
can now be retrieved via the Observations API.

	External Devices: Added External Device Export and External Device Approvals Export.

Updates:

	Audit log requests have moved from CBCloudAPI into their own function entry point in the platform package.
The old function has been deprecated.

	Process search validation has been changed to use the V2 POST API rather than the old V1 GET API.

	CBCloudAPI.get_notifications() and CBCloudAPI.notification_listener() have been marked as deprecated.

Documentation:

	Added example script to poll for audit logs.

	CBCloudAPI documentation has been pulled out into its own page.

	Authentication, Getting Started, and Guides pages have been updated.

	Concepts page has been removed, and the information it contained has moved to other pages.

	New Searching guide added.

	Update to left-hand sidebar to allow the Guides sub-listing to be collapsed.

	Porting guide has been updated to reflect the latest APIs.

	Live Response migration guide has been updated with links.

	README.md has been updated with better instructions for generating docs locally.

	CBCloudAPI and Devices documentation have been updated to better conform to new style guide for docstrings.

CBC SDK 1.4.3 - Released June 26, 2023

New Features:

	Policy Rule Configurations - support for additional rule configuration types:

	Host-Based Firewall - addresses the protection of assets based on rules governing network and application behavior.

	Data Collection - control over what data is uploaded to the Carbon Black Cloud. Specifically, can enable or
disable auth events collection.

Updates:

	Added an example script for manipulating core prevention rule configuration and data collection status on a policy.

	Changed pymox dependency to the latest version, which eliminates warning messages on unit test and provides
compatibility with Python 3.11 and later.

	Added specific testing support for Python 3.11.

	Added additional UAT tests for authentication events.

	Many exception classes now carry a uri field which holds the URI of the API being accessed that caused the
exception to be raised.

Bug Fixes:

	Fixed link validation for reports and IOCs to accept IPv4 addresses, domain names, or URIs.

Documentation:

	Documentation has been reorganized for ease of reference; guides have been added to the main menu, the menu has been
reordered, and various modules have been renamed.

	Fixed typo in workload guide.

CBC SDK 1.4.2 - Released March 22, 2023

New Features:

	Policy Rule Configurations - allows users to make adjustments to Carbon Black-defined rules.

	Core Prevention Rule Configurations - controls settings for core prevention rules as supplied by Carbon Black.

	Observations - search through all the noteworthy, searchable activity that was reported by your organization’s
sensors.

	Auth Events - visibility into authentication events on Windows endpoints.

Updates:

	Remove use of v1 status URL from process search, which now depends entirely on v2 operations.

	Vulnerabilities can now be dismissed and undismissed, and have dismissals edited.

Bug Fixes:

	User creation: raise error if the API object is not passed as the first parameter to User.create().

	Live Response: pass failed session exception back up to the WorkItem future objects.

	Improved query string parameter handling in API calls.

Documentation:

	New example script showing how to retrieve container alerts.

	New example script allows exporting users with grant and role information.

	Bug fixed in policy_service_crud_operations.py example script affecting iteration over rules.

	Update clarifying alert filtering by fields that take an empty list.

	Sample script added for retrieving alerts for multiple organizations.

CBC SDK 1.4.1 - Released October 21, 2022

New Features:

	AWS workloads now supported in VM Workloads Search.

	Live Query Differential Analysis functionality.

Updates:

	VM Workloads Search updated to use new v2 APIs

	Added the alertable field to feeds.

	Devices API now supports faceting on three additional (public cloud related) fields.

	Added a user acceptance test script for the policy function updates.

Documentation:

	Added information on OAuth authentication to docs.

CBC SDK 1.4.0 - Released July 26,2022

Breaking Changes:

	Policy object has been moved from cbc_sdk.endpoint_standard to cbc_sdk.platform, as it now uses the new
Policy Services API rather than the old APIs through Integration Services.

	N.B.: This change means that you must use a custom API key with permissions under org.policies to manage
policies, rather than an older “API key.”

	To enable time to update integration logic, the cbc_sdk.endpoint_standard Policy object may still be imported
from the old package, and supports operations that are backwards-compatible with the old one.

	When developing a new integration, or updating an existing one cbc_sdk.platform should be used. There is a utility
class PolicyBuilder, and as features are added to the Carbon Black Cloud, they will be added to this module.

	Official support for Python 3.6 has been dropped, since that version is now end-of-life. Added explicit testing
support for Python versions 3.9 and 3.10. N.B.: End users should update their Python version to 3.7.x or
greater.

New Features:

	Credentials handler now supports OAuth tokens.

	Added support for querying a single Report from a Feed.

	Added support for alert notes (create, delete, get, refresh).

Updates:

	Removed the (unused) revoked property from Grant objects.

	Increased the asynchronous query thread pool to 3 threads by default.

	Required version of lxml is now 4.9.1.

	Added a user acceptance test script for Alerts.

Bug Fixes:

	Added max_rows to USB device query, fixing pagination.

	Fixed an off-by-one error in Alerts Search resulting un duplicate alerts showing up in results.

	Fixed an error in alert faceting operations due to sending excess input to the server.

Documentation:

	Watchlists, Feeds, and Reports guide has been updated with additional clarification and examples.

	Updated description for some Device fields that are never populated.

	Additional sensor states added to Device documentation.

	Fixed the description of BaseAlertSearchQuery.set_types so that it mentions all valid alert types.

	Threat intelligence example has been deprecated.

CBC SDK 1.3.6 - Released April 19, 2022

New Features:

	Support for Device Facet API.

	Dynamic reference of query classes–now you can do api.select("Device") in addition to api.select(Device).

	Support for Container Runtime Alerts.

	NSX Remediation functionality - set the NSX remediation state for workloads which support it.

Updates:

	Endpoint Standard specific Event s have been decommissioned and removed.

	SDK now uses Watchlist Manager apis v3 instead of v2. v2 APIs are being decommissioned.

Documentation:

	Added a CONTRIBUTING link to the README.md file.

	Change to Watchlist/Report documentation to properly reflect how to update a Report in a Watchlist.

	Cleaned up formatting.

CBC SDK 1.3.5 - Released January 26, 2022

New Features:

	Added asynchronous query support to Live Query.

	Added the ability to export query results from Live Query, either synchronously or asynchronously (via the Job
object and the Jobs API). Synchronous exports include full-file export, line-by-line export, and ZIP file export.
Asynchronous exports include full-file export and line-by-line export.

	Added a CredentialProvider that uses AWS Secrets Manager to store credential information.

Updates:

	Added WatchlistAlert.get_process() method to return the Process of a WatchlistAlert.

	Added several helpers to Live Query support to make it easier to get runs from a template, or results, device
summaries, or facets from a run.

	Optimized API requests when performing query slicing.

	Updated pretty-printing of objects containing dict members.

	lxml dependency updated to version 4.6.5.

Bug Fixes:

	User.delete() now checks for an outstanding access grant on the user, and deletes it first if it exists.

	Fixed handling of URL when attaching a new IOC to a Feed.

	Getting and setting of Report ignore status is now supported even if that Report is part of a Feed.

Documentation:

	Information added about the target audience for the SDK.

	Improper reference to a credential property replaced in the Authentication guide.

	Broken example updated in Authentication guide.

	Added SDK guides for Vulnerabilities and Live Query APIs.

	Updated documentation for ProcessFacet model to better indicate support for full query string.

CBC SDK 1.3.4 - Released October 12, 2021

New Features:

	New CredentialProvider supporting Keychain storage of credentials (Mac OS only).

	Recommendations API - suggested reputation overrides for policy configuration.

Updates:

	Improved string representation of objects through __str__() mechanism.

Bug Fixes:

	Ensure proper TimeoutError is raised in several places where the wrong exception was being raised.

	Fix to allowed categories when performing alert queries.

Documentation Changes:

	Added guide page for alerts.

	Live Response documentation updated to note use of custom API keys.

	Clarified query examples in Concepts.

	Note that vulnerability assessment has been moved from workload to platform.

	Small typo fixes in watchlists, feeds, UBS, and reports guide.

CBC SDK 1.3.3 - Released August 10, 2021

Bug Fixes:

	Dependency fix on schema library.

CBC SDK 1.3.2 - Released August 10, 2021

New Features:

	Added asynchronous query options to Live Response APIs.

	Added functionality for Watchlists, Reports, and Feeds to simplify developer interaction.

Updates:

	Added documentation on the mapping between permissions and Live Response commands.

Bug Fixes:

	Fixed an error using the STIX/TAXII example with Cabby.

	Fixed a potential infinite loop in getting detailed search results for enriched events and processes.

	Comparison now case-insensitive on UBS download.

CBC SDK 1.3.1 - Released June 15, 2021

New Features:

	Allow the SDK to accept a pre-configured Session object to be used for access, to get around unusual configuration requirements.

Bug Fixes:

	Fix functions in Grant object for adding a new access profile to a user access grant.

CBC SDK 1.3.0 - Released June 8, 2021

New Features

	Add User Management, Grants, Access Profiles, Permitted Roles

	Move Vulnerability models to Platform package in preparation for supporting Endpoints and Workloads

	Refactor Vulnerability models

	VulnerabilitySummary.get_org_vulnerability_summary static function changed to Vulnerability.OrgSummary model with query class

	VulnerabilitySummary model moved inside Vulnerability to Vulnerability.AssetView sub model

	OrganizationalVulnerability and Vulnerability consolidated into a single model to include Carbon Black Cloud context and CVE information together

	Vulnerability(cb, CVE_ID) returns Carbon Black Cloud context and CVE information

	DeviceVulnerability.get_vulnerability_summary_per_device static function moved to get_vulnerability_summary function on Device model

	affected_assets(os_product_id) function changed to get_affected_assets() function and no longer requires os_product_id

	Add dashboard export examples

	Live Response migrated from v3 to v6 (migration guide)

	Live Response uses API Keys of type Custom

	Add function to get Enriched Events for Alert

Bug Fixes

	Fix validate query from dropping sort_by for Query class

	Fix the ability to set expiration for binary download URL

	Fix bug in helpers read_iocs functionality

	Fix install_sensor and bulk_install on ComputeResource to use id instead of uuid

	Fix DeviceSearchQuery from duplicating Device due to base index of 1

CBC SDK 1.2.3 - Released April 19, 2021

Bug Fixes

	Prevent alert query from retrieving past 10k limit

CBC SDK 1.2.3 - Released April 19, 2021

Bug Fixes

	Prevent alert query from retrieving past 10k limit

CBC SDK 1.2.2 - Released April 5, 2021

Bug Fixes

	Add support for full credential property loading through BaseAPI constructor

CBC SDK 1.2.1 - Released March 31, 2021

New Features

	Add __str__ functions for Process.Tree and Process.Summary

	Add get_details for Process

	Add set_max_rows to DeviceQuery

Bug Fixes

	Modify base class for EnrichedEventQuery to Query from cbc_sdk.base to support entire feature set for searching

	Document fixes for changelog and Workload

	Fix _spawn_new_workers to correctly find active devices for Carbon Black Cloud

CBC SDK 1.2.0 - Released March 9, 2021

New Features

	VMware Carbon Black Cloud Workload support for managing workloads:

	Vulnerability Assessment

	Sensor Lifecycle Management

	VM Workloads Search

	Add tutorial for Reputation Override

Bug Fixes

	Fix to initialization of ReputationOverride objects

CBC SDK 1.1.1 - Released February 2, 2021

New Features

	Add easy way to add single approvals and blocks

	Add Device Control Alerts

	Add deployment_type support to the Device model

Bug Fixes

	Fix error when updating iocs in a Report model

	Set max_retries to None to use Connection init logic for retries

CBC SDK 1.1.0 - Released January 27, 2021

New Features

	Reputation Overrides for Endpoint Standard with Enterprise EDR support coming soon

	Device Control for Endpoint Standard

	Live Query Templates/Scheduled Runs and Template History

	Add set_time_range for Alert query

Bug Fixes

	Refactored code base to reduce query inheritance complexity

	Limit Live Query results to 10k cap to prevent 400 Bad Request

	Add missing criteria for Live Query RunHistory to search on template ids

	Add missing args.orgkey to get_cb_cloud_object to prevent exception from being thrown

	Refactor add and update criteria to use CriteriaBuilderSupportMixin

CBC SDK 1.0.1 - Released December 17, 2020

Bug Fixes

	Fix readme links

	Few ReadTheDocs fixes

CBC SDK 1.0.0 - Released December 16, 2020

New Features

	Enriched Event searches for Endpoint Standard

	Aggregation search added for Enriched Event Query

	Add support for fetching additional details for an Enriched Event

	Facet query support for Enriched Events, Processes, and Process Events

	Addition of Python Futures to support asynchronous calls for customers who want to leverage that feature , while continuing to also provide the simplified experience which hides the multiple calls required.

	Added translation support for MISP threat intel to cbc_sdk threat intel example

Updates

	Improved information and extra calls for Audit and Remediation (Live Query)

	Great test coverage – create extensions and submit PRs with confidence

	Process and Process Event searches updated to latest APIs and moved to platform package

	Flake8 formatting applied to all areas of the code

	Converted old docstrings to use google format docstrings

	Migrated STIX/TAXII Threat Intel module from cbapi to cbc_sdk examples

Bug Fixes

	Fixed off by one error for process event pagination

	Added support for default profile using CBCloudAPI()

	Retry limit to Process Event search to prevent infinite loop

Exceptions

If an error occurs, the API attempts to roll the error into an appropriate Exception class.

Exception Classes

	
exception ApiError(message=None, original_exception=None)

	Base class for all CBC SDK errors; also raised for generic internal errors.

Initialize the ApiError.

	Parameters:

	
	message (str) – The actual error message.

	original_exception (Exception) – The exception that caused this one to be raised.

	
exception CredentialError(message=None, original_exception=None)

	The credentials had an unspecified error.

Initialize the ApiError.

	Parameters:

	
	message (str) – The actual error message.

	original_exception (Exception) – The exception that caused this one to be raised.

	
exception ServerError(error_code, message, **kwargs)

	A ServerError is raised when an HTTP 5xx error code is returned from the Carbon Black server.

Initialize the ServerError.

	Parameters:

	
	error_code (int) – The error code that was received from the server.

	message (str) – The actual error message.

	kwargs (dict) – Additional arguments, which may include ‘result’ (server operation result),
‘original_exception’ (exception causing this one to be raised), and ‘uri’ (URI being accessed
when this error was raised).

	
exception ObjectNotFoundError(uri, message=None, original_exception=None)

	The requested object could not be found in the Carbon Black datastore.

Initialize the ObjectNotFoundError.

	Parameters:

	
	uri (str) – The URI of the action that failed.

	message (str) – The error message.

	original_exception (Exception) – The exception that caused this one to be raised.

	
exception MoreThanOneResultError(message=None, original_exception=None, results=None)

	Only one object was requested, but multiple matches were found in the Carbon Black datastore.

Initialize the MoreThanOneResultError.

	Parameters:

	
	message (str) – The actual error message.

	original_exception (Exception) – The exception that caused this one to be raised.

	results (list) – List of results returned

	
exception InvalidObjectError(message=None, original_exception=None)

	An invalid object was received by the server.

Initialize the ApiError.

	Parameters:

	
	message (str) – The actual error message.

	original_exception (Exception) – The exception that caused this one to be raised.

	
exception TimeoutError(uri=None, error_code=None, message=None, original_exception=None)

	A requested operation timed out.

Initialize the TimeoutError.

	Parameters:

	
	uri (str) – The URI of the action that timed out.

	error_code (int) – The error code that was received from the server.

	message (str) – The error message.

	original_exception (Exception) – The exception that caused this one to be raised.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cbc_sdk	

 	
 	
 cbc_sdk.audit_remediation.base	

 	
 	
 cbc_sdk.audit_remediation.differential	

 	
 	
 cbc_sdk.base	

 	
 	
 cbc_sdk.cache.lru	

 	
 	
 cbc_sdk.connection	

 	
 	
 cbc_sdk.credential_providers.aws_sm_credential_provider	

 	
 	
 cbc_sdk.credential_providers.default	

 	
 	
 cbc_sdk.credential_providers.environ_credential_provider	

 	
 	
 cbc_sdk.credential_providers.file_credential_provider	

 	
 	
 cbc_sdk.credential_providers.keychain_credential_provider	

 	
 	
 cbc_sdk.credential_providers.registry_credential_provider	

 	
 	
 cbc_sdk.credentials	

 	
 	
 cbc_sdk.endpoint_standard.base	

 	
 	
 cbc_sdk.endpoint_standard.recommendation	

 	
 	
 cbc_sdk.endpoint_standard.usb_device_control	

 	
 	
 cbc_sdk.enterprise_edr.auth_events	

 	
 	
 cbc_sdk.enterprise_edr.threat_intelligence	

 	
 	
 cbc_sdk.enterprise_edr.ubs	

 	
 	
 cbc_sdk.errors	

 	
 	
 cbc_sdk.helpers	

 	
 	
 cbc_sdk.live_response_api	

 	
 	
 cbc_sdk.platform.alerts	

 	
 	
 cbc_sdk.platform.asset_groups	

 	
 	
 cbc_sdk.platform.audit	

 	
 	
 cbc_sdk.platform.base	

 	
 	
 cbc_sdk.platform.devices	

 	
 	
 cbc_sdk.platform.events	

 	
 	
 cbc_sdk.platform.grants	

 	
 	
 cbc_sdk.platform.jobs	

 	
 	
 cbc_sdk.platform.legacy_alerts	

 	
 	
 cbc_sdk.platform.network_threat_metadata	

 	
 	
 cbc_sdk.platform.observations	

 	
 	
 cbc_sdk.platform.policies	

 	
 	
 cbc_sdk.platform.policy_ruleconfigs	

 	
 	
 cbc_sdk.platform.previewer	

 	
 	
 cbc_sdk.platform.processes	

 	
 	
 cbc_sdk.platform.reputation	

 	
 	
 cbc_sdk.platform.users	

 	
 	
 cbc_sdk.platform.vulnerability_assessment	

 	
 	
 cbc_sdk.utils	

 	
 	
 cbc_sdk.winerror	

 	
 	
 cbc_sdk.workload.compliance_assessment	

 	
 	
 cbc_sdk.workload.nsx_remediation	

 	
 	
 cbc_sdk.workload.sensor_lifecycle	

 	
 	
 cbc_sdk.workload.vm_workloads_search	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	accept() (Recommendation method)

 	add_boolean_criteria() (AuditLogQuery method)

 	add_criteria() (AffectedAssetQuery method)

 	(AlertSearchQuery method)

 	(AssetGroupQuery method)

 	(AsyncProcessQuery method)

 	(AuditLogQuery method)

 	(AuthEventQuery method)

 	(AWSComputeResourceQuery method)

 	(BaseComputeResourceQuery method)

 	(ComplianceBenchmarkQuery method)

 	(CriteriaBuilderSupportMixin method)

 	(DeviceSearchQuery method)

 	(DifferentialQuery method)

 	(EnrichedEventQuery method)

 	(EventFacetQuery method)

 	(EventQuery method)

 	(FacetQuery method), [1]

 	(GroupedAlertSearchQuery method)

 	(ObservationQuery method)

 	(Query method)

 	(RecommendationQuery method)

 	(ResultQuery method)

 	(RunHistoryQuery method)

 	(SensorKitQuery method)

 	(TemplateHistoryQuery method)

 	(USBDeviceApprovalQuery method)

 	(USBDeviceQuery method)

 	(VCenterComputeResourceQuery method)

 	(VulnerabilityAssetViewQuery method)

 	(VulnerabilityQuery method)

 	add_descriptions() (PolicyQuery method)

 	add_directory_action_rule() (Policy.PolicyBuilder method)

 	add_exclusions() (AlertSearchQuery method)

 	(AsyncProcessQuery method)

 	(AuditLogQuery method)

 	(AuthEventQuery method)

 	(EnrichedEventQuery method)

 	(EventFacetQuery method)

 	(EventQuery method)

 	(ExclusionBuilderSupportMixin method)

 	(FacetQuery method)

 	(GroupedAlertSearchQuery method)

 	(ObservationQuery method)

 	(Query method)

 	add_facet_field() (EventFacetQuery method)

 	(FacetQuery method)

 	add_grant_profile() (User.UserBuilder method)

 	add_headers() (CBCSDKSessionAdapter method)

 	add_ioc() (Report.ReportBuilder method)

 	add_members() (AssetGroup method)

 	add_names() (PolicyQuery method)

 	add_note() (ApiError method)

 	(ClientError method)

 	(ConnectionError method)

 	(CredentialError method)

 	(FunctionalityDecommissioned method)

 	(InvalidHashError method)

 	(InvalidObjectError method)

 	(LiveResponseError method)

 	(ModelNotFound method)

 	(MoreThanOneResultError method)

 	(NonQueryableModel method)

 	(NSXJobError method)

 	(ObjectNotFoundError method)

 	(OperationCancelled method)

 	(QuerySyntaxError method)

 	(ServerError method)

 	(TimeoutError method)

 	(UnauthorizedError method)

 	add_org() (Grant.ProfileBuilder method)

 	add_policy_ids() (PolicyQuery method)

 	add_principal() (GrantQuery method)

 	add_priorities() (PolicyQuery method)

 	add_profiles() (User method)

 	add_range() (EventFacetQuery method)

 	(FacetQuery method)

 	add_report_ids() (Watchlist method)

 	(Watchlist.WatchlistBuilder method)

 	add_reports() (Feed.FeedBuilder method)

 	(Watchlist method)

 	(Watchlist.WatchlistBuilder method)

 	add_role() (Grant.GrantBuilder method)

 	(Grant.ProfileBuilder method)

 	add_rule() (Policy method)

 	(Policy.PolicyBuilder method)

 	add_rule_config() (Policy.PolicyBuilder method)

 	add_rule_config_copy() (Policy.PolicyBuilder method)

 	add_rule_copy() (Policy.PolicyBuilder method)

 	add_sensor_kit_type() (SensorKitQuery method)

 	add_sensor_setting() (Policy.PolicyBuilder method)

 	add_tag() (Report.ReportBuilder method)

 	add_threat_tags() (Alert method)

 	(CBAnalyticsAlert method)

 	(ContainerRuntimeAlert method)

 	(DeviceControlAlert method)

 	(HostBasedFirewallAlert method)

 	(IntrusionDetectionSystemAlert method)

 	(WatchlistAlert method)

 	add_time_criteria() (AlertSearchQuery method)

 	(AuditLogQuery method)

 	(GroupedAlertSearchQuery method)

 	add_to_groups() (Device method)

 	add_to_groups_by_id() (Device method)

 	AffectedAssetQuery (class in cbc_sdk.platform.vulnerability_assessment)

 	aggregation() (EnrichedEventQuery method)

 	Alert (class in cbc_sdk.platform.alerts)

 	Alert.Note (class in cbc_sdk.platform.alerts)

 	alert_search_suggestions() (CBCloudAPI method)

 	AlertSearchQuery (class in cbc_sdk.platform.alerts)

 	all() (AffectedAssetQuery method)

 	(AlertSearchQuery method)

 	(AssetGroupQuery method)

 	(AsyncProcessQuery method)

 	(AuditLogQuery method)

 	(AuthEventQuery method)

 	(AWSComputeResourceQuery method)

 	(BaseComputeResourceQuery method)

 	(ComplianceBenchmarkQuery method)

 	(DeviceSearchQuery method)

 	(DifferentialQuery method)

 	(EnrichedEventQuery method)

 	(EventQuery method)

 	(FacetQuery method)

 	(FeedQuery method)

 	(GrantQuery method)

 	(GroupedAlertSearchQuery method)

 	(IterableQueryMixin method)

 	(JobQuery method)

 	(ObservationQuery method)

 	(PaginatedQuery method)

 	(PolicyQuery method)

 	(Query method)

 	(RecommendationQuery method)

 	(ReportQuery method)

 	(ReputationOverrideQuery method)

 	(ResultQuery method)

 	(RunHistoryQuery method)

 	(SensorKitQuery method)

 	(SimpleQuery method)

 	(TemplateHistoryQuery method)

 	(USBDeviceApprovalQuery method)

 	(USBDeviceBlockQuery method)

 	(USBDeviceQuery method)

 	(UserQuery method)

 	(VCenterComputeResourceQuery method)

 	(VulnerabilityAssetViewQuery method)

 	(VulnerabilityQuery method)

 	(WatchlistQuery method)

 	
 	allowed_orgs (Grant.Profile property)

 	and_() (AffectedAssetQuery method)

 	(AlertSearchQuery method)

 	(AssetGroupQuery method)

 	(AsyncProcessQuery method)

 	(AuditLogQuery method)

 	(AuthEventQuery method)

 	(AWSComputeResourceQuery method)

 	(BaseComputeResourceQuery method)

 	(ComplianceBenchmarkQuery method)

 	(DeviceSearchQuery method)

 	(EnrichedEventQuery method)

 	(EventFacetQuery method)

 	(EventQuery method)

 	(FacetQuery method), [1]

 	(FeedQuery method)

 	(GroupedAlertSearchQuery method)

 	(ObservationQuery method)

 	(Query method)

 	(QueryBuilder method)

 	(QueryBuilderSupportMixin method)

 	(ReportQuery method)

 	(ReputationOverrideQuery method)

 	(ResultQuery method)

 	(RunHistoryQuery method)

 	(SimpleQuery method)

 	(SummaryQuery method)

 	(TemplateHistoryQuery method)

 	(USBDeviceApprovalQuery method)

 	(USBDeviceQuery method)

 	(VCenterComputeResourceQuery method)

 	(VulnerabilityAssetViewQuery method)

 	(VulnerabilityQuery method)

 	(WatchlistQuery method)

 	api_json_request() (BaseAPI method)

 	(CBCloudAPI method)

 	api_request_iterate() (BaseAPI method)

 	(CBCloudAPI method)

 	api_request_stream() (BaseAPI method)

 	(CBCloudAPI method)

 	ApiError, [1]

 	append() (Vulnerability.AssetView method)

 	append_iocs() (Report method)

 	append_reports() (Feed method)

 	append_reports_rawdata() (Feed method)

 	append_rule() (HostBasedFirewallRuleConfig.FirewallRuleGroup method)

 	append_rule_group() (HostBasedFirewallRuleConfig method)

 	application_ (Recommendation.RecommendationNewRule property)

 	approve() (USBDevice method)

 	approve_process_sha256() (EnrichedEvent method)

 	(Process method)

 	ArrayFieldDescriptor (class in cbc_sdk.base)

 	asset_count (DevicePolicyChangePreview property)

 	asset_query (DevicePolicyChangePreview property)

 	AssetGroup (class in cbc_sdk.platform.asset_groups)

 	AssetGroupQuery (class in cbc_sdk.platform.asset_groups)

 	assets (DevicePolicyChangePreview property)

 	async_await_result() (NSXRemediationJob method)

 	async_export() (DifferentialQuery method)

 	(ResultQuery method)

 	ASYNC_RATE_LIMIT (in module cbc_sdk.audit_remediation.differential)

 	AsyncProcessQuery (class in cbc_sdk.platform.processes)

 	AsyncQueryMixin (class in cbc_sdk.base)

 	audit_remediation() (CBCloudAPI method)

 	audit_remediation_history() (CBCloudAPI method)

 	AuditLog (class in cbc_sdk.platform.audit)

 	AuditLogQuery (class in cbc_sdk.platform.audit)

 	AuthEvent (class in cbc_sdk.enterprise_edr.auth_events)

 	AuthEventFacet (class in cbc_sdk.enterprise_edr.auth_events)

 	AuthEventFacet.Ranges (class in cbc_sdk.enterprise_edr.auth_events)

 	AuthEventFacet.Terms (class in cbc_sdk.enterprise_edr.auth_events)

 	AuthEventGroup (class in cbc_sdk.enterprise_edr.auth_events)

 	AuthEventQuery (class in cbc_sdk.enterprise_edr.auth_events)

 	await_completion() (Job method)

 	await_result() (NSXRemediationJob method)

 	AWSComputeResource (class in cbc_sdk.workload.vm_workloads_search)

 	AWSComputeResourceQuery (class in cbc_sdk.workload.vm_workloads_search)

 	AWSCredentialProvider (class in cbc_sdk.credential_providers.aws_sm_credential_provider)

B

 	
 	background_scan() (Device method)

 	(DeviceSearchQuery method)

 	BackoffHandler (class in cbc_sdk.utils)

 	BackoffHandler.BackoffOperation (class in cbc_sdk.utils)

 	ban_process_sha256() (EnrichedEvent method)

 	(Process method)

 	BaseAPI (class in cbc_sdk.connection)

 	BaseComputeResource (class in cbc_sdk.workload.vm_workloads_search)

 	BaseComputeResourceQuery (class in cbc_sdk.workload.vm_workloads_search)

 	BaseQuery (class in cbc_sdk.base)

 	batch_size() (AsyncProcessQuery method)

 	(AuthEventQuery method)

 	(EnrichedEventQuery method)

 	(EventQuery method)

 	(ObservationQuery method)

 	(PaginatedQuery method)

 	(Query method)

 	Binary (class in cbc_sdk.enterprise_edr.ubs)

 	Binary.Summary (class in cbc_sdk.enterprise_edr.ubs)

 	BinaryFieldDescriptor (class in cbc_sdk.base)

 	build() (Feed.FeedBuilder method)

 	(Grant.GrantBuilder method)

 	(Grant.ProfileBuilder method)

 	(Policy.PolicyBuilder method)

 	(Report.ReportBuilder method)

 	(User.UserBuilder method)

 	(Watchlist.WatchlistBuilder method)

 	
 	build_cli_parser() (in module cbc_sdk.helpers)

 	build_response() (CBCSDKSessionAdapter method)

 	bulk_add_profiles() (User class method)

 	bulk_create() (USBDeviceApproval class method)

 	(USBDeviceBlock class method)

 	(User class method)

 	bulk_create_csv() (USBDeviceApproval class method)

 	bulk_delete() (ReputationOverride class method)

 	(User class method)

 	bulk_disable_all_access() (User class method)

 	bulk_disable_profiles() (User class method)

 	bulk_get_details() (AuthEvent static method)

 	(Observation static method)

 	bulk_install() (AWSComputeResource class method)

 	(BaseComputeResource class method)

 	(VCenterComputeResource class method)

 	bulk_install_by_id() (AWSComputeResource class method)

 	(BaseComputeResource class method)

 	(VCenterComputeResource class method)

 	bulk_threat_dismiss() (CBCloudAPI method)

 	bulk_threat_update() (CBCloudAPI method)

 	bypass() (Device method)

 	(DeviceSearchQuery method)

 	bypass_rule_configs (Policy property)

 	bypass_rule_configs_list (Policy property)

 	BypassRuleConfig (class in cbc_sdk.platform.policy_ruleconfigs)

C

 	
 	cancel_command() (CbLRSessionBase method)

 	(LiveResponseSession method)

 	CBAnalyticsAlert (class in cbc_sdk.platform.alerts)

 	CBAnalyticsAlert.Note (class in cbc_sdk.platform.alerts)

 	
 cbc_sdk.audit_remediation.base

 	module

 	
 cbc_sdk.audit_remediation.differential

 	module

 	
 cbc_sdk.base

 	module

 	
 cbc_sdk.cache.lru

 	module

 	
 cbc_sdk.connection

 	module

 	
 cbc_sdk.credential_providers.aws_sm_credential_provider

 	module

 	
 cbc_sdk.credential_providers.default

 	module

 	
 cbc_sdk.credential_providers.environ_credential_provider

 	module

 	
 cbc_sdk.credential_providers.file_credential_provider

 	module

 	
 cbc_sdk.credential_providers.keychain_credential_provider

 	module

 	
 cbc_sdk.credential_providers.registry_credential_provider

 	module

 	
 cbc_sdk.credentials

 	module

 	
 cbc_sdk.endpoint_standard.base

 	module

 	
 cbc_sdk.endpoint_standard.recommendation

 	module

 	
 cbc_sdk.endpoint_standard.usb_device_control

 	module

 	
 cbc_sdk.enterprise_edr.auth_events

 	module

 	
 cbc_sdk.enterprise_edr.threat_intelligence

 	module

 	
 cbc_sdk.enterprise_edr.ubs

 	module

 	
 cbc_sdk.errors

 	module

 	
 cbc_sdk.helpers

 	module

 	
 cbc_sdk.live_response_api

 	module

 	
 cbc_sdk.platform.alerts

 	module

 	
 cbc_sdk.platform.asset_groups

 	module

 	
 cbc_sdk.platform.audit

 	module

 	
 cbc_sdk.platform.base

 	module

 	
 cbc_sdk.platform.devices

 	module

 	
 cbc_sdk.platform.events

 	module

 	
 cbc_sdk.platform.grants

 	module

 	
 cbc_sdk.platform.jobs

 	module

 	
 cbc_sdk.platform.legacy_alerts

 	module

 	
 cbc_sdk.platform.network_threat_metadata

 	module

 	
 cbc_sdk.platform.observations

 	module

 	
 cbc_sdk.platform.policies

 	module

 	
 cbc_sdk.platform.policy_ruleconfigs

 	module

 	
 cbc_sdk.platform.previewer

 	module

 	
 cbc_sdk.platform.processes

 	module

 	
 cbc_sdk.platform.reputation

 	module

 	
 cbc_sdk.platform.users

 	module

 	
 cbc_sdk.platform.vulnerability_assessment

 	module

 	
 cbc_sdk.utils

 	module

 	
 cbc_sdk.winerror

 	module

 	
 cbc_sdk.workload.compliance_assessment

 	module

 	
 cbc_sdk.workload.nsx_remediation

 	module

 	
 cbc_sdk.workload.sensor_lifecycle

 	module

 	
 cbc_sdk.workload.vm_workloads_search

 	module

 	
 	CBCloudAPI (class in cbc_sdk.rest_api)

 	CBCSDKSessionAdapter (class in cbc_sdk.connection)

 	cblr_session_cls (LiveResponseSessionManager attribute)

 	CbLRManagerBase (class in cbc_sdk.live_response_api)

 	CbLRSessionBase (class in cbc_sdk.live_response_api)

 	CbMetaModel (class in cbc_sdk.base)

 	cert_verify() (CBCSDKSessionAdapter method)

 	change_role() (User method)

 	check_python_tls_compatibility() (in module cbc_sdk.connection)

 	check_state_key() (SwaggerLoader method)

 	children (Process property)

 	classifier_ (Watchlist property)

 	clear() (Vulnerability.AssetView method)

 	ClientError

 	close() (Alert method)

 	(AlertSearchQuery method)

 	(CBAnalyticsAlert method)

 	(CBCSDKSessionAdapter method)

 	(CbLRSessionBase method)

 	(ContainerRuntimeAlert method)

 	(DeviceControlAlert method)

 	(GroupedAlertSearchQuery method)

 	(HostBasedFirewallAlert method)

 	(IntrusionDetectionSystemAlert method)

 	(LiveResponseSession method)

 	(WatchlistAlert method)

 	close_session() (CbLRManagerBase method)

 	(LiveResponseSessionManager method)

 	command_status() (CbLRSessionBase method)

 	(LiveResponseSession method)

 	CommDlgError (class in cbc_sdk.winerror)

 	CompletionNotification (class in cbc_sdk.live_response_api)

 	ComplianceBenchmark (class in cbc_sdk.workload.compliance_assessment)

 	ComplianceBenchmarkQuery (class in cbc_sdk.workload.compliance_assessment)

 	ComputeResourceFacet (class in cbc_sdk.workload.vm_workloads_search)

 	ComputeResourceFacet.ComputeResourceFacetValue (class in cbc_sdk.workload.vm_workloads_search)

 	config_params() (SensorKitQuery method)

 	Connection (class in cbc_sdk.connection)

 	ConnectionError

 	construct_include() (in module cbc_sdk.base)

 	ContainerRuntimeAlert (class in cbc_sdk.platform.alerts)

 	ContainerRuntimeAlert.Note (class in cbc_sdk.platform.alerts)

 	convert_feed_query() (CBCloudAPI method)

 	convert_from_cb() (in module cbc_sdk.utils)

 	convert_to_cb() (in module cbc_sdk.utils)

 	copy() (Vulnerability.AssetView method)

 	copy_rules() (HostBasedFirewallRuleConfig method)

 	core_prevention_rule_configs (Policy property)

 	core_prevention_rule_configs_list (Policy property)

 	CorePreventionRuleConfig (class in cbc_sdk.platform.policy_ruleconfigs)

 	count() (Vulnerability.AssetView method)

 	count_only() (DifferentialQuery method)

 	CreatableModelMixin (class in cbc_sdk.base)

 	create() (BaseAPI method)

 	(CBCloudAPI method)

 	(Feed class method)

 	(Grant class method)

 	(Policy class method)

 	(Report class method)

 	(ReputationOverride class method)

 	(USBDeviceBlock class method)

 	(User class method)

 	(Watchlist class method)

 	create_directory() (CbLRSessionBase method)

 	(LiveResponseSession method)

 	create_equality() (IOC_V2 class method)

 	create_from_feed() (Watchlist class method)

 	create_from_usb_device() (USBDeviceApproval class method)

 	create_group() (AssetGroup class method)

 	create_note() (Alert method)

 	(CBAnalyticsAlert method)

 	(ContainerRuntimeAlert method)

 	(DeviceControlAlert method)

 	(HostBasedFirewallAlert method)

 	(IntrusionDetectionSystemAlert method)

 	(WatchlistAlert method)

 	create_process() (CbLRSessionBase method)

 	(LiveResponseSession method)

 	create_profile() (Grant method)

 	(Grant.GrantBuilder method)

 	create_query() (IOC_V2 class method)

 	create_regex() (IOC_V2 class method)

 	create_registry_key() (CbLRSessionBase method)

 	(LiveResponseSession method)

 	CredentialError, [1]

 	CredentialProvider (class in cbc_sdk.credentials)

 	Credentials (class in cbc_sdk.credentials)

 	CredentialValue (class in cbc_sdk.credentials)

 	CriteriaBuilderSupportMixin (class in cbc_sdk.base)

 	current_policy (DevicePolicyChangePreview property)

 	current_policy_id (DevicePolicyChangePreview property)

 	current_policy_position (DevicePolicyChangePreview property)

 	custom_severities (CBCloudAPI property)

 	custom_severity (Report property)

D

 	
 	daemon (JobWorker property)

 	data_collection_rule_configs (Policy property)

 	data_collection_rule_configs_list (Policy property)

 	DataCollectionRuleConfig (class in cbc_sdk.platform.policy_ruleconfigs)

 	decode_hresult() (in module cbc_sdk.winerror)

 	default_action (HostBasedFirewallRuleConfig property)

 	default_credential_provider() (in module cbc_sdk.credential_providers.default)

 	DefaultProvider (class in cbc_sdk.credential_providers.default)

 	delete() (Alert.Note method)

 	(AssetGroup method)

 	(BypassRuleConfig method)

 	(CBAnalyticsAlert.Note method)

 	(Connection method)

 	(ContainerRuntimeAlert.Note method)

 	(CorePreventionRuleConfig method)

 	(DataCollectionRuleConfig method)

 	(DeviceControlAlert.Note method)

 	(Feed method)

 	(FeedModel method)

 	(Grant method)

 	(Grant.Profile method)

 	(HostBasedFirewallAlert.Note method)

 	(HostBasedFirewallRuleConfig method)

 	(HostBasedFirewallRuleConfig.FirewallRule method)

 	(HostBasedFirewallRuleConfig.FirewallRuleGroup method)

 	(IntrusionDetectionSystemAlert.Note method)

 	(IOC method)

 	(IOC_V2 method)

 	(LiveResponseMemdump method)

 	(MutableBaseModel method)

 	(Policy method)

 	(PolicyRule method)

 	(PolicyRuleConfig method)

 	(Report method)

 	(ReportSeverity method)

 	(ReputationOverride method)

 	(Run method)

 	(RunHistory method)

 	(Template method)

 	(TemplateHistory method)

 	(USBDeviceApproval method)

 	(USBDeviceBlock method)

 	(User method)

 	(Watchlist method)

 	(WatchlistAlert.Note method)

 	delete_file() (CbLRSessionBase method)

 	(LiveResponseSession method)

 	delete_object() (BaseAPI method)

 	(CBCloudAPI method)

 	delete_registry_key() (CbLRSessionBase method)

 	(LiveResponseSession method)

 	delete_registry_value() (CbLRSessionBase method)

 	(LiveResponseSession method)

 	delete_rule() (Policy method)

 	delete_rule_config() (Policy method)

 	delete_sensor() (Device method)

 	(DeviceSearchQuery method)

 	delete_threat_tag() (Alert method)

 	(CBAnalyticsAlert method)

 	(ContainerRuntimeAlert method)

 	(DeviceControlAlert method)

 	(HostBasedFirewallAlert method)

 	(IntrusionDetectionSystemAlert method)

 	(WatchlistAlert method)

 	
 	deobfuscate_cmdline() (Alert method)

 	(CBAnalyticsAlert method)

 	(ContainerRuntimeAlert method)

 	(DeviceControlAlert method)

 	(HostBasedFirewallAlert method)

 	(IntrusionDetectionSystemAlert method)

 	(Observation method)

 	(Process method)

 	(WatchlistAlert method)

 	Device (class in cbc_sdk.platform.devices)

 	device_ (Result property)

 	device_background_scan() (CBCloudAPI method)

 	device_bypass() (CBCloudAPI method)

 	device_delete_sensor() (CBCloudAPI method)

 	device_ids() (RunQuery method)

 	device_quarantine() (CBCloudAPI method)

 	device_types() (RunQuery method)

 	device_uninstall_sensor() (CBCloudAPI method)

 	device_update_policy() (CBCloudAPI method)

 	device_update_sensor_version() (CBCloudAPI method)

 	DeviceControlAlert (class in cbc_sdk.platform.alerts)

 	DeviceControlAlert.Note (class in cbc_sdk.platform.alerts)

 	DeviceFacet (class in cbc_sdk.platform.devices)

 	DeviceFacet.DeviceFacetValue (class in cbc_sdk.platform.devices)

 	deviceId (Device property)

 	DevicePolicyChangePreview (class in cbc_sdk.platform.previewer)

 	DeviceSearchQuery (class in cbc_sdk.platform.devices)

 	DeviceSummary (class in cbc_sdk.audit_remediation.base)

 	DeviceSummary.Metrics (class in cbc_sdk.audit_remediation.base)

 	DeviceSummaryFacet (class in cbc_sdk.audit_remediation.base)

 	DeviceSummaryFacet.Values (class in cbc_sdk.audit_remediation.base)

 	Differential (class in cbc_sdk.audit_remediation.differential)

 	DifferentialQuery (class in cbc_sdk.audit_remediation.differential)

 	DirectoryStorageError (class in cbc_sdk.winerror)

 	disable_alerts() (Watchlist method)

 	disable_all_access() (User method)

 	disable_insecure_warnings() (in module cbc_sdk.helpers)

 	disable_profiles() (User method)

 	disable_tags() (Watchlist method)

 	dismiss_threat() (Alert method)

 	(CBAnalyticsAlert method)

 	(ContainerRuntimeAlert method)

 	(DeviceControlAlert method)

 	(HostBasedFirewallAlert method)

 	(IntrusionDetectionSystemAlert method)

 	(WatchlistAlert method)

 	download() (AWSComputeResourceQuery method)

 	(BaseComputeResourceQuery method)

 	(DeviceSearchQuery method)

 	(VCenterComputeResourceQuery method)

 	download_url() (Binary method)

 	Downloads (class in cbc_sdk.enterprise_edr.ubs)

 	Downloads.FoundItem (class in cbc_sdk.enterprise_edr.ubs)

E

 	
 	email_addresses() (UserQuery method)

 	enable_alerts() (Watchlist method)

 	enable_tags() (Watchlist method)

 	enabled (HostBasedFirewallRuleConfig property)

 	EnrichedEvent (class in cbc_sdk.endpoint_standard.base)

 	EnrichedEventFacet (class in cbc_sdk.endpoint_standard.base)

 	EnrichedEventFacet.Ranges (class in cbc_sdk.endpoint_standard.base)

 	EnrichedEventFacet.Terms (class in cbc_sdk.endpoint_standard.base)

 	EnrichedEventQuery (class in cbc_sdk.endpoint_standard.base)

 	EnvironCredentialProvider (class in cbc_sdk.credential_providers.environ_credential_provider)

 	EpochDateTimeFieldDescriptor (class in cbc_sdk.base)

 	eprint() (in module cbc_sdk.helpers)

 	ErrorBaseClass (class in cbc_sdk.winerror)

 	ErrorMetaClass (class in cbc_sdk.winerror)

 	Event (class in cbc_sdk.endpoint_standard.base)

 	(class in cbc_sdk.platform.events)

 	EventFacet (class in cbc_sdk.platform.events)

 	EventFacet.Ranges (class in cbc_sdk.platform.events)

 	EventFacet.Terms (class in cbc_sdk.platform.events)

 	EventFacetQuery (class in cbc_sdk.platform.events)

 	EventQuery (class in cbc_sdk.platform.events)

 	events() (Process method)

 	exclude_appliance_uuid() (VCenterComputeResourceQuery method)

 	exclude_auto_scaling_group_name() (AWSComputeResourceQuery method)

 	exclude_availability_zone() (AWSComputeResourceQuery method)

 	exclude_cloud_provider_account_id() (AWSComputeResourceQuery method)

 	exclude_cloud_provider_resource_id() (AWSComputeResourceQuery method)

 	exclude_cloud_provider_tags() (AWSComputeResourceQuery method)

 	exclude_cluster_name() (VCenterComputeResourceQuery method)

 	exclude_datacenter_name() (VCenterComputeResourceQuery method)

 	exclude_device_guid() (VCenterComputeResourceQuery method)

 	exclude_eligibility() (VCenterComputeResourceQuery method)

 	exclude_eligibility_code() (VCenterComputeResourceQuery method)

 	exclude_esx_host_name() (VCenterComputeResourceQuery method)

 	exclude_esx_host_uuid() (VCenterComputeResourceQuery method)

 	exclude_host_name() (VCenterComputeResourceQuery method)

 	exclude_id() (AWSComputeResourceQuery method)

 	exclude_installation_status() (AWSComputeResourceQuery method)

 	(VCenterComputeResourceQuery method)

 	exclude_installation_type() (VCenterComputeResourceQuery method)

 	exclude_ip_address() (VCenterComputeResourceQuery method)

 	exclude_name() (AWSComputeResourceQuery method)

 	(VCenterComputeResourceQuery method)

 	exclude_os_architecture() (VCenterComputeResourceQuery method)

 	exclude_os_description() (VCenterComputeResourceQuery method)

 	exclude_os_type() (VCenterComputeResourceQuery method)

 	exclude_platform() (AWSComputeResourceQuery method)

 	exclude_platform_details() (AWSComputeResourceQuery method)

 	exclude_region() (AWSComputeResourceQuery method)

 	exclude_registration_id() (VCenterComputeResourceQuery method)

 	exclude_subnet_id() (AWSComputeResourceQuery method)

 	exclude_uuid() (VCenterComputeResourceQuery method)

 	exclude_vcenter_host_url() (VCenterComputeResourceQuery method)

 	exclude_vcenter_name() (VCenterComputeResourceQuery method)

 	
 	exclude_vcenter_uuid() (VCenterComputeResourceQuery method)

 	exclude_virtual_private_cloud_id() (AWSComputeResourceQuery method)

 	exclude_vmwaretools_version() (VCenterComputeResourceQuery method)

 	ExclusionBuilderSupportMixin (class in cbc_sdk.base)

 	execute_action() (ComplianceBenchmark method)

 	execute_async() (AffectedAssetQuery method)

 	(AssetGroupQuery method)

 	(AsyncProcessQuery method)

 	(AsyncQueryMixin method)

 	(AuditLogQuery method)

 	(AuthEventQuery method)

 	(AWSComputeResourceQuery method)

 	(BaseComputeResourceQuery method)

 	(ComplianceBenchmarkQuery method)

 	(DeviceSearchQuery method)

 	(EnrichedEventQuery method)

 	(EventFacetQuery method)

 	(EventQuery method)

 	(FacetQuery method), [1]

 	(GrantQuery method)

 	(JobQuery method)

 	(ObservationQuery method)

 	(PolicyQuery method)

 	(Query method)

 	(RecommendationQuery method)

 	(ReputationOverrideQuery method)

 	(ResultQuery method)

 	(RunHistoryQuery method)

 	(RunQuery method)

 	(SensorKitQuery method)

 	(SummaryQuery method)

 	(TemplateHistoryQuery method)

 	(USBDeviceApprovalQuery method)

 	(USBDeviceBlockQuery method)

 	(USBDeviceQuery method)

 	(UserQuery method)

 	(VCenterComputeResourceQuery method)

 	(VulnerabilityAssetViewQuery method)

 	(VulnerabilityQuery method)

 	expires() (SensorKitQuery method)

 	export() (AffectedAssetQuery method)

 	(AuditLogQuery method)

 	(DeviceSearchQuery method)

 	(USBDeviceApprovalQuery method)

 	(USBDeviceQuery method)

 	(VulnerabilityAssetViewQuery method)

 	(VulnerabilityQuery method)

 	export_csv_as_file() (ResultQuery method)

 	export_csv_as_lines() (ResultQuery method)

 	export_csv_as_stream() (ResultQuery method)

 	export_csv_as_string() (ResultQuery method)

 	export_rules() (HostBasedFirewallRuleConfig method)

 	export_zipped_csv() (ResultQuery method)

 	extend() (Vulnerability.AssetView method)

F

 	
 	facet() (AWSComputeResourceQuery method)

 	(BaseComputeResourceQuery method)

 	(VCenterComputeResourceQuery method)

 	facet_field() (FacetQuery method)

 	FacetQuery (class in cbc_sdk.audit_remediation.base)

 	(class in cbc_sdk.base)

 	facets (AuthEventFacet.Ranges property)

 	(AuthEventFacet.Terms property)

 	(EnrichedEventFacet.Ranges property)

 	(EnrichedEventFacet.Terms property)

 	(EventFacet.Ranges property)

 	(EventFacet.Terms property)

 	(ObservationFacet.Ranges property)

 	(ObservationFacet.Terms property)

 	(ProcessFacet.Ranges property)

 	(ProcessFacet.Terms property)

 	facets() (AlertSearchQuery method)

 	(DeviceSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(Process method)

 	(USBDeviceQuery method)

 	Facility (class in cbc_sdk.winerror)

 	FAILED() (in module cbc_sdk.winerror)

 	Feed (class in cbc_sdk.enterprise_edr.threat_intelligence)

 	feed (Watchlist property)

 	Feed.FeedBuilder (class in cbc_sdk.enterprise_edr.threat_intelligence)

 	FeedModel (class in cbc_sdk.enterprise_edr.threat_intelligence)

 	FeedQuery (class in cbc_sdk.enterprise_edr.threat_intelligence)

 	fetch_process_queries() (CBCloudAPI method)

 	FieldDescriptor (class in cbc_sdk.base)

 	fields (AuthEventFacet.Ranges property)

 	(AuthEventFacet.Terms property)

 	(EnrichedEventFacet.Ranges property)

 	(EnrichedEventFacet.Terms property)

 	(EventFacet.Ranges property)

 	(EventFacet.Terms property)

 	(ObservationFacet.Ranges property)

 	(ObservationFacet.Terms property)

 	(ProcessFacet.Ranges property)

 	(ProcessFacet.Terms property)

 	fields_ (Result property)

 	FileCredentialProvider (class in cbc_sdk.credential_providers.file_credential_provider)

 	
 	first() (AffectedAssetQuery method)

 	(AlertSearchQuery method)

 	(AssetGroupQuery method)

 	(AsyncProcessQuery method)

 	(AuditLogQuery method)

 	(AuthEventQuery method)

 	(AWSComputeResourceQuery method)

 	(BaseComputeResourceQuery method)

 	(ComplianceBenchmarkQuery method)

 	(DeviceSearchQuery method)

 	(DifferentialQuery method)

 	(EnrichedEventQuery method)

 	(EventQuery method)

 	(FacetQuery method)

 	(FeedQuery method)

 	(GrantQuery method)

 	(GroupedAlertSearchQuery method)

 	(IterableQueryMixin method)

 	(JobQuery method)

 	(ObservationQuery method)

 	(PaginatedQuery method)

 	(PolicyQuery method)

 	(Query method)

 	(RecommendationQuery method)

 	(ReportQuery method)

 	(ReputationOverrideQuery method)

 	(ResultQuery method)

 	(RunHistoryQuery method)

 	(SensorKitQuery method)

 	(SimpleQuery method)

 	(TemplateHistoryQuery method)

 	(USBDeviceApprovalQuery method)

 	(USBDeviceBlockQuery method)

 	(USBDeviceQuery method)

 	(UserQuery method)

 	(VCenterComputeResourceQuery method)

 	(VulnerabilityAssetViewQuery method)

 	(VulnerabilityQuery method)

 	(WatchlistQuery method)

 	ForeignKeyFieldDescriptor (class in cbc_sdk.base)

 	found (Downloads property)

 	from_type() (SensorKit class method)

 	FunctionalityDecommissioned

G

 	
 	get() (Alert method)

 	(Alert.Note method)

 	(AssetGroup method)

 	(AuditLog method)

 	(AuthEvent method)

 	(AuthEventFacet method)

 	(AuthEventFacet.Ranges method)

 	(AuthEventFacet.Terms method)

 	(AWSComputeResource method)

 	(BaseComputeResource method)

 	(Binary method)

 	(Binary.Summary method)

 	(BypassRuleConfig method)

 	(CBAnalyticsAlert method)

 	(CBAnalyticsAlert.Note method)

 	(ComplianceBenchmark method)

 	(ComputeResourceFacet method)

 	(ComputeResourceFacet.ComputeResourceFacetValue method)

 	(Connection method)

 	(ContainerRuntimeAlert method)

 	(ContainerRuntimeAlert.Note method)

 	(CorePreventionRuleConfig method)

 	(DataCollectionRuleConfig method)

 	(Device method)

 	(DeviceControlAlert method)

 	(DeviceControlAlert.Note method)

 	(DeviceFacet method)

 	(DeviceFacet.DeviceFacetValue method)

 	(DeviceSummary method)

 	(DeviceSummary.Metrics method)

 	(DeviceSummaryFacet method)

 	(DeviceSummaryFacet.Values method)

 	(Differential method)

 	(Downloads method)

 	(Downloads.FoundItem method)

 	(EnrichedEvent method)

 	(EnrichedEventFacet method)

 	(EnrichedEventFacet.Ranges method)

 	(EnrichedEventFacet.Terms method)

 	(Event method)

 	(EventFacet method)

 	(EventFacet.Ranges method)

 	(EventFacet.Terms method)

 	(Feed method)

 	(FeedModel method)

 	(Grant method)

 	(Grant.Profile method)

 	(GroupedAlert method)

 	(HostBasedFirewallAlert method)

 	(HostBasedFirewallAlert.Note method)

 	(HostBasedFirewallRuleConfig method)

 	(HostBasedFirewallRuleConfig.FirewallRule method)

 	(HostBasedFirewallRuleConfig.FirewallRuleGroup method)

 	(IntrusionDetectionSystemAlert method)

 	(IntrusionDetectionSystemAlert.Note method)

 	(IOC method)

 	(IOC_V2 method)

 	(Job method)

 	(LiveResponseMemdump method)

 	(MutableBaseModel method)

 	(NetworkThreatMetadata method)

 	(NewBaseModel method)

 	(Observation method)

 	(ObservationFacet method)

 	(ObservationFacet.Ranges method)

 	(ObservationFacet.Terms method)

 	(PlatformModel method)

 	(Policy method)

 	(PolicyRule method)

 	(PolicyRuleConfig method)

 	(Process method)

 	(Process.Summary method)

 	(Process.Tree method)

 	(ProcessFacet method)

 	(ProcessFacet.Ranges method)

 	(ProcessFacet.Terms method)

 	(Recommendation method)

 	(Recommendation.RecommendationApplication method)

 	(Recommendation.RecommendationImpact method)

 	(Recommendation.RecommendationNewRule method)

 	(Recommendation.RecommendationWorkflow method)

 	(Report method)

 	(ReportSeverity method)

 	(ReputationOverride method)

 	(Result method)

 	(Result.Device method)

 	(Result.Fields method)

 	(Result.Metrics method)

 	(ResultFacet method)

 	(ResultFacet.Values method)

 	(Run method)

 	(RunHistory method)

 	(SensorKit method)

 	(Template method)

 	(TemplateHistory method)

 	(UnrefreshableModel method)

 	(USBDevice method)

 	(USBDeviceApproval method)

 	(USBDeviceBlock method)

 	(User method)

 	(VCenterComputeResource method)

 	(Vulnerability method)

 	(Vulnerability.OrgSummary method)

 	(Watchlist method)

 	(WatchlistAlert method)

 	(WatchlistAlert.Note method)

 	get_affected_assets() (Vulnerability method)

 	get_alert_search_query() (GroupedAlert method)

 	(GroupedAlertSearchQuery method)

 	get_alerts() (GroupedAlert method)

 	
 	get_all_groups() (AssetGroup class method)

 	get_asset_group_ids() (Device method)

 	get_asset_groups() (Device method)

 	get_asset_groups_for_devices() (Device class method)

 	get_assignment_mode() (CorePreventionRuleConfig method)

 	get_auditlogs() (AuditLog static method)

 	(CBCloudAPI method)

 	get_auth_events_descriptions() (AuthEvent static method)

 	get_cb_cloud_object() (in module cbc_sdk.helpers)

 	get_compliance_schedule() (ComplianceBenchmark static method)

 	get_config_template() (SensorKit class method)

 	get_connection() (CBCSDKSessionAdapter method)

 	get_credentials() (AWSCredentialProvider method)

 	(CredentialProvider method)

 	(EnvironCredentialProvider method)

 	(FileCredentialProvider method)

 	(KeychainCredentialProvider method)

 	(RegistryCredentialProvider method)

 	get_default_provider() (DefaultProvider method)

 	get_details() (AuthEvent method)

 	(EnrichedEvent method)

 	(Observation method)

 	(Process method)

 	get_device_compliances() (ComplianceBenchmark method)

 	get_device_rule_compliances() (ComplianceBenchmark method)

 	get_endpoints() (USBDevice method)

 	get_events() (CBAnalyticsAlert method)

 	get_file() (CbLRSessionBase method)

 	(LiveResponseSession method)

 	get_group_results() (ObservationQuery method)

 	get_history() (Alert method)

 	(CBAnalyticsAlert method)

 	(ContainerRuntimeAlert method)

 	(DeviceControlAlert method)

 	(HostBasedFirewallAlert method)

 	(IntrusionDetectionSystemAlert method)

 	(WatchlistAlert method)

 	get_network_threat_metadata() (IntrusionDetectionSystemAlert method)

 	(Observation method)

 	get_notifications() (CBCloudAPI method)

 	get_object() (BaseAPI method)

 	(CBCloudAPI method)

 	get_object_by_name_or_id() (in module cbc_sdk.helpers)

 	get_observations() (Alert method)

 	(CBAnalyticsAlert method)

 	(ContainerRuntimeAlert method)

 	(DeviceControlAlert method)

 	(HostBasedFirewallAlert method)

 	(IntrusionDetectionSystemAlert method)

 	(WatchlistAlert method)

 	get_output_as_file() (Job method)

 	get_output_as_lines() (Job method)

 	get_output_as_stream() (Job method)

 	get_output_as_string() (Job method)

 	get_parameter() (BypassRuleConfig method)

 	(CorePreventionRuleConfig method)

 	(DataCollectionRuleConfig method)

 	(HostBasedFirewallRuleConfig method)

 	(PolicyRuleConfig method)

 	get_permitted_role_urns() (Grant class method)

 	get_policy_ruleconfig_parameter_schema() (CBCloudAPI method)

 	get_process() (Alert method)

 	(CBAnalyticsAlert method)

 	(ContainerRuntimeAlert method)

 	(DeviceControlAlert method)

 	(HostBasedFirewallAlert method)

 	(IntrusionDetectionSystemAlert method)

 	(WatchlistAlert method)

 	get_progress() (Job method)

 	get_queued_auditlogs() (AuditLog static method)

 	get_raw_data() (BaseAPI method)

 	(CBCloudAPI method)

 	get_raw_file() (CbLRSessionBase method)

 	(LiveResponseSession method)

 	get_registry_value() (CbLRSessionBase method)

 	(LiveResponseSession method)

 	get_rule_compliance_devices() (ComplianceBenchmark method)

 	get_rule_compliances() (ComplianceBenchmark method)

 	get_ruleconfig_parameter_schema() (Policy method)

 	get_rules() (ComplianceBenchmark method)

 	get_sections() (ComplianceBenchmark method)

 	get_statistics() (AssetGroup method)

 	get_threat_tags() (Alert method)

 	(CBAnalyticsAlert method)

 	(ContainerRuntimeAlert method)

 	(DeviceControlAlert method)

 	(HostBasedFirewallAlert method)

 	(IntrusionDetectionSystemAlert method)

 	(WatchlistAlert method)

 	get_token() (Credentials method)

 	get_token_type() (Credentials method)

 	get_value() (Credentials method)

 	get_vendors_and_products_seen() (USBDevice class method)

 	get_vulnerability_summary() (Device method)

 	get_vulnerabilties() (Device method)

 	get_watchlist_objects() (WatchlistAlert method)

 	GetFileJob (class in cbc_sdk.live_response_api)

 	getName() (JobWorker method)

 	(LiveResponseJobScheduler method)

 	(LRUCacheDict.EmptyCacheThread method)

 	GetScode() (in module cbc_sdk.winerror)

 	Grant (class in cbc_sdk.platform.grants)

 	grant() (User method)

 	Grant.GrantBuilder (class in cbc_sdk.platform.grants)

 	Grant.Profile (class in cbc_sdk.platform.grants)

 	Grant.ProfileBuilder (class in cbc_sdk.platform.grants)

 	GrantQuery (class in cbc_sdk.platform.grants)

 	group_results() (AuthEventQuery method)

 	GroupedAlert (class in cbc_sdk.platform.alerts)

 	GroupedAlertSearchQuery (class in cbc_sdk.platform.alerts)

H

 	
 	host_based_firewall_rule_config (Policy property)

 	HostBasedFirewallAlert (class in cbc_sdk.platform.alerts)

 	HostBasedFirewallAlert.Note (class in cbc_sdk.platform.alerts)

 	HostBasedFirewallRuleConfig (class in cbc_sdk.platform.policy_ruleconfigs)

 	HostBasedFirewallRuleConfig.FirewallRule (class in cbc_sdk.platform.policy_ruleconfigs)

 	HostBasedFirewallRuleConfig.FirewallRuleGroup (class in cbc_sdk.platform.policy_ruleconfigs)

 	
 	HRESULT_CODE() (in module cbc_sdk.winerror)

 	HRESULT_FACILITY() (in module cbc_sdk.winerror)

 	HRESULT_FROM_NT() (in module cbc_sdk.winerror)

 	HRESULT_FROM_WIN32() (in module cbc_sdk.winerror)

 	HRESULT_SEVERITY() (in module cbc_sdk.winerror)

 	http_request() (Connection method)

I

 	
 	ident (JobWorker property)

 	(LiveResponseJobScheduler property)

 	(LRUCacheDict.EmptyCacheThread property)

 	ignore() (IOC_V2 method)

 	(Report method)

 	ignored (IOC_V2 property)

 	(Report property)

 	impact_ (Recommendation property)

 	index() (Vulnerability.AssetView method)

 	init_poolmanager() (CBCSDKSessionAdapter method)

 	insert() (Vulnerability.AssetView method)

 	install_sensor() (AWSComputeResource method)

 	(BaseComputeResource method)

 	(VCenterComputeResource method)

 	IntrusionDetectionSystemAlert (class in cbc_sdk.platform.alerts)

 	IntrusionDetectionSystemAlert.Note (class in cbc_sdk.platform.alerts)

 	InvalidHashError

 	InvalidObjectError, [1]

 	IOC (class in cbc_sdk.enterprise_edr.threat_intelligence)

 	IOC_V2 (class in cbc_sdk.enterprise_edr.threat_intelligence)

 	iocs_ (Report property)

 	ipv6_equality_format() (IOC_V2 class method)

 	is_alive() (JobWorker method)

 	(LiveResponseJobScheduler method)

 	(LRUCacheDict.EmptyCacheThread method)

 	is_deleted (PolicyRule property)

 	
 	is_dirty() (AssetGroup method)

 	(BypassRuleConfig method)

 	(CorePreventionRuleConfig method)

 	(DataCollectionRuleConfig method)

 	(Feed method)

 	(FeedModel method)

 	(Grant method)

 	(Grant.Profile method)

 	(HostBasedFirewallRuleConfig method)

 	(HostBasedFirewallRuleConfig.FirewallRule method)

 	(HostBasedFirewallRuleConfig.FirewallRuleGroup method)

 	(IOC method)

 	(IOC_V2 method)

 	(MutableBaseModel method)

 	(Policy method)

 	(PolicyRule method)

 	(PolicyRuleConfig method)

 	(Report method)

 	(ReportSeverity method)

 	(USBDeviceApproval method)

 	(User method)

 	(Watchlist method)

 	isDaemon() (JobWorker method)

 	(LiveResponseJobScheduler method)

 	(LRUCacheDict.EmptyCacheThread method)

 	IsoDateTimeFieldDescriptor (class in cbc_sdk.base)

 	IterableQueryMixin (class in cbc_sdk.base)

J

 	
 	Job (class in cbc_sdk.platform.jobs)

 	JobQuery (class in cbc_sdk.platform.jobs)

 	jobrunner() (in module cbc_sdk.live_response_api)

 	
 	JobWorker (class in cbc_sdk.live_response_api)

 	join() (JobWorker method)

 	(LiveResponseJobScheduler method)

 	(LRUCacheDict.EmptyCacheThread method)

K

 	
 	KeychainCredentialProvider (class in cbc_sdk.credential_providers.keychain_credential_provider)

 	
 	kill_process() (CbLRSessionBase method)

 	(LiveResponseSession method)

L

 	
 	latestRevision (Policy property)

 	LegacyAlertSearchQueryCriterionMixin (class in cbc_sdk.platform.legacy_alerts)

 	limit() (EventFacetQuery method)

 	(FacetQuery method)

 	list_directory() (CbLRSessionBase method)

 	(LiveResponseSession method)

 	list_member_ids() (AssetGroup method)

 	list_members() (AssetGroup method)

 	list_processes() (CbLRSessionBase method)

 	(LiveResponseSession method)

 	list_registry_keys_and_values() (CbLRSessionBase method)

 	(LiveResponseSession method)

 	list_registry_values() (CbLRSessionBase method)

 	(LiveResponseSession method)

 	live_response (CBCloudAPI property)

 	LiveResponseError

 	LiveResponseJobScheduler (class in cbc_sdk.live_response_api)

 	LiveResponseMemdump (class in cbc_sdk.live_response_api)

 	LiveResponseSession (class in cbc_sdk.live_response_api)

 	LiveResponseSessionManager (class in cbc_sdk.live_response_api)

 	log (in module cbc_sdk.base)

 	(in module cbc_sdk.endpoint_standard.base)

 	(in module cbc_sdk.endpoint_standard.recommendation)

 	(in module cbc_sdk.endpoint_standard.usb_device_control)

 	(in module cbc_sdk.enterprise_edr.threat_intelligence)

 	(in module cbc_sdk.platform.base)

 	(in module cbc_sdk.platform.devices)

 	(in module cbc_sdk.platform.grants)

 	(in module cbc_sdk.platform.users)

 	(in module cbc_sdk.platform.vulnerability_assessment)

 	(in module cbc_sdk.workload.compliance_assessment)

 	(in module cbc_sdk.workload.vm_workloads_search)

 	
 	lookup_error() (CommDlgError class method)

 	(DirectoryStorageError class method)

 	(ErrorBaseClass class method)

 	(Facility class method)

 	(RawErrorCode class method)

 	(Win32Error class method)

 	lr_session() (Device method)

 	lru_cache_function() (in module cbc_sdk.cache.lru)

 	LRUCachedFunction (class in cbc_sdk.cache.lru)

 	LRUCacheDict (class in cbc_sdk.cache.lru)

 	LRUCacheDict.EmptyCacheThread (class in cbc_sdk.cache.lru)

M

 	
 	matches_template() (Grant.Profile method)

 	MAX_RESULTS_LIMIT (in module cbc_sdk.audit_remediation.base)

 	memdump() (CbLRSessionBase method)

 	(LiveResponseSession method)

 	metrics_ (DeviceSummary property)

 	(Result property)

 	ModelNotFound

 	
 module

 	cbc_sdk.audit_remediation.base

 	cbc_sdk.audit_remediation.differential

 	cbc_sdk.base

 	cbc_sdk.cache.lru

 	cbc_sdk.connection

 	cbc_sdk.credential_providers.aws_sm_credential_provider

 	cbc_sdk.credential_providers.default

 	cbc_sdk.credential_providers.environ_credential_provider

 	cbc_sdk.credential_providers.file_credential_provider

 	cbc_sdk.credential_providers.keychain_credential_provider

 	cbc_sdk.credential_providers.registry_credential_provider

 	cbc_sdk.credentials

 	cbc_sdk.endpoint_standard.base

 	cbc_sdk.endpoint_standard.recommendation

 	cbc_sdk.endpoint_standard.usb_device_control

 	cbc_sdk.enterprise_edr.auth_events

 	cbc_sdk.enterprise_edr.threat_intelligence

 	cbc_sdk.enterprise_edr.ubs

 	cbc_sdk.errors

 	cbc_sdk.helpers

 	cbc_sdk.live_response_api

 	cbc_sdk.platform.alerts

 	cbc_sdk.platform.asset_groups

 	cbc_sdk.platform.audit

 	cbc_sdk.platform.base

 	cbc_sdk.platform.devices

 	cbc_sdk.platform.events

 	cbc_sdk.platform.grants

 	cbc_sdk.platform.jobs

 	cbc_sdk.platform.legacy_alerts

 	cbc_sdk.platform.network_threat_metadata

 	cbc_sdk.platform.observations

 	cbc_sdk.platform.policies

 	cbc_sdk.platform.policy_ruleconfigs

 	cbc_sdk.platform.previewer

 	cbc_sdk.platform.processes

 	cbc_sdk.platform.reputation

 	cbc_sdk.platform.users

 	cbc_sdk.platform.vulnerability_assessment

 	cbc_sdk.utils

 	cbc_sdk.winerror

 	cbc_sdk.workload.compliance_assessment

 	cbc_sdk.workload.nsx_remediation

 	cbc_sdk.workload.sensor_lifecycle

 	cbc_sdk.workload.vm_workloads_search

 	
 	MoreThanOneResultError, [1]

 	most_recent_alert_ (GroupedAlert property)

 	mro() (CbMetaModel method)

 	(ErrorMetaClass method)

 	MutableBaseModel (class in cbc_sdk.base)

N

 	
 	name (JobWorker property)

 	(LiveResponseJobScheduler property)

 	(LRUCacheDict.EmptyCacheThread property)

 	name() (RunQuery method)

 	native_id (JobWorker property)

 	(LiveResponseJobScheduler property)

 	(LRUCacheDict.EmptyCacheThread property)

 	NetworkThreatMetadata (class in cbc_sdk.platform.network_threat_metadata)

 	new_policy (DevicePolicyChangePreview property)

 	new_policy_id (DevicePolicyChangePreview property)

 	new_policy_position (DevicePolicyChangePreview property)

 	new_rule_ (Recommendation property)

 	NewBaseModel (class in cbc_sdk.base)

 	newer_run_id() (DifferentialQuery method)

 	NonQueryableModel

 	normalize_org() (in module cbc_sdk.platform.grants)

 	normalize_profile_list() (in module cbc_sdk.platform.users)

 	not_() (AffectedAssetQuery method)

 	(AlertSearchQuery method)

 	(AssetGroupQuery method)

 	(AsyncProcessQuery method)

 	(AuditLogQuery method)

 	(AuthEventQuery method)

 	(AWSComputeResourceQuery method)

 	(BaseComputeResourceQuery method)

 	(ComplianceBenchmarkQuery method)

 	(DeviceSearchQuery method)

 	(EnrichedEventQuery method)

 	(EventFacetQuery method)

 	(EventQuery method)

 	(FacetQuery method), [1]

 	(GroupedAlertSearchQuery method)

 	(ObservationQuery method)

 	(Query method)

 	(QueryBuilder method)

 	(QueryBuilderSupportMixin method)

 	(ReputationOverrideQuery method)

 	(ResultQuery method)

 	(RunHistoryQuery method)

 	(SummaryQuery method)

 	(TemplateHistoryQuery method)

 	(USBDeviceApprovalQuery method)

 	(USBDeviceQuery method)

 	(VCenterComputeResourceQuery method)

 	(VulnerabilityAssetViewQuery method)

 	(VulnerabilityQuery method)

 	
 	notes_() (Alert method)

 	(CBAnalyticsAlert method)

 	(ContainerRuntimeAlert method)

 	(DeviceControlAlert method)

 	(HostBasedFirewallAlert method)

 	(IntrusionDetectionSystemAlert method)

 	(WatchlistAlert method)

 	notification_listener() (CBCloudAPI method)

 	notify_on_finish() (RunQuery method)

 	nsx_available (Device property)

 	nsx_remediation() (Device method)

 	NSXJobError

 	NSXRemediationJob (class in cbc_sdk.workload.nsx_remediation)

O

 	
 	object_rule_configs (Policy property)

 	object_rule_configs_list (Policy property)

 	object_rules (Policy property)

 	ObjectFieldDescriptor (class in cbc_sdk.base)

 	ObjectNotFoundError, [1]

 	Observation (class in cbc_sdk.platform.observations)

 	ObservationFacet (class in cbc_sdk.platform.observations)

 	ObservationFacet.Ranges (class in cbc_sdk.platform.observations)

 	ObservationFacet.Terms (class in cbc_sdk.platform.observations)

 	ObservationGroup (class in cbc_sdk.platform.observations)

 	ObservationQuery (class in cbc_sdk.platform.observations)

 	older_run_id() (DifferentialQuery method)

 	one() (AffectedAssetQuery method)

 	(AlertSearchQuery method)

 	(AssetGroupQuery method)

 	(AsyncProcessQuery method)

 	(AuditLogQuery method)

 	(AuthEventQuery method)

 	(AWSComputeResourceQuery method)

 	(BaseComputeResourceQuery method)

 	(ComplianceBenchmarkQuery method)

 	(DeviceSearchQuery method)

 	(DifferentialQuery method)

 	(EnrichedEventQuery method)

 	(EventQuery method)

 	(FacetQuery method)

 	(FeedQuery method)

 	(GrantQuery method)

 	(GroupedAlertSearchQuery method)

 	(IterableQueryMixin method)

 	(JobQuery method)

 	(ObservationQuery method)

 	(PaginatedQuery method)

 	(PolicyQuery method)

 	(Query method)

 	(RecommendationQuery method)

 	(ReportQuery method)

 	(ReputationOverrideQuery method)

 	(ResultQuery method)

 	(RunHistoryQuery method)

 	(SensorKitQuery method)

 	(SimpleQuery method)

 	(TemplateHistoryQuery method)

 	(USBDeviceApprovalQuery method)

 	(USBDeviceBlockQuery method)

 	(USBDeviceQuery method)

 	(UserQuery method)

 	(VCenterComputeResourceQuery method)

 	(VulnerabilityAssetViewQuery method)

 	(VulnerabilityQuery method)

 	(WatchlistQuery method)

 	
 	OpenKey() (in module cbc_sdk.credential_providers.registry_credential_provider)

 	OperationCancelled

 	or_() (AffectedAssetQuery method)

 	(AlertSearchQuery method)

 	(AssetGroupQuery method)

 	(AsyncProcessQuery method)

 	(AuditLogQuery method)

 	(AuthEventQuery method)

 	(AWSComputeResourceQuery method)

 	(BaseComputeResourceQuery method)

 	(ComplianceBenchmarkQuery method)

 	(DeviceSearchQuery method)

 	(EnrichedEventQuery method)

 	(EventFacetQuery method)

 	(EventQuery method)

 	(FacetQuery method), [1]

 	(GroupedAlertSearchQuery method)

 	(ObservationQuery method)

 	(Query method)

 	(QueryBuilder method)

 	(QueryBuilderSupportMixin method)

 	(ReputationOverrideQuery method)

 	(ResultQuery method)

 	(RunHistoryQuery method)

 	(SummaryQuery method)

 	(TemplateHistoryQuery method)

 	(USBDeviceApprovalQuery method)

 	(USBDeviceQuery method)

 	(VCenterComputeResourceQuery method)

 	(VulnerabilityAssetViewQuery method)

 	(VulnerabilityQuery method)

 	org_urn (CBCloudAPI property)

 	(User property)

P

 	
 	PaginatedQuery (class in cbc_sdk.base)

 	parameter_names (BypassRuleConfig property)

 	(CorePreventionRuleConfig property)

 	(DataCollectionRuleConfig property)

 	(HostBasedFirewallRuleConfig property)

 	(PolicyRuleConfig property)

 	parents (Process property)

 	pause() (BackoffHandler.BackoffOperation method)

 	perform_action() (Vulnerability method)

 	PlatformModel (class in cbc_sdk.platform.base)

 	Policy (class in cbc_sdk.platform.policies)

 	policy (Policy property)

 	Policy.PolicyBuilder (class in cbc_sdk.platform.policies)

 	policy_id() (RunQuery method)

 	PolicyQuery (class in cbc_sdk.platform.policies)

 	PolicyRule (class in cbc_sdk.platform.policies)

 	PolicyRuleConfig (class in cbc_sdk.platform.policy_ruleconfigs)

 	poll_status() (in module cbc_sdk.live_response_api)

 	pop() (Vulnerability.AssetView method)

 	post() (Connection method)

 	post_multipart() (BaseAPI method)

 	(CBCloudAPI method)

 	post_object() (BaseAPI method)

 	(CBCloudAPI method)

 	preview_add_members() (AssetGroup method)

 	preview_add_members_to_groups() (AssetGroup class method)

 	preview_add_policy_override() (Policy method)

 	preview_add_policy_override_for_devices() (Device class method)

 	preview_create_asset_group() (AssetGroup class method)

 	
 	preview_delete() (AssetGroup method)

 	preview_delete_asset_groups() (AssetGroup class method)

 	preview_policy_rank_changes() (Policy class method)

 	preview_rank_change() (Policy method)

 	preview_remove_members() (AssetGroup method)

 	preview_remove_members_from_groups() (AssetGroup class method)

 	preview_remove_policy_override() (Device method)

 	preview_remove_policy_override_for_devices() (Device class method)

 	preview_save() (AssetGroup method)

 	preview_update_asset_groups() (AssetGroup class method)

 	priorityLevel (Policy property)

 	Process (class in cbc_sdk.platform.processes)

 	Process.Summary (class in cbc_sdk.platform.processes)

 	Process.Tree (class in cbc_sdk.platform.processes)

 	process_limits() (CBCloudAPI method)

 	process_md5 (Process property)

 	process_pids (Process property)

 	process_sha256 (EnrichedEvent property)

 	(Process property)

 	ProcessFacet (class in cbc_sdk.platform.processes)

 	ProcessFacet.Ranges (class in cbc_sdk.platform.processes)

 	ProcessFacet.Terms (class in cbc_sdk.platform.processes)

 	profiles_ (Grant property)

 	proxy_headers() (CBCSDKSessionAdapter method)

 	proxy_manager_for() (CBCSDKSessionAdapter method)

 	put() (Connection method)

 	put_file() (CbLRSessionBase method)

 	(LiveResponseSession method)

 	put_object() (BaseAPI method)

 	(CBCloudAPI method)

Q

 	
 	quarantine() (Device method)

 	(DeviceSearchQuery method)

 	Query (class in cbc_sdk.base)

 	query_device_summaries() (Result method)

 	(Run method)

 	(RunHistory method)

 	(Template method)

 	(TemplateHistory method)

 	query_device_summary_facets() (Result method)

 	query_devices() (DeviceFacet.DeviceFacetValue method)

 	query_facets() (Run method)

 	(RunHistory method)

 	(Template method)

 	(TemplateHistory method)

 	
 	query_result_facets() (Result method)

 	query_results() (Run method)

 	(RunHistory method)

 	(Template method)

 	(TemplateHistory method)

 	query_runs() (Template method)

 	(TemplateHistory method)

 	QueryBuilder (class in cbc_sdk.base)

 	QueryBuilderSupportMixin (class in cbc_sdk.base)

 	QuerySyntaxError

 	QueryValueEx() (in module cbc_sdk.credential_providers.registry_credential_provider)

R

 	
 	ranges_ (AuthEventFacet property)

 	(EnrichedEventFacet property)

 	(EventFacet property)

 	(ObservationFacet property)

 	(ProcessFacet property)

 	RawErrorCode (class in cbc_sdk.winerror)

 	read_iocs() (in module cbc_sdk.helpers)

 	Recommendation (class in cbc_sdk.endpoint_standard.recommendation)

 	Recommendation.RecommendationApplication (class in cbc_sdk.endpoint_standard.recommendation)

 	Recommendation.RecommendationImpact (class in cbc_sdk.endpoint_standard.recommendation)

 	Recommendation.RecommendationNewRule (class in cbc_sdk.endpoint_standard.recommendation)

 	Recommendation.RecommendationWorkflow (class in cbc_sdk.endpoint_standard.recommendation)

 	RecommendationQuery (class in cbc_sdk.endpoint_standard.recommendation)

 	refresh() (Alert method)

 	(Alert.Note method)

 	(AssetGroup method)

 	(AuditLog method)

 	(AuthEvent method)

 	(AuthEventFacet method)

 	(AuthEventFacet.Ranges method)

 	(AuthEventFacet.Terms method)

 	(AWSComputeResource method)

 	(BaseComputeResource method)

 	(Binary method)

 	(Binary.Summary method)

 	(BypassRuleConfig method)

 	(CBAnalyticsAlert method)

 	(CBAnalyticsAlert.Note method)

 	(ComplianceBenchmark method)

 	(ComputeResourceFacet method)

 	(ComputeResourceFacet.ComputeResourceFacetValue method)

 	(ContainerRuntimeAlert method)

 	(ContainerRuntimeAlert.Note method)

 	(CorePreventionRuleConfig method)

 	(DataCollectionRuleConfig method)

 	(Device method)

 	(DeviceControlAlert method)

 	(DeviceControlAlert.Note method)

 	(DeviceFacet method)

 	(DeviceFacet.DeviceFacetValue method)

 	(DeviceSummary method)

 	(DeviceSummary.Metrics method)

 	(DeviceSummaryFacet method)

 	(DeviceSummaryFacet.Values method)

 	(Differential method)

 	(Downloads method)

 	(Downloads.FoundItem method)

 	(EnrichedEvent method)

 	(EnrichedEventFacet method)

 	(EnrichedEventFacet.Ranges method)

 	(EnrichedEventFacet.Terms method)

 	(Event method)

 	(EventFacet method)

 	(EventFacet.Ranges method)

 	(EventFacet.Terms method)

 	(Feed method)

 	(FeedModel method)

 	(Grant method)

 	(Grant.Profile method)

 	(GroupedAlert method)

 	(HostBasedFirewallAlert method)

 	(HostBasedFirewallAlert.Note method)

 	(HostBasedFirewallRuleConfig method)

 	(HostBasedFirewallRuleConfig.FirewallRule method)

 	(HostBasedFirewallRuleConfig.FirewallRuleGroup method)

 	(IntrusionDetectionSystemAlert method)

 	(IntrusionDetectionSystemAlert.Note method)

 	(IOC method)

 	(IOC_V2 method)

 	(Job method)

 	(MutableBaseModel method)

 	(NetworkThreatMetadata method)

 	(NewBaseModel method)

 	(Observation method)

 	(ObservationFacet method)

 	(ObservationFacet.Ranges method)

 	(ObservationFacet.Terms method)

 	(PlatformModel method)

 	(Policy method)

 	(PolicyRule method)

 	(PolicyRuleConfig method)

 	(Process method)

 	(Process.Summary method)

 	(Process.Tree method)

 	(ProcessFacet method)

 	(ProcessFacet.Ranges method)

 	(ProcessFacet.Terms method)

 	(Recommendation method)

 	(Recommendation.RecommendationApplication method)

 	(Recommendation.RecommendationImpact method)

 	(Recommendation.RecommendationNewRule method)

 	(Recommendation.RecommendationWorkflow method)

 	(Report method)

 	(ReportSeverity method)

 	(ReputationOverride method)

 	(Result method)

 	(Result.Device method)

 	(Result.Fields method)

 	(Result.Metrics method)

 	(ResultFacet method)

 	(ResultFacet.Values method)

 	(Run method)

 	(RunHistory method)

 	(SensorKit method)

 	(Template method)

 	(TemplateHistory method)

 	(UnrefreshableModel method)

 	(USBDevice method)

 	(USBDeviceApproval method)

 	(USBDeviceBlock method)

 	(User method)

 	(VCenterComputeResource method)

 	(Vulnerability method)

 	(Vulnerability.OrgSummary method)

 	(Watchlist method)

 	(WatchlistAlert method)

 	(WatchlistAlert.Note method)

 	
 	RegistryCredentialProvider (class in cbc_sdk.credential_providers.registry_credential_provider)

 	reject() (Recommendation method)

 	remove() (HostBasedFirewallRuleConfig.FirewallRule method)

 	(HostBasedFirewallRuleConfig.FirewallRuleGroup method)

 	(Vulnerability.AssetView method)

 	remove_from_groups() (Device method)

 	remove_from_groups_by_id() (Device method)

 	remove_iocs() (Report method)

 	remove_iocs_by_id() (Report method)

 	remove_members() (AssetGroup method)

 	replace_exclusions() (BypassRuleConfig method)

 	(CorePreventionRuleConfig method)

 	replace_reports() (Feed method)

 	replace_reports_rawdata() (Feed method)

 	replace_rule() (Policy method)

 	replace_rule_config() (Policy method)

 	Report (class in cbc_sdk.enterprise_edr.threat_intelligence)

 	Report.ReportBuilder (class in cbc_sdk.enterprise_edr.threat_intelligence)

 	ReportQuery (class in cbc_sdk.enterprise_edr.threat_intelligence)

 	reports (Feed property)

 	(Watchlist property)

 	ReportSeverity (class in cbc_sdk.enterprise_edr.threat_intelligence)

 	reputation_override() (Recommendation method)

 	ReputationOverride (class in cbc_sdk.platform.reputation)

 	ReputationOverrideQuery (class in cbc_sdk.platform.reputation)

 	request_session() (CbLRManagerBase method)

 	(LiveResponseSessionManager method)

 	request_url() (CBCSDKSessionAdapter method)

 	requires_boolean_value() (CredentialValue method)

 	requires_integer_value() (CredentialValue method)

 	reset() (AssetGroup method)

 	(BackoffHandler.BackoffOperation method)

 	(BypassRuleConfig method)

 	(CorePreventionRuleConfig method)

 	(DataCollectionRuleConfig method)

 	(Feed method)

 	(FeedModel method)

 	(Grant method)

 	(Grant.Profile method)

 	(HostBasedFirewallRuleConfig method)

 	(HostBasedFirewallRuleConfig.FirewallRule method)

 	(HostBasedFirewallRuleConfig.FirewallRuleGroup method)

 	(IOC method)

 	(IOC_V2 method)

 	(MutableBaseModel method)

 	(Policy method)

 	(PolicyRule method)

 	(PolicyRuleConfig method)

 	(Recommendation method)

 	(Report method)

 	(ReportSeverity method)

 	(USBDeviceApproval method)

 	(User method)

 	(Watchlist method)

 	reset_google_authenticator_registration() (User method)

 	Result (class in cbc_sdk.audit_remediation.base)

 	Result.Device (class in cbc_sdk.audit_remediation.base)

 	Result.Fields (class in cbc_sdk.audit_remediation.base)

 	Result.Metrics (class in cbc_sdk.audit_remediation.base)

 	ResultFacet (class in cbc_sdk.audit_remediation.base)

 	ResultFacet.Values (class in cbc_sdk.audit_remediation.base)

 	ResultFromScode() (in module cbc_sdk.winerror)

 	ResultQuery (class in cbc_sdk.audit_remediation.base)

 	results (EventFacetQuery property)

 	(FacetQuery property)

 	(FeedQuery property)

 	(ReportQuery property)

 	(SimpleQuery property)

 	(SummaryQuery property)

 	(WatchlistQuery property)

 	reverse() (Vulnerability.AssetView method)

 	rule_groups (HostBasedFirewallRuleConfig property)

 	rules_ (HostBasedFirewallRuleConfig.FirewallRuleGroup property)

 	Run (class in cbc_sdk.audit_remediation.base)

 	run() (GetFileJob method)

 	(JobWorker method)

 	(LiveResponseJobScheduler method)

 	(LRUCacheDict.EmptyCacheThread method)

 	run_id() (FacetQuery method)

 	(ResultQuery method)

 	run_job() (JobWorker method)

 	RunHistory (class in cbc_sdk.audit_remediation.base)

 	RunHistoryQuery (class in cbc_sdk.audit_remediation.base)

 	RunQuery (class in cbc_sdk.audit_remediation.base)

S

 	
 	save() (AssetGroup method)

 	(BypassRuleConfig method)

 	(CorePreventionRuleConfig method)

 	(DataCollectionRuleConfig method)

 	(Feed method)

 	(FeedModel method)

 	(Grant method)

 	(Grant.Profile method)

 	(HostBasedFirewallRuleConfig method)

 	(HostBasedFirewallRuleConfig.FirewallRule method)

 	(HostBasedFirewallRuleConfig.FirewallRuleGroup method)

 	(IOC method)

 	(IOC_V2 method)

 	(MutableBaseModel method)

 	(Policy method)

 	(PolicyRule method)

 	(PolicyRuleConfig method)

 	(Report method)

 	(ReportSeverity method)

 	(USBDeviceApproval method)

 	(User method)

 	(Watchlist method)

 	save_watchlist() (Report method)

 	schedule() (RunQuery method)

 	SCODE_CODE() (in module cbc_sdk.winerror)

 	SCODE_FACILITY() (in module cbc_sdk.winerror)

 	SCODE_SEVERITY() (in module cbc_sdk.winerror)

 	scroll() (DeviceSearchQuery method)

 	(ResultQuery method)

 	search_suggestions() (Alert static method)

 	(AuthEvent static method)

 	(CBAnalyticsAlert static method)

 	(ContainerRuntimeAlert static method)

 	(DeviceControlAlert static method)

 	(HostBasedFirewallAlert static method)

 	(IntrusionDetectionSystemAlert static method)

 	(Observation static method)

 	(WatchlistAlert static method)

 	select() (BaseAPI method)

 	(CBCloudAPI method)

 	select_class_instance() (in module cbc_sdk.connection)

 	send() (CBCSDKSessionAdapter method)

 	SensorKit (class in cbc_sdk.workload.sensor_lifecycle)

 	SensorKitQuery (class in cbc_sdk.workload.sensor_lifecycle)

 	ServerError, [1]

 	session_status() (LiveResponseSessionManager method)

 	set_ad_group_ids() (DeviceSearchQuery method)

 	set_alert_ids() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_alert_notes_present() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	set_alertable() (Feed.FeedBuilder method)

 	set_alerts_enabled() (Watchlist.WatchlistBuilder method)

 	set_appliance_uuid() (VCenterComputeResourceQuery method)

 	set_assignment_mode() (CorePreventionRuleConfig method)

 	set_auth_event_collection() (Policy method)

 	set_auth_method() (User.UserBuilder method)

 	set_auto_delete_bad_hash_delay() (Policy.PolicyBuilder method)

 	set_auto_deregister_interval() (Policy.PolicyBuilder method)

 	set_auto_scaling_group_name() (AWSComputeResourceQuery method)

 	(DeviceSearchQuery method)

 	set_availability_zone() (AWSComputeResourceQuery method)

 	set_avira_protection_cloud() (Policy.PolicyBuilder method)

 	set_blocked_threat_categories() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_categories() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_category() (Feed.FeedBuilder method)

 	set_cloud_provider_account_id() (AWSComputeResourceQuery method)

 	(DeviceSearchQuery method)

 	set_cloud_provider_resource_id() (AWSComputeResourceQuery method)

 	set_cloud_provider_tags() (AWSComputeResourceQuery method)

 	set_cluster_name() (VCenterComputeResourceQuery method)

 	set_cluster_names() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_collapse_field() (AsyncProcessQuery method)

 	set_compliance_schedule() (ComplianceBenchmark static method)

 	set_conditions() (Grant.ProfileBuilder method)

 	set_create_time() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_data_collection() (Policy method)

 	set_datacenter_name() (VCenterComputeResourceQuery method)

 	set_default_action() (HostBasedFirewallRuleConfig method)

 	set_deployment_type() (AffectedAssetQuery method)

 	(DeviceSearchQuery method)

 	(VulnerabilityAssetViewQuery method)

 	(VulnerabilityQuery method)

 	set_description() (Policy.PolicyBuilder method)

 	(Report.ReportBuilder method)

 	(Watchlist.WatchlistBuilder method)

 	set_device_guid() (VCenterComputeResourceQuery method)

 	set_device_ids() (AlertSearchQuery method)

 	(DeviceSearchQuery method)

 	(DifferentialQuery method)

 	(FacetQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	(ResultQuery method)

 	(USBDeviceApprovalQuery method)

 	set_device_locations() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_device_names() (AlertSearchQuery method)

 	(FacetQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	(ResultQuery method)

 	set_device_os() (AlertSearchQuery method)

 	(FacetQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	(ResultQuery method)

 	set_device_os_versions() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_device_type() (AffectedAssetQuery method)

 	(VulnerabilityAssetViewQuery method)

 	(VulnerabilityQuery method)

 	set_device_username() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_disabled() (Grant.Profile method)

 	(Grant.ProfileBuilder method)

 	set_egress_group_ids() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_egress_group_names() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_eligibility() (VCenterComputeResourceQuery method)

 	set_eligibility_code() (VCenterComputeResourceQuery method)

 	set_email() (User.UserBuilder method)

 	set_enabled() (HostBasedFirewallRuleConfig method)

 	set_endpoint_names() (USBDeviceQuery method)

 	set_esx_host_name() (VCenterComputeResourceQuery method)

 	set_esx_host_uuid() (VCenterComputeResourceQuery method)

 	set_exclude_sensor_versions() (DeviceSearchQuery method)

 	set_expiration() (Grant.Profile method)

 	(Grant.ProfileBuilder method)

 	set_external_device_friendly_names() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_external_device_ids() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_fields() (AsyncProcessQuery method)

 	(AuthEventQuery method)

 	(EnrichedEventQuery method)

 	(EventQuery method)

 	(ObservationQuery method)

 	(Query method)

 	set_first_name() (User.UserBuilder method)

 	set_group_by() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	set_group_results() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_hashes() (RecommendationQuery method)

 	set_highest_risk_score() (AffectedAssetQuery method)

 	(VulnerabilityAssetViewQuery method)

 	(VulnerabilityQuery method)

 	set_host_name() (VCenterComputeResourceQuery method)

 	set_id() (AWSComputeResourceQuery method)

 	set_installation_status() (AWSComputeResourceQuery method)

 	(VCenterComputeResourceQuery method)

 	set_installation_type() (VCenterComputeResourceQuery method)

 	set_ip_address() (VCenterComputeResourceQuery method)

 	set_ip_reputations() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_kill_chain_statuses() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_last_contact_time() (DeviceSearchQuery method)

 	set_last_name() (User.UserBuilder method)

 	set_last_sync_ts() (AffectedAssetQuery method)

 	(VulnerabilityAssetViewQuery method)

 	(VulnerabilityQuery method)

 	set_legacy_alert_ids() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_link() (Report.ReportBuilder method)

 	set_managed_detection_response_permissions() (Policy.PolicyBuilder method)

 	set_max_rows() (DeviceSearchQuery method)

 	(USBDeviceQuery method)

 	set_minimum_severity() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	set_name() (AffectedAssetQuery method)

 	(AWSComputeResourceQuery method)

 	(Feed.FeedBuilder method)

 	(Policy.PolicyBuilder method)

 	(VCenterComputeResourceQuery method)

 	(VulnerabilityAssetViewQuery method)

 	(VulnerabilityQuery method)

 	(Watchlist.WatchlistBuilder method)

 	set_namespaces() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_not_blocked_threat_categories() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_on_access_scan() (Policy.PolicyBuilder method)

 	set_on_demand_scan() (Policy.PolicyBuilder method)

 	set_on_demand_scan_schedule() (Policy.PolicyBuilder method)

 	set_org() (Grant.GrantBuilder method)

 	set_orgs() (Grant.ProfileBuilder method)

 	set_os() (DeviceSearchQuery method)

 	set_os_arch() (AffectedAssetQuery method)

 	(VulnerabilityAssetViewQuery method)

 	(VulnerabilityQuery method)

 	set_os_architecture() (VCenterComputeResourceQuery method)

 	set_os_description() (VCenterComputeResourceQuery method)

 	set_os_name() (AffectedAssetQuery method)

 	(VulnerabilityAssetViewQuery method)

 	(VulnerabilityQuery method)

 	set_os_product_id() (AffectedAssetQuery method)

 	set_os_type() (AffectedAssetQuery method)

 	(VCenterComputeResourceQuery method)

 	(VulnerabilityAssetViewQuery method)

 	(VulnerabilityQuery method)

 	set_os_version() (AffectedAssetQuery method)

 	(VulnerabilityAssetViewQuery method)

 	(VulnerabilityQuery method)

 	set_override_list() (ReputationOverrideQuery method)

 	set_override_type() (ReputationOverrideQuery method)

 	set_parameter() (BypassRuleConfig method)

 	(CorePreventionRuleConfig method)

 	(DataCollectionRuleConfig method)

 	(HostBasedFirewallRuleConfig method)

 	(PolicyRuleConfig method)

 	set_phone() (User.UserBuilder method)

 	set_platform() (AWSComputeResourceQuery method)

 	set_platform_details() (AWSComputeResourceQuery method)

 	set_policy_applied() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_policy_ids() (AlertSearchQuery method)

 	(DeviceSearchQuery method)

 	(FacetQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	(ResultQuery method)

 	set_policy_names() (AlertSearchQuery method)

 	(FacetQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	(ResultQuery method)

 	set_policy_types() (RecommendationQuery method)

 	set_ports() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	
 	set_principal_name() (Grant.GrantBuilder method)

 	set_priority() (Policy.PolicyBuilder method)

 	set_process_names() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_process_sha256() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_product_ids() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_product_names() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	(USBDeviceApprovalQuery method)

 	(USBDeviceQuery method)

 	set_profile_expiration() (User method)

 	set_protocols() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_provider_url() (Feed.FeedBuilder method)

 	set_reason_code() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_region() (AWSComputeResourceQuery method)

 	set_registration_id() (VCenterComputeResourceQuery method)

 	set_registry_value() (CbLRSessionBase method)

 	(LiveResponseSession method)

 	set_remote_domains() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_remote_ips() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_remote_is_private() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	set_replica_ids() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_reputations() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_role() (User.UserBuilder method)

 	set_roles() (Grant.GrantBuilder method)

 	(Grant.ProfileBuilder method)

 	set_rows() (AlertSearchQuery method)

 	(AssetGroupQuery method)

 	(AsyncProcessQuery method)

 	(AuthEventQuery method)

 	(EnrichedEventQuery method)

 	(EventFacetQuery method)

 	(EventQuery method)

 	(FacetQuery method)

 	(GroupedAlertSearchQuery method)

 	(ObservationQuery method)

 	(Query method)

 	set_rule_ids() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_rule_names() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_run_ids() (ResultQuery method)

 	set_run_states() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_sensor_actions() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_serial_numbers() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	(USBDeviceQuery method)

 	set_severity() (AffectedAssetQuery method)

 	(Report.ReportBuilder method)

 	(VulnerabilityAssetViewQuery method)

 	(VulnerabilityOrgSummaryQuery method)

 	(VulnerabilityQuery method)

 	set_signature_update() (Policy.PolicyBuilder method)

 	set_signature_update_schedule() (Policy.PolicyBuilder method)

 	set_source_label() (Feed.FeedBuilder method)

 	set_start() (AsyncProcessQuery method)

 	(AuthEventQuery method)

 	(EnrichedEventQuery method)

 	(EventQuery method)

 	(ObservationQuery method)

 	(Query method)

 	set_status() (DeviceSearchQuery method)

 	set_statuses() (FacetQuery method)

 	(RecommendationQuery method)

 	(ResultQuery method)

 	(USBDeviceQuery method)

 	set_subnet_id() (AWSComputeResourceQuery method)

 	set_summary() (Feed.FeedBuilder method)

 	set_sync_status() (AffectedAssetQuery method)

 	(VulnerabilityAssetViewQuery method)

 	(VulnerabilityQuery method)

 	set_sync_type() (AffectedAssetQuery method)

 	(VulnerabilityAssetViewQuery method)

 	(VulnerabilityQuery method)

 	set_system() (PolicyQuery method)

 	set_tags() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_tags_enabled() (Watchlist.WatchlistBuilder method)

 	set_target_priorities() (AlertSearchQuery method)

 	(DeviceSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_template_ids() (RunHistoryQuery method)

 	set_threat_cause_vectors() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_threat_ids() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_threat_notes_present() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	set_time_range() (AlertSearchQuery method)

 	(AsyncProcessQuery method)

 	(AuthEventQuery method)

 	(EnrichedEventQuery method)

 	(EventFacetQuery method)

 	(EventQuery method)

 	(FacetQuery method)

 	(GroupedAlertSearchQuery method)

 	(ObservationQuery method)

 	(Query method)

 	(SummaryQuery method)

 	set_time_received() (ResultQuery method)

 	set_timestamp() (Report.ReportBuilder method)

 	set_title() (Report.ReportBuilder method)

 	set_types() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_update_servers_offsite() (Policy.PolicyBuilder method)

 	set_update_servers_onsite() (Policy.PolicyBuilder method)

 	set_update_servers_override() (Policy.PolicyBuilder method)

 	set_uuid() (VCenterComputeResourceQuery method)

 	set_vcenter() (AffectedAssetQuery method)

 	(VulnerabilityAssetViewQuery method)

 	(VulnerabilityOrgSummaryQuery method)

 	(VulnerabilityQuery method)

 	set_vcenter_host_url() (VCenterComputeResourceQuery method)

 	set_vcenter_name() (VCenterComputeResourceQuery method)

 	set_vcenter_uuid() (VCenterComputeResourceQuery method)

 	set_vendor_ids() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_vendor_names() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	(USBDeviceApprovalQuery method)

 	(USBDeviceQuery method)

 	set_virtual_private_cloud_id() (AWSComputeResourceQuery method)

 	(DeviceSearchQuery method)

 	set_visibility() (AffectedAssetQuery method)

 	(Report.ReportBuilder method)

 	(VulnerabilityAssetViewQuery method)

 	(VulnerabilityOrgSummaryQuery method)

 	(VulnerabilityQuery method)

 	set_vm_id() (AffectedAssetQuery method)

 	(VulnerabilityAssetViewQuery method)

 	(VulnerabilityQuery method)

 	set_vmwaretools_version() (VCenterComputeResourceQuery method)

 	set_vuln_count() (AffectedAssetQuery method)

 	(VulnerabilityAssetViewQuery method)

 	(VulnerabilityQuery method)

 	set_watchlist_ids() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_watchlist_names() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_workflows() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_workload_ids() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_workload_kinds() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_workload_names() (AlertSearchQuery method)

 	(GroupedAlertSearchQuery method)

 	(LegacyAlertSearchQueryCriterionMixin method)

 	set_xdr_collection() (Policy method)

 	setDaemon() (JobWorker method)

 	(LiveResponseJobScheduler method)

 	(LRUCacheDict.EmptyCacheThread method)

 	setName() (JobWorker method)

 	(LiveResponseJobScheduler method)

 	(LRUCacheDict.EmptyCacheThread method)

 	severity_levels() (Vulnerability.OrgSummary method)

 	siblings (Process property)

 	SimpleQuery (class in cbc_sdk.base)

 	sort() (FeedQuery method)

 	(ReportQuery method)

 	(SimpleQuery method)

 	(Vulnerability.AssetView method)

 	(WatchlistQuery method)

 	sort_by() (AffectedAssetQuery method)

 	(AlertSearchQuery method)

 	(AssetGroupQuery method)

 	(AsyncProcessQuery method)

 	(AuditLogQuery method)

 	(AuthEventQuery method)

 	(AWSComputeResourceQuery method)

 	(BaseComputeResourceQuery method)

 	(ComplianceBenchmarkQuery method)

 	(DeviceSearchQuery method)

 	(EnrichedEventQuery method)

 	(EventQuery method)

 	(GroupedAlertSearchQuery method)

 	(ObservationQuery method)

 	(Query method)

 	(RecommendationQuery method)

 	(ReputationOverrideQuery method)

 	(ResultQuery method)

 	(RunHistoryQuery method)

 	(TemplateHistoryQuery method)

 	(USBDeviceQuery method)

 	(VCenterComputeResourceQuery method)

 	(VulnerabilityAssetViewQuery method)

 	(VulnerabilityQuery method)

 	start() (JobWorker method)

 	(LiveResponseJobScheduler method)

 	(LRUCacheDict.EmptyCacheThread method)

 	start_memdump() (CbLRSessionBase method)

 	(LiveResponseSession method)

 	start_request() (NSXRemediationJob class method)

 	status (NSXRemediationJob property)

 	stop() (Run method)

 	(RunHistory method)

 	(Template method)

 	(TemplateHistory method)

 	stop_keepalive_thread() (CbLRManagerBase method)

 	(LiveResponseSessionManager method)

 	submit() (DifferentialQuery method)

 	(RunQuery method)

 	(VulnerabilityOrgSummaryQuery method)

 	submit_job() (CbLRManagerBase method)

 	(LiveResponseJobScheduler method)

 	(LiveResponseSessionManager method)

 	SUCCEEDED() (in module cbc_sdk.winerror)

 	summarize() (AWSComputeResourceQuery method)

 	summary (Binary property)

 	(Process property)

 	SummaryQuery (class in cbc_sdk.platform.processes)

 	swagger_meta_file (AssetGroup attribute)

 	(Device attribute)

 	SwaggerLoader (class in cbc_sdk.base)

 	systemPolicy (Policy property)

T

 	
 	Template (class in cbc_sdk.audit_remediation.base)

 	TemplateHistory (class in cbc_sdk.audit_remediation.base)

 	TemplateHistoryQuery (class in cbc_sdk.audit_remediation.base)

 	terms_ (AuthEventFacet property)

 	(EnrichedEventFacet property)

 	(EventFacet property)

 	(ObservationFacet property)

 	(ProcessFacet property)

 	timeout (BackoffHandler property)

 	timeout() (AsyncProcessQuery method)

 	(AuthEventQuery method)

 	(EnrichedEventQuery method)

 	(EventFacetQuery method)

 	(FacetQuery method)

 	(ObservationQuery method)

 	(SummaryQuery method)

 	TimeoutError, [1]

 	to_dict() (Credentials method)

 	to_json() (Alert method)

 	(Alert.Note method)

 	(AssetGroup method)

 	(AuditLog method)

 	(AuthEvent method)

 	(AuthEventFacet method)

 	(AuthEventFacet.Ranges method)

 	(AuthEventFacet.Terms method)

 	(AWSComputeResource method)

 	(BaseComputeResource method)

 	(Binary method)

 	(Binary.Summary method)

 	(BypassRuleConfig method)

 	(CBAnalyticsAlert method)

 	(CBAnalyticsAlert.Note method)

 	(ComplianceBenchmark method)

 	(ComputeResourceFacet method)

 	(ComputeResourceFacet.ComputeResourceFacetValue method)

 	(ContainerRuntimeAlert method)

 	(ContainerRuntimeAlert.Note method)

 	(CorePreventionRuleConfig method)

 	(DataCollectionRuleConfig method)

 	(Device method)

 	(DeviceControlAlert method)

 	(DeviceControlAlert.Note method)

 	(DeviceFacet method)

 	(DeviceFacet.DeviceFacetValue method)

 	(DeviceSummary method)

 	(DeviceSummary.Metrics method)

 	(DeviceSummaryFacet method)

 	(DeviceSummaryFacet.Values method)

 	(Differential method)

 	(Downloads method)

 	(Downloads.FoundItem method)

 	(EnrichedEvent method)

 	(EnrichedEventFacet method)

 	(EnrichedEventFacet.Ranges method)

 	(EnrichedEventFacet.Terms method)

 	(Event method)

 	(EventFacet method)

 	(EventFacet.Ranges method)

 	(EventFacet.Terms method)

 	(Feed method)

 	(FeedModel method)

 	(Grant method)

 	(Grant.Profile method)

 	(GroupedAlert method)

 	(HostBasedFirewallAlert method)

 	(HostBasedFirewallAlert.Note method)

 	(HostBasedFirewallRuleConfig method)

 	(HostBasedFirewallRuleConfig.FirewallRule method)

 	(HostBasedFirewallRuleConfig.FirewallRuleGroup method)

 	(IntrusionDetectionSystemAlert method)

 	(IntrusionDetectionSystemAlert.Note method)

 	(IOC method)

 	(IOC_V2 method)

 	(Job method)

 	(MutableBaseModel method)

 	(NetworkThreatMetadata method)

 	(NewBaseModel method)

 	(Observation method)

 	(ObservationFacet method)

 	(ObservationFacet.Ranges method)

 	(ObservationFacet.Terms method)

 	(PlatformModel method)

 	(Policy method)

 	(PolicyRule method)

 	(PolicyRuleConfig method)

 	(Process method)

 	(Process.Summary method)

 	(Process.Tree method)

 	(ProcessFacet method)

 	(ProcessFacet.Ranges method)

 	(ProcessFacet.Terms method)

 	(Recommendation method)

 	(Recommendation.RecommendationApplication method)

 	(Recommendation.RecommendationImpact method)

 	(Recommendation.RecommendationNewRule method)

 	(Recommendation.RecommendationWorkflow method)

 	(Report method)

 	(ReportSeverity method)

 	(ReputationOverride method)

 	(Result method)

 	(Result.Device method)

 	(Result.Fields method)

 	(Result.Metrics method)

 	(ResultFacet method)

 	(ResultFacet.Values method)

 	(Run method)

 	(RunHistory method)

 	(SensorKit method)

 	(Template method)

 	(TemplateHistory method)

 	(UnrefreshableModel method)

 	(USBDevice method)

 	(USBDeviceApproval method)

 	(USBDeviceBlock method)

 	(User method)

 	(VCenterComputeResource method)

 	(Vulnerability method)

 	(Vulnerability.OrgSummary method)

 	(Watchlist method)

 	(WatchlistAlert method)

 	(WatchlistAlert.Note method)

 	
 	touch() (AssetGroup method)

 	(BypassRuleConfig method)

 	(CorePreventionRuleConfig method)

 	(DataCollectionRuleConfig method)

 	(Feed method)

 	(FeedModel method)

 	(Grant method)

 	(Grant.Profile method)

 	(HostBasedFirewallRuleConfig method)

 	(HostBasedFirewallRuleConfig.FirewallRule method)

 	(HostBasedFirewallRuleConfig.FirewallRuleGroup method)

 	(IOC method)

 	(IOC_V2 method)

 	(MutableBaseModel method)

 	(Policy method)

 	(PolicyRule method)

 	(PolicyRuleConfig method)

 	(Report method)

 	(ReportSeverity method)

 	(USBDeviceApproval method)

 	(User method)

 	(Watchlist method)

 	tree (Process property)

 	try_json() (in module cbc_sdk.connection)

U

 	
 	UnauthorizedError

 	unignore() (IOC_V2 method)

 	(Report method)

 	uninstall_sensor() (Device method)

 	(DeviceSearchQuery method)

 	UnrefreshableModel (class in cbc_sdk.base)

 	update() (Alert method)

 	(AlertSearchQuery method)

 	(CBAnalyticsAlert method)

 	(ContainerRuntimeAlert method)

 	(DeviceControlAlert method)

 	(Feed method)

 	(GroupedAlertSearchQuery method)

 	(HostBasedFirewallAlert method)

 	(IntrusionDetectionSystemAlert method)

 	(Report method)

 	(Watchlist method)

 	(WatchlistAlert method)

 	update_criteria() (AlertSearchQuery method)

 	(AssetGroupQuery method)

 	(AsyncProcessQuery method)

 	(AuditLogQuery method)

 	(AuthEventQuery method)

 	(AWSComputeResourceQuery method)

 	(BaseComputeResourceQuery method)

 	(ComplianceBenchmarkQuery method)

 	(CriteriaBuilderSupportMixin method)

 	(DeviceSearchQuery method)

 	(DifferentialQuery method)

 	(EnrichedEventQuery method)

 	(EventFacetQuery method)

 	(EventQuery method)

 	(FacetQuery method), [1]

 	(GroupedAlertSearchQuery method)

 	(ObservationQuery method)

 	(Query method)

 	(RecommendationQuery method)

 	(ResultQuery method)

 	(RunHistoryQuery method)

 	(SensorKitQuery method)

 	(TemplateHistoryQuery method)

 	(USBDeviceApprovalQuery method)

 	(USBDeviceQuery method)

 	(VCenterComputeResourceQuery method)

 	
 	update_exclusions() (AlertSearchQuery method)

 	(AsyncProcessQuery method)

 	(AuditLogQuery method)

 	(AuthEventQuery method)

 	(EnrichedEventQuery method)

 	(EventFacetQuery method)

 	(EventQuery method)

 	(ExclusionBuilderSupportMixin method)

 	(FacetQuery method)

 	(GroupedAlertSearchQuery method)

 	(ObservationQuery method)

 	(Query method)

 	update_policy() (Device method)

 	(DeviceSearchQuery method)

 	update_rules() (ComplianceBenchmark method)

 	update_sensor_version() (Device method)

 	(DeviceSearchQuery method)

 	update_threat() (Alert method)

 	(CBAnalyticsAlert method)

 	(ContainerRuntimeAlert method)

 	(DeviceControlAlert method)

 	(HostBasedFirewallAlert method)

 	(IntrusionDetectionSystemAlert method)

 	(WatchlistAlert method)

 	url (BaseAPI property)

 	(CBCloudAPI property)

 	urn (User property)

 	USBDevice (class in cbc_sdk.endpoint_standard.usb_device_control)

 	USBDeviceApproval (class in cbc_sdk.endpoint_standard.usb_device_control)

 	USBDeviceApprovalQuery (class in cbc_sdk.endpoint_standard.usb_device_control)

 	USBDeviceBlock (class in cbc_sdk.endpoint_standard.usb_device_control)

 	USBDeviceBlockQuery (class in cbc_sdk.endpoint_standard.usb_device_control)

 	USBDeviceQuery (class in cbc_sdk.endpoint_standard.usb_device_control)

 	User (class in cbc_sdk.platform.users)

 	User.UserBuilder (class in cbc_sdk.platform.users)

 	user_ids() (UserQuery method)

 	UserQuery (class in cbc_sdk.platform.users)

V

 	
 	valid_rule_configs() (Policy method)

 	validate() (AssetGroup method)

 	(BypassRuleConfig method)

 	(CorePreventionRuleConfig method)

 	(DataCollectionRuleConfig method)

 	(Feed method)

 	(FeedModel method)

 	(Grant method)

 	(Grant.Profile method)

 	(HostBasedFirewallRuleConfig method)

 	(HostBasedFirewallRuleConfig.FirewallRule method)

 	(HostBasedFirewallRuleConfig.FirewallRuleGroup method)

 	(IOC method)

 	(IOC_V2 method)

 	(MutableBaseModel method)

 	(Policy method)

 	(PolicyRule method)

 	(PolicyRuleConfig method)

 	(Report method)

 	(ReportSeverity method)

 	(USBDeviceApproval method)

 	(User method)

 	(Watchlist method)

 	
 	validate_process_query() (CBCloudAPI method)

 	values (ComputeResourceFacet property)

 	values_ (DeviceFacet property)

 	(DeviceSummaryFacet property)

 	(ResultFacet property)

 	VCenterComputeResource (class in cbc_sdk.workload.vm_workloads_search)

 	VCenterComputeResourceQuery (class in cbc_sdk.workload.vm_workloads_search)

 	Vulnerability (class in cbc_sdk.platform.vulnerability_assessment)

 	Vulnerability.AssetView (class in cbc_sdk.platform.vulnerability_assessment)

 	Vulnerability.OrgSummary (class in cbc_sdk.platform.vulnerability_assessment)

 	vulnerability_refresh() (Device method)

 	VulnerabilityAssetViewQuery (class in cbc_sdk.platform.vulnerability_assessment)

 	VulnerabilityOrgSummaryQuery (class in cbc_sdk.platform.vulnerability_assessment)

 	VulnerabilityQuery (class in cbc_sdk.platform.vulnerability_assessment)

W

 	
 	wait() (LiveResponseMemdump method)

 	walk() (CbLRSessionBase method)

 	(LiveResponseSession method)

 	Watchlist (class in cbc_sdk.enterprise_edr.threat_intelligence)

 	Watchlist.WatchlistBuilder (class in cbc_sdk.enterprise_edr.threat_intelligence)

 	WatchlistAlert (class in cbc_sdk.platform.alerts)

 	WatchlistAlert.Note (class in cbc_sdk.platform.alerts)

 	WatchlistQuery (class in cbc_sdk.enterprise_edr.threat_intelligence)

 	where() (AffectedAssetQuery method)

 	(AlertSearchQuery method)

 	(AssetGroupQuery method)

 	(AsyncProcessQuery method)

 	(AuditLogQuery method)

 	(AuthEventQuery method)

 	(AWSComputeResourceQuery method)

 	(BaseComputeResourceQuery method)

 	(ComplianceBenchmarkQuery method)

 	(DeviceSearchQuery method)

 	(EnrichedEventQuery method)

 	(EventFacetQuery method)

 	(EventQuery method)

 	(FacetQuery method), [1]

 	(FeedQuery method)

 	(GroupedAlertSearchQuery method)

 	(ObservationQuery method)

 	(Query method)

 	(QueryBuilder method)

 	(QueryBuilderSupportMixin method)

 	(ReportQuery method)

 	(ReputationOverrideQuery method)

 	(ResultQuery method)

 	(RunHistoryQuery method)

 	(RunQuery method)

 	(SimpleQuery method)

 	(SummaryQuery method)

 	(TemplateHistoryQuery method)

 	(USBDeviceApprovalQuery method)

 	(USBDeviceQuery method)

 	(VCenterComputeResourceQuery method)

 	(VulnerabilityAssetViewQuery method)

 	(VulnerabilityQuery method)

 	(WatchlistQuery method)

 	
 	Win32Error (class in cbc_sdk.winerror)

 	with_traceback() (ApiError method)

 	(ClientError method)

 	(ConnectionError method)

 	(CredentialError method)

 	(FunctionalityDecommissioned method)

 	(InvalidHashError method)

 	(InvalidObjectError method)

 	(LiveResponseError method)

 	(ModelNotFound method)

 	(MoreThanOneResultError method)

 	(NonQueryableModel method)

 	(NSXJobError method)

 	(ObjectNotFoundError method)

 	(OperationCancelled method)

 	(QuerySyntaxError method)

 	(ServerError method)

 	(TimeoutError method)

 	(UnauthorizedError method)

 	WorkerStatus (class in cbc_sdk.live_response_api)

 	workflow_ (Alert property)

 	(CBAnalyticsAlert property)

 	(ContainerRuntimeAlert property)

 	(DeviceControlAlert property)

 	(HostBasedFirewallAlert property)

 	(IntrusionDetectionSystemAlert property)

 	(Recommendation property)

 	(WatchlistAlert property)

 	WorkItem (class in cbc_sdk.live_response_api)

 _static/cbc_platform_notification_edit.png
Add Notification X

* Name

‘ SDK SIEM Demo ‘

When do you want to be notified?

‘ Alert crosses a threshold v ‘

Alert severity

As of June 2023, Observed activity alerts have been transitioned to the Investigate page as Observations. Existing
notification rules containing observed activity alerts will continue to receive emails at this time, but new or edited rules
will no longer have this option.

* Alert types

O Altypes

(@) selecttypes

USB Device Control Containers Runtime Host Based Firewall

8 Analytics Watchlists

Intrusion Detection System (email only)

* Policy

O Al policies

@ Select policies
Standard

Search for a policy

If muliple policies are selected, a separate notification will be created for each

How do you want to be notified?
Email

Search for a user v

Send only 1 email no

APl Key

cation for each threat type per day

SDK SIEM Demo (ABSP987P3V)

Search for an AP key

m Cancel

_static/install-windows.png
B)
Install Python 3.6.4 (64-bit)

St bt o 0t Fyhon it el st o s

® sl Now
LtV ————

o1 pp gt

> Customize nstallaion

TR ——
2 haaPyon 3610 PATH

_static/keychain_new_entry.png
Keychain Item Name:
CBC SDK API Credentials

Entor a name for this keychain ltem. f you are adding an Internet password
item, enter s URL here (for example: htps://www.apple.com).

Enter the account name assoclated with this keychain tem.
Password:

{

it

Entor the password o be stored I the keychal.
e —
Password Strength: Weak

@ Show Password

Caneel (G

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 CBC SDK: Carbon Black Cloud SDK for Python

 		
 Installation

 		
 Install Python

 		
 Use Pip

 		
 Virtual Environments (optional)

 		
 Get Source Code

 		
 Authentication

 		
 Authentication Methods

 		
 With a File

 		
 With Windows Registry

 		
 With an External Credential Provider

 		
 At Runtime

 		
 With Environmental Variables

 		
 With macOS’s Keychain Access

 		
 With Amazon Secrets Manger

 		
 Configure the AWS credentials

 		
 Adding a secret to the AWS Secrets Manager

 		
 Using our credential provider for the SDK

 		
 AWS Single Sign-On Provider (SSO)

 		
 Explanation of API Credential Components

 		
 Boolean Values

 		
 Getting Started

 		
 Installation

 		
 Authentication

 		
 Setting the User-Agent

 		
 Running the Example

 		
 Inside the Example Script

 		
 Calling the SDK Directly

 		
 Next Steps

 		
 Resources

 		
 Audience for These Resources

 		
 Examples

 		
 Recordings

 		
 Guides

 		
 Audience for These Guides

 		
 Feature Guides

 		
 Searching

 		
 Alerts

 		
 Asset Groups

 		
 Audit Log Events

 		
 Compliance Benchmarks

 		
 Developing New Credential Providers

 		
 Devices

 		
 Device Control

 		
 Differential Analysis

 		
 Live Query

 		
 Live Response

 		
 Policy

 		
 Recommendations

 		
 Reputation Override

 		
 Unified Binary Store

 		
 Users and Grants

 		
 Vulnerabilities

 		
 Watchlists, Feeds, Reports, and IOCs

 		
 Workloads

 		
 Migration Guides

 		
 Alert Migration

 		
 Migration Guide For Live Response From v3 To v6

 		
 Notifications to Alerts Migration

 		
 Porting Applications from CBAPI to Carbon Black Cloud SDK

 		
 The CBCloudAPI Object

 		
 CBCloudAPI Creation Examples

 		
 Class Documentation

 		
 CBCloudAPI

 		
 Audit and Remediation Package

 		
 Base Module

 		
 DeviceSummary

 		
 DeviceSummaryFacet

 		
 FacetQuery

 		
 MAX_RESULTS_LIMIT

 		
 Result

 		
 ResultFacet

 		
 ResultQuery

 		
 Run

 		
 RunHistory

 		
 RunHistoryQuery

 		
 RunQuery

 		
 Template

 		
 TemplateHistory

 		
 TemplateHistoryQuery

 		
 Differential Module

 		
 ASYNC_RATE_LIMIT

 		
 Differential

 		
 DifferentialQuery

 		
 Credential Providers Package

 		
 Default Module

 		
 DefaultProvider

 		
 default_credential_provider()

 		
 AWS SM Credential Provider Module

 		
 AWSCredentialProvider

 		
 Environ Credential Provider Module

 		
 EnvironCredentialProvider

 		
 File Credential Provider Module

 		
 FileCredentialProvider

 		
 Keychain Credential Provider Module

 		
 KeychainCredentialProvider

 		
 Registry Credential Provider Module

 		
 OpenKey()

 		
 QueryValueEx()

 		
 RegistryCredentialProvider

 		
 Endpoint Standard Package

 		
 Base Module

 		
 EnrichedEvent

 		
 EnrichedEventFacet

 		
 EnrichedEventQuery

 		
 Event

 		
 log

 		
 Standard Recommendation Module

 		
 Recommendation

 		
 RecommendationQuery

 		
 log

 		
 USB Device Control Module

 		
 USBDevice

 		
 USBDeviceApproval

 		
 USBDeviceApprovalQuery

 		
 USBDeviceBlock

 		
 USBDeviceBlockQuery

 		
 USBDeviceQuery

 		
 log

 		
 Enterprise EDR Package

 		
 Auth Events Module

 		
 AuthEvent

 		
 AuthEventFacet

 		
 AuthEventGroup

 		
 AuthEventQuery

 		
 Threat Intelligence Module

 		
 Feed

 		
 FeedModel

 		
 FeedQuery

 		
 IOC

 		
 IOC_V2

 		
 Report

 		
 ReportQuery

 		
 ReportSeverity

 		
 Watchlist

 		
 WatchlistQuery

 		
 log

 		
 UBS Module

 		
 Binary

 		
 Downloads

 		
 Platform Package

 		
 Base Module

 		
 PlatformModel

 		
 log

 		
 Submodules

 		
 Alerts Module

 		
 Alert

 		
 AlertSearchQuery

 		
 CBAnalyticsAlert

 		
 ContainerRuntimeAlert

 		
 DeviceControlAlert

 		
 GroupedAlert

 		
 GroupedAlertSearchQuery

 		
 HostBasedFirewallAlert

 		
 IntrusionDetectionSystemAlert

 		
 WatchlistAlert

 		
 Asset Groups Module

 		
 AssetGroup

 		
 AssetGroupQuery

 		
 Audit Module

 		
 AuditLog

 		
 AuditLogQuery

 		
 Devices Module

 		
 Device

 		
 DeviceFacet

 		
 DeviceSearchQuery

 		
 log

 		
 Events Module

 		
 Event

 		
 EventFacet

 		
 EventFacetQuery

 		
 EventQuery

 		
 Grants Module

 		
 Grant

 		
 GrantQuery

 		
 log

 		
 normalize_org()

 		
 Jobs Module

 		
 Job

 		
 JobQuery

 		
 Legacy Alerts Module

 		
 LegacyAlertSearchQueryCriterionMixin

 		
 Network Threat Metadata Module

 		
 NetworkThreatMetadata

 		
 Observations Module

 		
 Observation

 		
 ObservationFacet

 		
 ObservationGroup

 		
 ObservationQuery

 		
 Policies Module

 		
 Policy

 		
 PolicyQuery

 		
 PolicyRule

 		
 RuleConfigs Module

 		
 BypassRuleConfig

 		
 CorePreventionRuleConfig

 		
 DataCollectionRuleConfig

 		
 HostBasedFirewallRuleConfig

 		
 PolicyRuleConfig

 		
 Previewer Module

 		
 DevicePolicyChangePreview

 		
 Processes Module

 		
 AsyncProcessQuery

 		
 Process

 		
 ProcessFacet

 		
 SummaryQuery

 		
 Reputation Module

 		
 ReputationOverride

 		
 ReputationOverrideQuery

 		
 Users Module

 		
 User

 		
 UserQuery

 		
 log

 		
 normalize_profile_list()

 		
 Vulnerability Assessment Module

 		
 AffectedAssetQuery

 		
 Vulnerability

 		
 VulnerabilityAssetViewQuery

 		
 VulnerabilityOrgSummaryQuery

 		
 VulnerabilityQuery

 		
 log

 		
 Workload Package

 		
 CIS Benchmarks

 		
 ComplianceBenchmark

 		
 ComplianceBenchmarkQuery

 		
 log

 		
 NSX Remediation Module

 		
 NSXRemediationJob

 		
 Sensor Lifecycle Module

 		
 SensorKit

 		
 SensorKitQuery

 		
 VM Workloads Search Module

 		
 AWSComputeResource

 		
 AWSComputeResourceQuery

 		
 BaseComputeResource

 		
 BaseComputeResourceQuery

 		
 ComputeResourceFacet

 		
 VCenterComputeResource

 		
 VCenterComputeResourceQuery

 		
 log

 		
 CBC SDK Package

 		
 Subpackages

 		
 Audit and Remediation Package

 		
 Cache Package

 		
 Credential Providers Package

 		
 Endpoint Standard Package

 		
 Enterprise EDR Package

 		
 Platform Package

 		
 Workload Package

 		
 Submodules

 		
 Base Module

 		
 Connection Module

 		
 Credentials Module

 		
 Errors Module

 		
 Helpers Module

 		
 Live Response API Module

 		
 Utils Module

 		
 WinError Module

 		
 Logging & Diagnostics

 		
 Enabling Logging

 		
 Testing

 		
 Running the tests on Microsoft Windows

 		
 Install Python

 		
 Fix the Execution PATH

 		
 Install CBC Python SDK Requirements

 		
 Execute the Functional Tests

 		
 Running the tests on Linux

 		
 Build the docker image

 		
 Run the container and execute the test

 		
 Changelog

 		
 CBC SDK 1.5.2 - Released May 1, 2024

 		
 CBC SDK 1.5.1 - Released January 30, 2024

 		
 CBC SDK 1.5.0 - Released October 24, 2023

 		
 CBC SDK 1.4.3 - Released June 26, 2023

 		
 CBC SDK 1.4.2 - Released March 22, 2023

 		
 CBC SDK 1.4.1 - Released October 21, 2022

 		
 CBC SDK 1.4.0 - Released July 26,2022

 		
 CBC SDK 1.3.6 - Released April 19, 2022

 		
 CBC SDK 1.3.5 - Released January 26, 2022

 		
 CBC SDK 1.3.4 - Released October 12, 2021

 		
 CBC SDK 1.3.3 - Released August 10, 2021

 		
 CBC SDK 1.3.2 - Released August 10, 2021

 		
 CBC SDK 1.3.1 - Released June 15, 2021

 		
 CBC SDK 1.3.0 - Released June 8, 2021

 		
 CBC SDK 1.2.3 - Released April 19, 2021

 		
 CBC SDK 1.2.3 - Released April 19, 2021

 		
 CBC SDK 1.2.2 - Released April 5, 2021

 		
 CBC SDK 1.2.1 - Released March 31, 2021

 		
 CBC SDK 1.2.0 - Released March 9, 2021

 		
 CBC SDK 1.1.1 - Released February 2, 2021

 		
 CBC SDK 1.1.0 - Released January 27, 2021

 		
 CBC SDK 1.0.1 - Released December 17, 2020

 		
 CBC SDK 1.0.0 - Released December 16, 2020

 		
 Exceptions

 		
 Exception Classes

 		
 ApiError

 		
 CredentialError

 		
 ServerError

 		
 ObjectNotFoundError

 		
 MoreThanOneResultError

 		
 InvalidObjectError

 		
 TimeoutError

_static/workloads_example_script.gif
ayRonteora: -/ W/ carbon-black-Cloud-adk-python/exasples/workloads 11
tota1 24

drwotecr-x 2 any amy 4096 Oct 11 15:39 ./

Fearior—x 1 amy amy 15032 Oct 11 15139 vorkloads_search_oxanple.pys
anyeont eora: -/ \H/carbon-black-cloud-sdk-py hon/exanplas/workloads |

_images/install-windows.png
B)
Install Python 3.6.4 (64-bit)

St bt o 0t Fyhon it el st o s

® sl Now
LtV ————

o1 pp gt

> Customize nstallaion

TR ——
2 haaPyon 3610 PATH

_images/keychain_new_entry.png
Keychain Item Name:
CBC SDK API Credentials

Entor a name for this keychain ltem. f you are adding an Internet password
item, enter s URL here (for example: htps://www.apple.com).

Enter the account name assoclated with this keychain tem.
Password:

{

it

Entor the password o be stored I the keychal.
e —
Password Strength: Weak

@ Show Password

Caneel (G

_images/cbc_platform_notification_edit.png
Add Notification X

* Name

‘ SDK SIEM Demo ‘

When do you want to be notified?

‘ Alert crosses a threshold v ‘

Alert severity

As of June 2023, Observed activity alerts have been transitioned to the Investigate page as Observations. Existing
notification rules containing observed activity alerts will continue to receive emails at this time, but new or edited rules
will no longer have this option.

* Alert types

O Altypes

(@) selecttypes

USB Device Control Containers Runtime Host Based Firewall

8 Analytics Watchlists

Intrusion Detection System (email only)

* Policy

O Al policies

@ Select policies
Standard

Search for a policy

If muliple policies are selected, a separate notification will be created for each

How do you want to be notified?
Email

Search for a user v

Send only 1 email no

APl Key

cation for each threat type per day

SDK SIEM Demo (ABSP987P3V)

Search for an AP key

m Cancel

_static/cbc-sdk-thumbnail.png
@

VMware Carbon
Black Cloud

Python SDK

_images/workloads_example_script.gif
ayRonteora: -/ W/ carbon-black-Cloud-adk-python/exasples/workloads 11
tota1 24

drwotecr-x 2 any amy 4096 Oct 11 15:39 ./

Fearior—x 1 amy amy 15032 Oct 11 15139 vorkloads_search_oxanple.pys
anyeont eora: -/ \H/carbon-black-cloud-sdk-py hon/exanplas/workloads |

